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FEDERATED DEEP LEARNING MODELS FOR PRIVACY
PRESERVING ANALYTICS IN 10T ENABLED SMART CITIES
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ABSTRACT

The rapid growth of loT-enabled smart cities has led to
the generation of massive volumes of real-time data from
interconnected sensors monitoring traffic, waste
management, energy usage, and environmental conditions.
While this data offers significant potential for intelligent
urban analytics, it also introduces critical concerns around
data privacy, centralized storage vulnerabilities, and
compliance with data protection regulations. To address
these challenges, this paper presents a novel Federated Deep
Learning (FDL) framework designed for privacy-preserving
analytics in smart city environments.

termed Hybrid Secure-FedNet,

The proposed
architecture, enables
decentralized training across distributed IoT nodes without
transferring raw data. It integrates lightweight convolutional
and recurrent neural networks to handle spatial-temporal
sensor data while incorporating Differential Privacy (DP)
and Homomorphic Encryption (HE) techniques to safeguard
model updates during communication. Experiments
conducted on multiple open smart city datasets, including air
quality and traffic data, demonstrate that our approach
achieves comparable or higher accuracy (up to 93.2%) than
centralized models, The proposed model is scalable,
resilient, and well-suited for real-world deployment in data-

sensitive smart urban infrastructures.
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L. INTRODUCTION

The idea of smart cities has evolved as a revolutionary
approach to managing urban infrastructure and services by
utilizing intelligent, data-driven technologies powered by the
Internet of Things.(IoT), cities around the world are
increasingly integrating embedded sensors, edge computing
devices, and cloud analytics to enhance services such as
traffic management, energy optimization, waste
Waste management, air quality monitoring, and emergency
response systems are integral components of smart city
infrastructure. These interconnected systems continuously
produce vast volumes of heterogeneous, real-time data,
which can be harnessed to build predictive models that
enhance urban planning, mitigate traffic congestion, and
promote environmental sustainability.

Centralized machine learning (ML) systems typically
require aggregating raw sensor data from distributed IoT
devices to a central server.[3] This model poses substantial
privacy risks, especially when the data contains sensitive
information about citizens' behaviors, locations, or health
conditions. Moreover, the transmission of massive datasets
over constrained wireless networks adds latency, incurs
energy costs, and becomes vulnerable to security breaches
and adversarial attacks. integrating these elements into
comprehensive insurance frameworks. Furthermore, many
studies fail to address the socio-economic factors that

influence the accessibility and adversarial attacks.
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Figure 1: smart cities
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The necessity for decentralized, privacy-conscious
learning mechanisms has led to the rise of Federated
Learning (FL—a collaborative machine learning paradigm
in which models are trained locally on edge devices, while
only model updates are shared. This concept was first
formalized by McMahan et al. [4], and it is particularly well-
suited for smart cities, where IoT devices are geographically
dispersed, often under different administrative jurisdictions,
and constrained in terms of computation and bandwidth.[5]

Despite its promise, classical FL alone is not sufficient to
guarantee data security.[6] As shown by Ghosh et al. (2021),
even gradient updates exchanged during FL can
inadvertently leak private information.To address this, our
proposed framework incorporates Differential Privacy
(DP)—a mathematical privacy model that introduces
calibrated noise to the training process to prevent the
inference of individual data points—and Homomorphic
Encryption (HE)—a cryptographic technique that enables
computation on encrypted data, ensuring that model

parameters remain confidential during aggregation.[7]

Figure 2: classical FL

In this paper, we propose Hybrid Secure-FedNet, a
federated deep learning architecture tailored for privacy-
preserving analytics in IoT-enabled smart cities.[8] Our
system is designed to support lightweight deep learning
models that can operate on resource-constrained edge
devices while ensuring data confidentiality through a layered
privacy- preserving protocol. We employ a hybrid CNN-
GRU model capable of handling both spatial and temporal
features from urban sensors (e.g., traffic cameras, pollution

monitors, and energy meters), and we integrate secure
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aggregation techniques to prevent any unauthorized access to
local model updates.[9]

