DETECTION OF PLANT LEAF DISEASES THROUGH RNN AND TRANSFER LEARNING TECHNIQUES

A.Ramkumar* ¹, M.Arun ²

ABSTRACT

Plant diseases threaten the lives of farmers and the delivery of essential nutrients for the world's growing population, posing a serious threat to agricultural productivity and global food security. Plant diseases may be accurately and promptly identified. Critical for mitigating their detrimental impact on agricultural productivity, as prompt intervention can help contain the spread of infections and minimize losses in crop yields. This research paper proposes a novel approach that seamlessly integrates Recurrent Neural Networks and transfer learning techniques to effectively identify and classify a wide range of plant leaf diseases. The innovative methodology presented in this research aims to offer a strong, flexible, and all-inclusive solution for the prompt identification and precise categorization of diverse plant pathologies. By leveraging the powerful feature extraction and sequence modeling capabilities of Recurrent Neural Networks, combined with the rich visual representations and learned knowledge acquired from Convolutional models of neural networks that have already been trained, the suggested system aspires to make a significant contribution towards supporting sustainable farming methods and guaranteeing world food security by accurate early detection and diagnosis of plant leaf diseases.

Keywords: Recurrent Neural Networks (RNN), Plant Leaf Disease Identification and Transfer Learning

Department of Information Technology¹,
Karpagam Academy of Higher Education Coimbatore, India¹
aram.mca@gmail.com¹
Department of Computer Applications¹,
Kalasalingam Academy of Research and Education¹
vgsm.arun@gmail.com¹

I. INTRODUCTION

Plant diseases may have a disastrous impact on agricultural output and food supply, it pose a major danger to global nutrition. Traditional illness detection techniques majorly depend on specialists' visual assessment, which can be laborious, arbitrary, and non-scalable. This approach requires extensive expertise and can be prone to inconsistencies, making it difficult to efficiently monitor and manage plant diseases on a large scale. Researchers have investigated the possibilities of deep instruction and transfer learning approaches to overcome these constraints by automating the detection of plant diseases from digital images of plant leaves. These advanced computational approaches hold promise in providing a more effective, impartial, and scalable method for the early and accurate plant disease detection, which is crucial to minimize the detrimental impact of plant diseases on the world's food supply and agricultural output. Recent researches have shown that deep learning models, including convolutional neural networks, are useful for precisely identifying and categorizing a variety of plant diseases [1] [2] . These CNNbased approaches leverage the ability of deep neural networks to learn discriminative visual features from large datasets of labeled plant images, enabling robust and accurate disease classification. Specifically, CNNs can automatically extract intricate patterns and textures from leaf images that are indicative of various plant diseases, outperforming traditional manual inspection techniques. Moreover, the hierarchical structure of CNNs allows them to capture features at multiple scales, from low-level details to high-level visual concepts, which is crucial for distinguishing between similar disease symptoms [14]. The proven success of these deep learning models in plant disease identification highlights their potential to revolutionize precision agriculture and ensure worldwide food security by promptly and precisely identifying crop diseases. Expanding the diversity and size of the datasets used to train these models, while simultaneously exploring novel architectural

^{*} Corresponding Author

designs and learning techniques, potentially result in methods for identifying plant diseases that are considerably more reliable and accurate. Furthermore, creating strategies that can better generalize to unseen plant varieties or disease types would be valuable for deploying these deep learning models in real-world agricultural settings, with greater effectiveness and adaptability. However, the performance of these models can be limited by the availability of large, high-quality datasets, which can be challenging to obtain, particularly for rare or emerging plant diseases.

To overcome the challenge of availability of a few large, high-quality datasets available for the identification of plant diseases, researchers have looked at the possibilities of transfer learning methods. These strategies make use of the knowledge and capabilities acquired by adapting pre-trained models—such those developed on big, general picture datasets like ImageNet—to the particular goal of identifying plant diseases using smaller, domain-specific datasets. By using the datasets of plant disease images to refine the previously trained models, the models can effectively learn the distinctive visual features and patterns associated with various plant pathologies, without the need for extensive training from scratch. This strategy has proven effective in improving Deep learning models' performance and capacity for generalization for plant disease identification, as it allows them to benefit from the rich feature representations and learned knowledge acquired from the large-scale, generic image datasets, while also adapting to the nuances of the plant disease domain through targeted fine-tuning. The application of transfer learning has been a crucial advancement in overcoming the data scarcity challenge and enhancing the robustness and real-world applicability of deep learning-based plant disease detection systems [15].

