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DEEP LAB V3+ - BASED AUTOMATED SYSTEM FOR CLASSIFICATION AND
SEGMENTATION OF FATTY LIVER DISEASE IN ULTRASOUND IMAGES
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ABSTRACT
Fatty Liver Disease (FLD) is a growing global health

issue, often progressing silently without overt symptoms
until advanced stages. As aresult, early detection is critical to
prevent complications such as cirrhosis and hepatocellular
carcinoma. Ultrasound imaging offers a non-invasive,
affordable, and widely accessible diagnostic modality for
liver disorders. However, manual interpretation of
ultrasound scans is subject to inter-observer variability and
diagnostic delays. To address this challenge, this study
presents an automated system for the classification and
segmentation of FLD using the DeepLabV3+ semantic
segmentation model. Built on an encoder-decoder
architecture with atrous spatial pyramid pooling,
DeepLabV3+ efficiently captures multi-scale contextual
features and sharp object boundaries, making it well-suited
for medical image analysis.The model was trained and tested
on a curated dataset comprising annotated ultrasound liver
images representing both healthy and FLD conditions.
Preprocessing included normalization, resizing, and
augmentation to enhance model generalization. The system
demonstrated robust performance with a classification
accuracy 0of 96.3%, Dice coefficient of 0.91, Jaccard Index of
0.84, precision of 0.94, and recall of 0.88. Visual inspection
of the segmentation results confirmed that the model could
accurately delineate liver regions and fatty infiltration areas,

which are vital for clinical decision-making.
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I. INTRODUCTION
Fatty Liver Disease (FLD), also known as hepatic

steatosis, is characterized by the accumulation of fat in liver
cells and is considered one of the most common liver
disorders worldwide. Its prevalence has been increasing
rapidly due to factors such as obesity, diabetes, metabolic
syndrome, and lifestyle changes associated with modern
living. FLD can be broadly classified into alcoholic fatty
liver disease (AFLD) and non-alcoholic fatty liver disease
(NAFLD), with NAFLD being more prevalent in the general
population and often associated with metabolic conditions
[1]. Early diagnosis and monitoring of FLD are critical
because the disease can progress silently to more severe
conditions such as non-alcoholic steatohepatitis (NASH),
fibrosis, cirrhosis, and even hepatocellular carcinoma if left
untreated [2].

Traditionally, liver biopsy has been considered as the
gold standard for diagnosing and staging FLD. However,
biopsy is invasive, costly, subject to sampling errors, and
carries potential risks such as bleeding and infection.
Consequently, non-invasive imaging techniques have gained
significant attention as alternative diagnostic tools [3].
Among these, ultrasound imaging stands out due to its
accessibility, safety, real-time capability, and cost-
effectiveness. Ultrasound allows visualization of liver
texture and echogenicity changes associated with fatty
infiltration, making it a valuable tool for screening and
monitoring FLD [4].

Despite its advantages, ultrasound imaging
interpretation is largely dependent on the expertise and
experience of radiologists. The diagnostic accuracy is often
affected by operator variability and subjective assessment,
leading to inconsistent results, especially in early or mild
cases of FLD [5]. Therefore, there is a growing need for
automated, objective, and reliable methods to assist
clinicians in the detection and characterization of fatty liver

disease.

Recent advances in machine learning and deep learning
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have revolutionized the field of medical image analysis.
Deep learning models, particularly convolutional neural
networks (CNNs), have demonstrated remarkable
performance in various tasks such as classification,
segmentation, and detection across multiple medical
imaging modalities [6]. Semantic segmentation, which
involves classifying each pixel in an image into predefined
categories, is particularly relevant for medical diagnosis as it
provides detailed spatial information about the location and
extent of abnormalities. Automated segmentation of liver
and pathological regions can assist radiologists in accurate

quantification and assessment of fatty liver infiltration.

II. LITERATURE SURVEY

Several studies have focused on segmentation of liver
lesions and fatty regions in ultrasound images using deep
learning methods such as U-Net variants, demonstrating
improved boundary detection and segmentation accuracy
with Dice scores around 0.86 to 0.89.Classification tasks
using CNN architectures, including ResNet and DenseNet
combined with attention mechanisms, have achieved
accuracies above 90% for fatty liver disease detection.
Combining classification and segmentation in a unified
model has been shown to improve diagnostic robustness and
clinical usability. Encoder-decoder architectures like SegNet
and DeepLabV3+ offer strong performance in boundary-
aware segmentation by leveraging atrous convolutions and
spatial pyramid pooling to capture multi-scale contextual
information.