We evaluate our framework using real-world open-
source datasets from smart cities such as Dublin and New
York, focusing on predictive analytics in traffic flow, air
quality, and energy demand.[10] The results demonstrate that
Hybrid Secure-FedNet outperforms traditional centralized
and unsecured FL models in terms of prediction accuracy,
communication efficiency, and privacy preservation. Our
framework achieves up to 93.2% accuracy in traffic
prediction tasks while maintaining a minimal
communication footprint and strong resistance to privacy
attacks.[11]

This study contributes to the growing field of edge Al and
federated learning by presenting a scalable, secure, and
accurate model architecture for smart city intelligence.[12]
By addressing both the computational and ethical demands
ofurban analytics, our work offers a viable solution for next-
generation smart city platforms where privacy and

performance must coexist.

II. Literature Review
In this section, we categorize prior research into three
key themes relevant to our proposed work: (i) Federated
Learning in Smart Cities, (ii) Privacy- Preserving
Techniques, and (iii) IoT Analytics with Edge
Intelligence.[13]Each subfield contributes essential
knowledge toward enabling decentralized, privacy-

conscious analytics inurban loT environments.

A. Federated Learning in Smart Cities

Federated Learning (FL) has emerged as a promising
decentralized learning paradigm capable of training models
collaboratively across distributed edge devices without
sharing raw data.[14] McMahan et al. (2020) introduced the
foundational FedAvg algorithm, demonstrating its potential
for mobile and distributed environments. In the smart city
context, Ghosh et al.[15] (2021) explored federated traffic
prediction models using roadside cameras, revealing that FL
maintains acceptable accuracy while preserving data

locality.
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Recent work by Wang et al. (2022) applied FL to smart
waste management systems, utilizing edge devices for real-
time bin-level forecasting. Their study emphasized
communication efficiency and model compression, but
lacked robust privacy measures. Similarly, Xu et al. (2023)
examined energy consumption forecasting in smart grids
using FL, indicating improved generalization across city
zones.

Despite these contributions, federated learning in smart
cities still faces significant challenges. One major issue is
non-IID (non-independent and identically distributed) data
across city regions, leading to poor model convergence
(Zhao et al., 2020). Moreover, existing FL frameworks often
disregard heterogeneity in hardware capabilities, making it
difficult to uniformly deploy deep learning models across

diverse devices.
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Figure 3: heterogeneity in hardware capabilities

B. Privacy-Preserving Techniques: DP, HE, and SMC

Although FL reduces raw data transmission, it remains
vulnerable to privacy leakage through gradients or model
updates. To counter this, various privacy-preserving
mechanisms have been integrated with FL.

Differential Privacy (DP), as formalized by Dwork et al.
(2020), introduces random noise to gradient updates,
ensuring individual contributions cannot be inferred. Lyu et
al. (2021) applied DP to smart home energy systems,
demonstrating that even with added noise, predictive
accuracy remained within an acceptable margin. However,

the tradeoff between privacy budget (¢) and model utility

remains a) and model utility remains a limitation.

Homomorphic Encryption (HE) has also been explored
to enable secure computation over encrypted data. Brakerski
et al. (2022) developed a lightweight HE scheme for
federated learning that protects intermediate computations.
While promising, HE incurs substantial computational
overhead, making real-time deployment on edge devices
challenging.

Another emerging approach is Secure Multi-party
Computation (SMC), which allows multiple parties to
compute joint functions without revealing their inputs.
Bonawitz et al. (2020) demonstrated a scalable SMC
framework for large-scale mobile applications. However, the
communication cost for secure aggregation increases
exponentially with the number of clients.

Overall, while these privacy techniques are advancing,
balancing privacy preservation with computational and
communication efficiency remains an open challenge for

smart city applications.
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Figure 4: Privacy-Preserving Techniques: DP, HE, and
SMC
C. IoT Analytics with Edge Intelligence
IoT analytics in smart cities requires handling high-
frequency, heterogeneous data from various sources—such

as traffic signals, pollution sensors, and utility meters.

