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Performance adjustment of Speech rate in Automatic Speech Recognition

E. Chandra'

ABSTRACT

Rate of speech (ROS) has a greater influence in both
spectral features and word pronunciations that affect
automatic speech recognition {ASR) systems. To deal
with these ROS effects, the research proposes to use
parallel, rate-specific, acoustic models: one for fast
speech, the other for slow speech. Rate switching is
permitted at word boundaries, to aliow modeling within
sentence speech rate variation, which is common in
conversational speech. The Input Signal Processing
configures the front end for ROS to identify the fast and
slow speech and customize the application to handle both

the situation well.
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1. INTRODUCTION

Rate of speech (ROS) is an important factor that affects
the performanée of a transcription system,[1]. Possible
feasons are that some features commonly used in
recognition systems are duration related and clearly
influenced by speech rate, such as delta and delta features,
and that some pronunciation phenomena such as co-
articulation and reduction are also speech rate related [7).
Thus, using rate-dependent acoustic models seems to be
a promising way to improve robustness against speech

rate variation.
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This paper proposes a new approach of word level rate-
dependent acoustic modeling. Under this approach, each
typical word is given as fast version pronunciation and a
slow-version pronunciation, each consisting of rate-
specific phonemes {elementary probabilistic models of
basic linguistic units). The recognizer is allowed to select
the fast or the slow pronunciation for each word
automatically during search, based on the maximmum

likelihood criterion.

To train the rate specific phoneme models, the input signal
processing model used as a duration-based ROS measure

to partition the fraining data into rate-specific categories.

2. Ros MEASURE

Two methods are typically used to estimate ROS of an
input utterance. One is based on phoneme durations. The
Input Signal Processing model (ISP) [5] is proposed with
the confidence that the input signal speed can be fine
tuned for better realization by the Sphinx Speech Engine.
In this research work, the ISP model configures the
Result. getFrameNumber() function in the Result class of
Sphinx software by multiplying with the window Shift
function which is 10 milliseconds by default, to get the
length of the result. A standard reference is set to identify
the silence as well as the speech based on several repeated
experiments. The work also lowered the speech
recogniser classifier 'threshold' property in the config files
to make the input signal to be loud enough for the Sphinx
engine [9] to récogm'ze. By using repeated experiment
results the proposed model arrived at a set of standard

for optimal speed for the input signal and configured the
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module (ISP). When the utierance transcription is known,
this duration based method can provide robust ROS
estimation [1]; however, when the transcription is
unknown, the hypothesis from a prior recognition run was
referred, whose quality can be not very precise, The
second method involves estimating OS directly from
the waveform or acoustic features of the input utterance
[31[5]. To achieve robust ROS estimation, th:
computation is often based on a data window wit]
sufficient length. Under the proposed approach, to trai
the rate specific models the training data is partitione:
into rate-specific categories at the word level, an
therefore need the ROS for each word to be estimates
locally. The output of this process should give each wor
in the training transcription a rate class label. As the firs
step to ROS modeling, the research decided to use onl;
two ROS classes: fast or slow. Since only there is a need
to compute ROS for the training data that have
transcriptions, it is refatively straightforward to obtain
the duration of each word and its component phones by
computing forced Viterbi alignments, and then applying
duration-based ROS estimation methods. Fig. 1 illustrates
the duration distributions of 46 categories of monophones
estimated from the training corpus. It illustrates the
duration distribution across different phone types differ
substantially. The approach, use a relative ROS measure,

RW(D), defined as percentile of word's ROS distribution:

. )
Ry(D) = Pyld » Dy =1-> Fp(d) M
gwl)

where W is a given word, D is the duration of W, and
PW(d) is the probability of that type of word having
duration d. RW(D) is the probability of W having a
duration longer than D=2E The measure RW(D} always
falls within the range [0,1], and can be compared between

different word categories. However in practice, PW(d)
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is hard to estimate directly due to the data sparseness
problem. To address this it was assumed that in a word
the duration distributions of its component subword units,
such as phonermes, are independent of each other[6]. Thus,
a word's duration distribution equals the convolution of
its component subword units distributions, which are

easier to estimate from training data.
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Figure 1: Duration Distribution Of Different Phone Types

The proposed model used this measure to calculate the
ROS for all the words in the training data, and found that
80% of sentences with five or more words have at least
one word belonging to the fastest one third and one word
belonging to the slowest one third of all the words. This
suggests that in conversational speech, speech rate is
usually not uniform within a sentencef11]. In fact, the
measure defined in Eq. (1) can also be applied to subword
units, thus allowing us to calculate the ROS of phonemes.
This measure studied the phoneme's ROS variation within
words vs. within sentences. Fig. 2 shows a histogram of
the standard deviation of the phoneme's ROS within
words and within sentences for all training déta,
suggesting that the word is a better unit than the sentence
for ROS modeling, because the average phoneme-level
ROS variation within 2 word is significantly smaller than

within a sentence.