Incorporation of attention gates and temporal features
(via LSTM) has further enhanced the model's ability to focus
on relevant image regions and temporal disease progression,
respectively. Transfer learning has been effectively applied to
overcome limitations of small ultrasound datasets,
improving segmentation accuracy and generalization. Multi-
task learning models that simultaneously perform
classification and segmentation show promise for
deployment in real-world clinical settings, providing

comprehensive diagnostic insights.

Table 1: Deep learning methods

for liver ultrasound analysis

Imaging Performance Key
Dataset Method/Model|  Task
atase Modality cthod/Mode » Metrics  |Contributions
Private Improved
Ultrasound . lesion
Modified U- . . .
Dataset | Ultrasound Odll\ll;d v Segmentation| Dice =0.86 | segmentation
(500 accuracy using
images)[7] U-Net variants
Liver US CNN for
Dataset ResNet-based .~ .| Accuracy = | multi-class
| lassifi L
oo |Uttrsound) o (Classification) o) 5ol | fiver discase
images)[8] classification
Combined
l;jsgrc DenseNet + |Classification| Accuracy = atter;:r(l);leand
Ultrasound| ~ Attention + 93.2%, Dice .
Ultrasound . . B connections
Mechanism |Segmentation| =0.88 .
Dataset[9] improved
performance
0
pet Encoder-
Access
Ultrasound decoder
Images Ultrasound| ~ SegNet  |Segmentation| Dice =0.83 | network for
(6 OgO liver boundary
images)[10] segmentation
Pascal Atrous
VOC, Various Semantic convolution
Custom | including | DeepLabV3+ Seementation mloU =81% | and ASPP for
Medical |Ultrasound| & multi-scale
Dataset[11] context
Ultrasound .
. Attention
Liver Attention U- ates to focus
Dataset | Ultrasound Segmentation| Dice = 0.89 &
(450 Net on relevant
images)[12] image regions
e
Ultrasound Hybrid NN + Classification Acouracy = | improved
Dataset | Ultrasound + Temporal e
LST™M . 91% classification
(350 Analysis .
images)[13] of progressive
disease
Public Conditional
Ultrasound . Random
Dataset |Ultrasound FCN with CRF Segmentation| Dice = 0.85 | Fields refined
post-processing .
(300 segmentation
images)[14] boundaries
Joint learning
Public & Multi-task se mgnftation Attention
Private US CNN Accuracy = € and ates fo focus
datasets |Ultrasound| (Classification | 94%, Dice = o & Y
classification| on relevant
(1000 N 091 tasks image regions
images)[15] Segmentation) improved
robustness
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III. METHODOLOGY
The methodology for the proposed automated system

consists of several key stages: data collection,
preprocessing, model architecture design, training
configuration, and evaluation. Each step is crucial to ensure
the effectiveness and robustness of the DeepLabV3+ model
in both classification and segmentation tasks for Fatty Liver
Disease (FLD) diagnosis from ultrasound images.
A.Data Collection

Ultrasound images of the liver were collected from
publicly available medical datasets and anonymized clinical
sources. The dataset includes images representing both
healthy liver tissues and livers affected by various stages of
Fatty Liver Disease. Expert radiologists provided pixel-

level annotations for the fatty regions to serve as ground

truth for segmentation.

Ground Truth Mask

Figure 1: ultrasound images showing (a) normal liver, (b)
fatty liver, and (c) corresponding ground truth
segmentation masks.

B. Preprocessing

Preprocessing aims to prepare the raw ultrasound
images for efficient model training and to improve
generalization.

< Resizing: All images were resized to a fixed dimension

0f256x256 pixels to maintain uniform input size for the
DeepLabV3+model.

K2
0‘0

Normalization: Pixel intensity values were normalized
to the [0,1] range to stabilize training and improve

convergence.

K2
%%

Data Augmentation: To avoid overfitting and enhance
model robustness, data augmentation techniques were

applied, including:

w  Horizontal and vertical flipping
v Random rotations (15 degrees)
w Contrastadjustments

=  Random zooming and cropping
These augmentations simulate real-world variability in

ultrasound imaging conditions.

(il lane

Figure 2:I1lustration of preprocessing steps showing
original images, resized and normalized images, and

examples of augmented images.

C.DeepLabV3+Model Architecture

The DeepLabV3+ model is a state-of-the-art semantic
segmentation architecture combining atrous convolution and
encoder-decoder designs. It effectively captures spatial
context at multiple scales, which is essential for accurate
segmentation of fatty regions in noisy ultrasound images.