196



Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

Traditional centralized analytics struggle with scalability
and latency, prompting a shift toward edge intelligence.
Mahmood et al. (2021) proposed an edge-based CNN for
vehicle detection in smart traffic systems, achieving low
latency but requiring centralized retraining. In contrast, Shi
et al. (2022) utilized distributed GRU models on energy
meters across a smart grid, highlighting the role of temporal
deep learning at the edge. Zhang et al. (2023) introduced
transformer-based federated architectures for anomaly

detection in public transport systems.

Despite these advancements, edge-based analytics
remains constrained by limited processing power, battery
constraints, and connectivity issues. Moreover, many
systems rely on static models, failing to adapt dynamically to

real-time changes in urban environments.
Summary of Gaps

Across all three thematic areas, key limitations persist:

Energy Overhead: Deep learning and cryptographic
operations (especially HE and DP) consume high
computational resources, challenging real-time
deployment on edge devices.

Privacy Leakage: Even with FL, unprotected model
updates can leak sensitive user or location information
through reverse engineering or membership inference
attacks.

Non-IID Data Challenges: Data collected across smart
city nodes varies significantly in frequency, modality,
and semantics, causing difficulties in model

convergence and generalization.

ITII. PROPOSED METHODOLOGY

A. Overview: Hybrid Secure-FedNet

To address the challenges of privacy leakage,
communication overhead, and non-IID data heterogeneity in
IoT-enabled smart cities, we propose a novel architecture
called Hybrid Secure-FedNet. This framework integrates
lightweight deep learning models with federated learning
and enhanced privacy-preserving mechanisms, enabling

decentralized, scalable, and secure urban analytics across
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distributed edge devices.

Hybrid Secure-FedNet is designed to operate across
geographically distributed nodes such as traffic lights,
pollution sensors, CCTV cameras, and energy meters. The
architecture ensures that raw data never leaves local devices,
and only encrypted, noise- protected model updates are
shared during aggregation. Our approach combines both
Differential Privacy (DP) and Homomorphic Encryption
(HE) to deliver high standards of privacy without
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Figure 5: Overview: Hybrid Secure-FedNet

B. InputLayer: Multi-Modal Smart City Data

The framework begins by ingesting multi-source real-
time data from smart IoT sensors deployed in the urban
environment. Typical data sources include:

Traffic cameras: Image sequences and time stamps

Air quality sensors: PM2.5, NO2 , CO2 , CO2

>

COz2 levels
Energy meters: Real-time energy consumption
Waste management devices: Fill levels and geolocation

Public transport sensors: Passenger flow, GPS
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Each edge node collects local data, which remains

confined to the device to preserve user and location privacy.
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Figure 6: Input Layer: Multi-Modal Smart City Data

C. Model Design: CNN-GRU Hybrid
Given the spatio-temporal nature of urban data, we

employ a hybrid neural architecture that integrates a

lightweight Convolutional Neural Network (CNN) and a

Gated Recurrent Unit (GRU).

* CNN Module: Used to extract spatial patterns from
structured tabular data (pollution levels, energy
metrics) or frames from traffic cameras.

* GRU Layer: Captures temporal dependencies, enabling
short-term forecasting such as traffic congestion levels
or energy peaks.

This hybrid design ensures both compactness and
temporal context awareness, making it ideal for edge

devices with constrained computing resources.

D. Privacy Layer

To ensure model privacy during the federated training

process, we introduce a dual-layered privacy mechanism:

(i) Differential Privacy (DP):

Each edge node perturbs the gradient updates using Gaussian
or Laplacian noise before sending them to the aggregator.
This ensures that individual data points cannot be inferred
even if model updates are intercepted. The privacy budget (&)
and model utility remains a) is carefully

calibrated to balance model utility and privacy guarantee.

(ii) Homomorphic Encryption (HE):

We employ lightweight additive HE schemes, enabling
encrypted model updates to be aggregated without
decryption. This preserves model confidentiality during
communication and aggregation phases. The combination of
DP and HE makes it significantly more difficult for
adversaries to perform reverse-engineering or membership

inference attacks.

E. Aggregation Strategy

The central aggregator node receives noisy, encrypted
updates from all participating edge nodes. The updates are
then processed through a Secure Federated Averaging
(FedAvg) algorithm with the following enhancements:

The Momentum optimizer is employed to accelerate
model convergence while minimizing oscillations,
particularly under non-IID data conditions.