Karpagam JCS Vol 2 Issue 5 July. - August, 2008

— i EiAR.
- Wty
fraeen:
0
e iR
FERERELR
(it
L35%

p

I S

[ 4
8% |
£
-3
4
4
&

5 e = 3 wo

Frandent dekadlen ol hei-Lass i R OE (350
Fig 2 : Histogram Of Standard Deviate On Of Phoneme-
level ROS: Within Words Vs. Within Sentences.

3. Rare-DEPENDENT ACOUSTIC MODELING

In this proposed method, each word is given parallel fast-
and slow-version pronunciations in the recognition
lexicon. Both fast- and slow version pronunciations are
initialized from the original rate-independent version,
with the simple replacement. of rate-independent
phonemes by rate-specific phonemes. For example, the
original rate-independent pronunciation of "WORD" is /
w er d/. Consequently the fast-version pronunciation is /
wf erf dff and the slow-version /ws ers ds/, consisting of
fast and slow phonemes, respectively. The recognizer in
this case the normal forced alignment modes [5]
automatically find the best pronunciations that maximize
the likelihood score during the search, and thus avoid the
need for ROS estimation before recognition. In addition,
the search algorithim, Breadth first searching [ 5] is atlowed
to select pronunciations of different rates across word
boundaries #nd thus can cope with the problem of speech

rate variation within a sentence.

A. Acoustic Training

The experiment is based on Sphinx4 system, which uses
continuous-density genomic hidden Markov models
(HMMs) [4] the application is configured with onty the
first-pass recognizer based on gender-dependent non-
crossword genonic HMMs (1730 | genones with 64

Gaussians each for male, 1458 genones for female) and
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a bigram grammar with a 33,275- word vocabulary. The
recognition lexicon was derived from the CMU V0.4
lexicon with stress information stripped. The recognizer
used a two-pass (forward pass and backward pass} Viterbi
beam search algorithm; in the first pass a lexical tree was
used in the grammar back off node to speed up search.
The report results from the backward pass. The features
used were 9 cepstral coefficients (C1- C8 plus CO) with
their ﬁrst:- and second-order derivatives in 10ms time
frames. The research first calculated the ROS for all the
words in the training corpus based on the above-
mentioned measure, sorted these words accordingly, and
then split them into two categories: fast and slow. The
ROS threshold for splitting was selected to achieve equal
amounts of training data for the fast and the slow speech.
The training transcriptions were labeled accordingly. The
research then prepared a special training lexicon: words
with a fast label were given the fast-version pronunciation,
and words with a slow label the slow-version

pronunciationf13][15].

In this way, the proposed model was able to train the fast
and slow models simultaneously. The research used
genonic training tools to do standard MLE (Maximum
Likelihood Estimation) gender dependent training {4] and
obtained rate dependent models with 3233 genones for
male and 2501 genones for female. The genone clustering
for rate-dependent models used the same information loss
threshold as the training of rate-independent models. The
proposed model compared the rate-dependent acoustic
model with the rate-independent acoustic model (baseline
system) on a development data set, which is a subset of
the Sphinx4 data set, consisting of 1143 sentences from
20 speakers (9 male, 11 female). Table 1 shows the word
error rate (WER) fdr both models.
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Table 1 : Wer Comparison Between The Baseline System
With Rate-independent Model And The System With
Rate-dependent Model On The Development Data Set

Male |Female | All
rate-independent model 556 1 645 [58.9
rate-dependent todel from | 51.7 | 61.7 ]58.9

training

Rate-dependent modeling brings an absolute WER
reduction of 1.9%, which is statistically significant. To
eliminate the possible effect of different numbers of
parameters, there was an adjustment in the information
I.oss threshold for genone clustering to obtain another rate
independent model that had a number of parameters

similar to that of the rate-dependent model.
B. Adaptation Vs. Standard Training

In our previous work based on the ISP [5], instead of
using the training method proposed here, the proposed
model trained the rate-dependent model based on Speech
rate as the major influencer. However, in the current task
of speech transcription the proposed work more training
data, and the research use a different strategy to partition
the data into two classes instead of three, yielding more
training data for each rate class.. Thus, the proposed
model was able to train the rate-dependent models
robustly with standard training methods. For conparison
the proposed model tested the Bayesian adaptation
approach [2] on the current training set. Similar to [2],
even though the research has used separate rate-specific
models for each triphone, the research has not created
separate copies of the genones, but let the fast and slow
models for a given triphone share the same genone. In
this way, the same number of Gaussians was used for the
rate-dependent model as for the rate-independent model.