The architecture consists of:

< Backbone Network: A pre-trained feature extractor
(Xception or MobileNetV2) that produces rich

hierarchical features from the input image.

< Atrous Spatial Pyramid Pooling (ASPP): Multiple
parallel atrous convolutions with varying dilation rates

capture multi-scale context without losing resolution.

< Decoder Module: Refines segmentation outputs by
combining low-level features from the backbone with

ASPP outputs, improving boundary delineation.
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Figure 3: DeepLabV3+ architecture showing backbone,
ASPP block with different atrous rates, and decoder with

skip connections

D. Model Training
The DeepLabV3+ model was trained to perform both

classification (healthy vs. fatty liver) and segmentation
(identifying fatty regions). The segmentation is treated as a
pixel-wise binary classification problem.

3

% Loss Functions: A hybrid loss combining Binary Cross-

Entropy (BCE) and Dice Loss was used. BCE penalizes
pixel-level misclassification, while Dice Loss maximizes
overlap between predicted and ground truth masks, which is
critical in imbalanced medical datasets.

2
0‘0

Optimizer: Adam optimizer with an initial learning rate
0f0.0001 was chosen for efficient convergence.

R
0.0

Batch Size: 16

2
**

Epochs: 100 with early stopping based on validation loss

2
0‘0

Training-Validation Split: 80%-20% split to evaluate
generalization performance
To improve classification performance, the final

segmentation output masks were also used to extract region
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features, which were fed into a fully connected layer for
classification.
IV. RESULTS AND DISCUSSION

This section presents the quantitative and qualitative
performance of the proposed DeepLabV3+-based system for
classifying and segmenting Fatty Liver Disease (FLD) in
ultrasound images. The model's effectiveness is evaluated
using standard metrics, and its results are compared against
existing methods in the literature.
A. Quantitative Evaluation

The performance was assessed on a holdout test set
comprising 200 ultrasound images. The system achieved
strong results in both segmentation and classification tasks.

Table 2: Performance metrics of the proposed model for

liver disease classification

Metric Value
Classification Accuracy|96.3%
Dice Coefficient 0.91
Jaccard Index (IoU) 0.84
Precision 0.94
Recall (Sensitivity) 0.88
F1-Score 0.91

These results indicate that the model is highly effective in
correctly classifying liver conditions and delineating fatty
infiltration regions, which are essential for clinical diagnosis

and monitoring.

Confusion Matrix

True label

Megative
Predicted |abel

Positive

Figure 4:Classification outcome distribution :

TP, TN, FP, FN
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Precision-Recall Curve (Point Approximation)

Figure 5: High precision-recall point indicates

performance

ROC Curve {Approximated)

Figure 6:ROC shows strong classification trade-off
4.2 Performance Comparison with Existing Methods

To contextualize the performance of our approach, we
compare it with other recent works using ultrasound-based
liver analysis. As shown in Table 2, the proposed
DeepLabV3+-based system outperforms several
established architectures in segmentation accuracy.

Table 3: Comparative Analysis with State-of-the-Art

Models
Model Task Accuracy (%) Dice Score
Modified U-Net Segmentation 0.86
DenseNet + Attention Class + Seg 93.2 0.88
SegNet Segmentation — 0.83
Attention U-Net Segmentation — 0.89
Multi-task CNN Class + Seg 94.0 0.91
Proposed (DeepLabV3+)|Class + Seg 96.3 0.91

V. CONCLUSION

This research paper presents an effective DeepLabV3+-
based automated system for the classification and
segmentation of Fatty Liver Disease (FLD) from ultrasound
images. Leveraging the powerful semantic segmentation
capabilities of DeepLabV3+, particularly its encoder-
decoder structure and atrous spatial pyramid pooling
(ASPP), the system accurately identifies and delineates fatty
infiltration regions in liver ultrasound scans. Comprehensive
evaluation on a curated dataset of 1000 ultrasound images
demonstrated high classification accuracy (96.3%) and
robust segmentation performance (Dice coefficient of 0.91,
Jaccard Index of 0.84). The results also showed strong
alignment between predicted segmentation masks and expert
annotations, validating the clinical potential of the proposed
method. Compared to other deep learning approaches in the
literature, this system achieves competitive or superior
results, particularly in scenarios combining classification
and segmentation tasks. Furthermore, the inclusion of
preprocessing and augmentation techniques improved model
generalization across diverse imaging conditions.

In summary, the proposed DeepLabV3+ framework
offers a promising tool for automated, non-invasive, and
objective detection of fatty liver disease. It can assist
radiologists in clinical decision-making, reduce diagnostic

subjectivity, and enable early intervention strategies.
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