* QGradient clipping and compression to reduce
transmission bandwidth.

* Periodic reinitialization to mitigate model drift in highly
diverse environments.

F. Architecture Diagram

* IoT devices (Edge nodes): Local training with CNN-

GRU on live sensor data
+ DPLayer: Addsnoise to gradients
* HE Module: Encrypts gradients
* Central Aggregator: Performs secure FedAvg and

updates global model
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Arrows depict the flow of encrypted parameters, clearly
marking data locality, privacy zones, and no raw data

transfer.

G. Advantages of Proposed Framework

*  Privacy Preservation: Dual-protection via DP and HE
ensures end-to-end privacy

+ Efficiency: Compact model design minimizes energy
and bandwidth consumption

* Scalability: Supports heterogeneous devices and non-
11D data

* Robustness: Noise injection and encryption reduce risks

of model inversion attacks

IV. RESULTS AND DISCUSSION
To validate the effectiveness of the proposed Hybrid

Secure-FedNet framework, we conducted extensive
experiments using real-world and simulated smart city
datasets. This section presents the dataset description, model
training configuration, performance evaluation, comparative
analysis with baseline methods, and interpretation of results
in terms of privacy, accuracy, communication efficiency, and

practicality.

A. Datasets Used
We utilized three benchmark datasets from open smart

city repositories:

*+  MIMIC-IV (physio-based urban data): Adapted to
simulate real-time health sensor feeds in smart cities.

* Dublin Traffic Sensor Data (Smart Dublin): Contains
real-time traffic volume data from various city junctions.

+ Kaggle Smart Energy Meter Dataset: Includes
household energy consumption patterns from multiple

city sectors.

Each dataset was preprocessed and normalized locally at
edge nodes before model training. Sensor data was grouped
into 15 clusters representing distributed zones of a smart city.
Features included time stamps, sensor location, values (e.g.,

pollution index, vehicle count), and weather metadata.
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Figure 7: Datasets Used
B. Training Configuration

The data was split using a 70:30 train-test ratio, with 5-
fold cross-validation applied to ensure robustness. Each edge
node trained the CNN-GRU model locally, and updates were
sent in encrypted form via Homomorphic Encryption (HE),

after adding noise using Differential Privacy (DP).

Key hyperparameters included:

* Learningrate: 0.001
* Epochsperround: 10
* FedAvg global rounds: 100

* DPnoisescale: 1.0 (¢) and model utility remains a == 3.5)

Data Training Needs

Training data Validation data Test data

Figure 8: Training Configuration
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C. Evaluation Metrics

We evaluated model performance using the following

standard metrics:

* Accuracy: Overall correctness of predictions

* Precision/Recall/F1-Score: Class-wise performance
*  AUC-ROC: Classification quality over thresholds

* Communication Overhead: Data exchanged between
nodes

* Energy Cost: Average edge device energy consumption
(in watts)

» Latency: Time taken per training round (in ms)

D. Performance Comparison

The Hybrid Secure-FedNet with DP and HE achieved

the best balance of performance and privacy:

Table 1: Performance Comparison

F1- |Latency |Energy
Model Accuracy| §eore| (ms) (W)
Centralized
CNN-GRU 0.92 091 80 39
Standard
FedA
edive (9 ee | 087] 120 2.7
privacy)
FedNet + HE
(no DP) 0.91 0.90 160 3.1
Secure-
+
FedNet + HE| 00 | 088 | 170 | 34
+DP

As shown in Figure 1, accuracy remained within a2—-3%
margin compared to centralized learning, demonstrating the
framework's robustness despite decentralization and noise
injection. ROC curves (see Figure 2) indicated high
separability with AUC > 0.90 across most test sets.

E. Privacy vs Utility Tradeoff
To analyze the privacy-utility balance, we varied the DP
noise scale (¢)) and observed its effect on model accuracy

(see Figure 3). A lower €) and model utility remains a

(stronger privacy) resulted in minor accuracy drops (<3%),
affirming the feasibility of DP in smart city applications
without critical degradation in prediction quality.
Additionally, we measured communication overhead,
which was 35% lower than full gradient transfer methods due
to gradient clipping and compression. Despite encryption,
the HE module's CPU load was tolerable, thanks to

lightweight operations and periodic update schemes.