Table 2 shows the results on the same development data
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set used in the previous section. This approach brings an
advantage of 1.0% over the baseline, less than the
standard training scheme[14]. This indicates that the
difference between fast and slow speech in the acoustic
space is significant, and that standard training might be
better than the previous adaptation scheme to capture this
difference. These differences might explain why the
adaptation scheme did not achieve as much improvement

as the standard training.

Table 2 : Wer Comparison Between The Baseline Systerm
With Rate-independent Model And The System With
Rate-dependent Model From Adaptation On The
Development Set.

Male | Female § All
rate-independent model 553 | 634 [598
rate-dependent model from | 54.0 | 62.6 }58.8
traimng

Table 3 : Minimal Pair Comparison Based On An
Improved Baseline System Using A Wider Front End And
Vil Normalization On The Development Set

Male | Female § All
WER of baseline system 443 | 533 |473
WER of rate-dependent 436 | 53.0 (468
system

4. EXPEREMENAL SETUP

The proposed research work used Sphinx4[10] in a
windows 2000 platform with the following
configurations, Viterbi algorithm based HMM[16] and
Flat structured viterbi search for decoding and continuous
density acoustic mode and ASCII simple N-gram model
and uses Breadth first search and the baseline system had
been enhanced substantially. Below the research supply
some minimal pair experiments based on different
baseline systems during the development process. The
baseline system in Table 3 used a wider-band front end

{with 13 cepstral cocfficients instead of 9), and vocal tract
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length (VTL) normalization [5] during training. The
success from introducing word-level rate dependency is
still 1.9%, over a baseline that was itself improved by
5.0%

Table 4 ; Minimal Pair Comparison Based On A
Multiword-augmented Baseline System On The

Development Set

bt

3 Male |Female ANl
IWER of baselined50.6 579 1546
systern . N
JWER  of rate-}49.2 35.6 527

Another major addition to the evaluation system was the
introduction of multiword pronunciations. Here a
multiword is a high frequency word bigram or frigram,
such as "a lot of", that is handled as a single word in the
vocabulary. By using handcrafted phonetic
pronunciations describing various kinds of pronunciation
reduction phenomena for these multiwords, the work
achieved better modeling of crossword coarticulation. In
Sphinx4 system 1200 multiwords _Were introduced.
Experiments showed that the multiword pronunciation
modeling brought about a 4.0% absolute win on top of

the improved baseline system in Table 3, [5][8].

The possible reasons for the diminished effectiveness of
ROS maodeling may lie in the following aspects. First,
cach multiword is given multiple parallel pronunciations
reflecting both full and reduced forms. This by itself
models fast and slow speech variants to some extent.
Words, the work fail to model the rate variation occurring
within the multiwords, and thus may influence the quality
of the rate-dependent acoustic models, Third, due to our
current implementation, the infroduction of multiwords
made the search much more expensive than before; rate-

dependent modeling en top of the multiword dictionary
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made this problem even worse, and may have preduced

a loss in performance due to search pruning[12}.

Based on the above analysis, another scheme was tested:
instead of treating multiwords as ordinary words the
research trained them with multiword-specific phoneme
units, that is, using separate phonetic models to describe
the multiwords. Similar to the original approach, trained
three classes of phoneme models simultaneously: fast
models for ordinary words, slow medels for ordinary
words, and a separate set of phone models trained only
on the multiword data. With this approach, the research
improved the WER reduction to 0.7%, as shown in
Tables.

Table 5 : Minimal Pair Comparison On The Development
Set Between The Multiword Augmented Baseline System
And The Rate Dependent System With Multiword-

specific Phone Modeis

el [Female[All
WER of baseline system {443 1533 49.3]
WER of rate-dependent}436 1526 [48.6)
system. |

5. ConcLusion

Thus the paper proposed a rate-dependent acoustic
modeling scheme, which is able to model within-sentence
speech rate variation, and does not rely on ROS estimation
prior to recognition. Experiments shows that this method
results ina 1.9% (absolute) word error rate reduction on

sphinx4 speech transcription test set.
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