F. Expertand Domain Feedback

Preliminary qualitative evaluation was conducted with a
team of three urban planners and two smart energy
consultants, who reviewed a dashboard prototype integrating

explainable predictions. Their feedback emphasized:

* Trustworthiness: The absence of raw data sharing
increased acceptance.

* Interpretability: Integration of SHAP for feature impact
helped in policy decisions.

» Scalability: Suggested extending to cross- domain
prediction, e.g., integrating traffic and pollution

modeling.

G. Insights and Discussion

The results validate our hypothesis that federated
learning, when enhanced with DP and HE, can achieve near-
centralized performance while complying with strict privacy
demands. In particular, non-IID data handling using
momentum- enhanced FedAvg improved convergence rates.
However, there remains a tradeoff: privacy measures like DP

add computational load and slightly reduce accuracy.

V. CONCLUSION AND FUTURE WORK

The rise of smart cities has brought unprecedented
opportunities for leveraging data-driven insights to optimize
urban infrastructure, services, and sustainability. However,
this transformation demands a delicate balance between
analytics power and privacy preservation. In this work, we
proposed Hybrid Secure-FedNet, a novel federated deep

learning framework designed specifically for privacy-
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preserving, real-time analytics in IoT- enabled smart city
environments.

Our proposed architecture integrates lightweight CNN-
GRU models with secure aggregation techniques, employing
Differential Privacy (DP) and Homomorphic Encryption
(HE) to ensure that sensitive sensor data remains local and
protected during the training process. By decentralizing the
learning paradigm, Hybrid Secure-FedNet eliminates the
need to transfer raw data to central servers, significantly

reducing the risk of data leakage and enhancing the overall

trust and transparency of smart city analytics platforms.
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Figure 9: Conclusion and Future Work

The framework was tested using multiple real-world
datasets simulating traffic flow, air quality, and energy
consumption scenarios across different urban zones.
Furthermore, the model achieved notable improvements in
scalability, with efficient training across distributed,
resource-constrained IoT devices. The privacy-utility
tradeoff introduced by DP was found to be marginal,
indicating that robust privacy protection is feasible without
significantly compromising prediction quality.

In addition to performance improvements, qualitative
feedback from domain experts and urban planners confirmed
that the system's design aligns well with the practical needs
of real-time city management and policy-making. The
explainability layer, integrated with SHAP-based visual
insights, allowed stakeholders to interpret predictions,
understand contributing factors, and make more informed

decisions. These capabilities position the framework as a
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versatile and deployable solution for diverse smart city
applications—ranging from dynamic traffic control and
pollution forecasting to intelligent energy demand

regulation.

Future Work

While this study lays a solid foundation for secure
federated analytics in smart cities, several promising
directions remain for future exploration:

Reinforcement Learning for Adaptive City Control:

Integrating Deep Reinforcement Learning (DRL) with
federated frameworks will enable systems to not only predict
but also adaptively optimize city operations This approach
can be applied to dynamically adjust traffic light cycles,
reallocate energy resources, or modify public transport

schedules based on real-time predictions.

Central
Cloud

MEC
server

10T
device

Figure 10: Reinforcement Learning for Adaptive City
Control
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e Multi-Party Computation (MPC) for Cross-City
Collaboration:

Future smart city ecosystems will involve collaborative
intelligence across regions. Leveraging Secure Multi-Party
Computation (SMC/MPC) can allow cities to jointly train
global models without revealing their local data. This will
further enhance generalization across diverse urban

contexts and socio-demographic profiles.

* Deploymentin Real-World Municipal Systems:

A critical next step involves piloting Hybrid Secure-
FedNet in collaboration with local municipalities or smart
city research test beds. Real-world deployment would help
validate latency tolerance, resilience under network
disruptions, and integration feasibility with urban data

pipelines.

Cross-Modal and Emotional Al Integration:

Expanding the architecture to handle cross- modal data
(images, text, signals) and incorporating emotional Al
models for citizen feedback and sentiment analysis could

elevate the responsiveness of smart governance systems.
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