II. LITERATURE SURVEY

Several recent researches looked at the application of transfer learning and deep instruction techniques to the identification of plant diseases. These studies have demonstrated the effectiveness of the techniques in accurately detecting and categorizing a broad variety of plant diseases, significantly advancing the area of precision

agriculture. A deep transfer learning-based technique for identifying rice leaf diseases [4], the researchers utilized a pre-trained ResNet model, which was fine-tuned on a collection of pictures of rice leaves, to get cutting-edge performance in detecting and classifying various rice leaf illnesses such bacterial leaf blight, brown spot, and blast. In particular, the researchers leveraged the robust feature extraction capabilities of the pre-trained ResNet model, which had refined the parameters used by the model on the sample of rice leaf disease set after being trained on a sizable generic picture dataset such as ImageNet [5]. By using this transfer learning technique, the model was able to both adapt to the rich visual data that the pre-trained network had already learnt and, to the unique characteristics and nuances of rice leaf diseases. In [6], the fine-tuning process enabled the model to effectively capture the distinctive patterns, textures, and visual cues associated with different rice leaf pathologies, resulting in highly accurate classification of the various disease types, including blast, brown spot, and bacterial leaf blight. The study demonstrated the power of combining deep learning with transfer learning techniques to overcome the difficulty of finding huge, high-quality datasets in restricted quantities for plant disease identification, thererby ultimately enhancing the real-world applicability and performance of the plant disease detection method, based on deep learning system. Various existing researches have explored the promising potential of combining Recurrent Neural Networks with transfer learning techniques for plant disease identification. These studies have demonstrated the advantages of the hybrid approach, which leverages the unique strengths of both methods to achieve robust and effective solutions for correctly identifying and categorizing a wide variety of diseases that affect plants. The ability of RNNs to capture temporal dependencies and process sequential data allows them to effectively analyze the intricate visual patterns and textures associated with various plant pathologies. Meanwhile, the transfer learning component makes it possible to modify and improve previously taught models, benefiting from the rich feature representations and learned knowledge acquired from large-scale, generic image

datasets. By combining the powerful feature extraction and classification capabilities of RNNs with the advantages of transfer learning, the proposed methodology was highly versatile and accurate solution for timely plant disease identification, which remains crucial for supporting sustainable farming methods and guaranteeing food security worldwide [9]. Another study explored the use of transfer learning to identify plant leaf diseases, with a particular emphasis on bell pepper, tomato, and potato plants. In [8], the researchers used an already trained ResNet-34 model that had been trained on a collection of plant leaf pictures and then improved on the large ImageNet dataset, including various disease types such as early blight, late blight, and bacterial spot. The transfer learning approach allowed the model to leverage the rich visual feature representations learnt from the generic ImageNet dataset, while also adapting them to the specific task of plant disease identification. In [13], The fine-tuned model demonstrated state-of-the-art performance in accurately recognizing and classifying the various plant leaf diseases, proving the efficacy of the transfer learning strategy in overcoming the data scarcity challenge and enhancing the overall performance of the technique for detecting plant diseases based on deep learning. Another research, [12] investigated the diagnosis of diseases of plant leaves using deep convolution neural networks and transfer learning. across three different plant species: potato, tomato, and bell pepper. The researchers demonstrated the effectiveness of this approach in accurately detecting and classifying the diseases affecting these plants, outperforming traditional machine learning techniques. In [7], incorporating deep learning-based plant disease detection with mobile app technologies has the potential to make these solutions more accessible and user-friendly for farmers and agricultural professionals. In [10], researchers developed a mobile app that leverages a using a deep learning model to identify different plant diseases, including blight, mildew, and rust, across 14 different plant species. The integration of deep learning and mobile technologies enables on-the-spot diagnosis and can empower farmers to quickly detect and treat plant diseases to help create more sustainable and effective agricultural practices[11]. In [16], Veerasamy and

Thomson Fredrik,2023 introduced an intelligent farming model that leverages an uncertainty-driven expert system, integrating neutrosophic logic with paraconsistent reasoning to handle imprecise and conflicting data in crop recommendations, especially in cases of unbalanced soil and climatic conditions.

III. PROPOSED SYSTEM

This study suggests a fresh and all-encompassing strategy that successfully makes use of transfer learning and recurrent neural networks' advantages, and techniques to achieve highly accurate and robust identification of a wide range of plant leaf diseases. The proposed methodology involves a multi-faceted approach that combines the powerful RNNs' extracting and categorizing features skills combined with transfer learning's advantages to get through the limitations of availability of large, high-quality datasets for plant disease diagnosis. This innovative approach aims to provide a highly adaptable and efficient technique for quickly identifying and classifying different plant pathologies, which is crucial for supporting sustainable farming methods and guaranteeing food security worldwide. These are the primary components of the recommended methodology: First, the study leverages the strong feature extraction and classification of artificial neural networks' capacity to quickly pick up on the distinctive patterns and textures connected to various plant leaf diseases. RNNs are perfect for evaluating, as they can process sequential input and detect temporal correlations. The complex and intricate characteristics of plant leaf images that can be indicative of different pathologies. Second, the researchers employ transfer learning techniques to address the the difficulty of finding huge, high-quality datasets for plant disease identification. By adjusting previously learned models, including those that were trained on extensive generic picture datasets, the proposed methodology can adapt and benefit from the rich feature representations and learned knowledge, while also tailoring the simulators to the particular subtleties of the field of plant diseases. The study's suggested technique involves a multi-faceted approach that leverages the powerful feature extraction and classification capabilities,

and the advantages of Recurrent neural networks, also combined with transfer learning techniques. This innovative approach aims to offer a very flexible and efficient remedy for the timely identification and categorization of a wide range of plant leaf diseases.

Dataset Collection and Pre-processing:

The initial phase entails gathering an extensive dataset of plant leaf images, covering a wide range of common plant diseases and healthy leaf samples. The dataset will be carefully curated, ensuring high-quality images and accurate labeling of the disease classes. To improve the training data's variety and resilience, pre-processing methods such picture normalization, resizing and augmentation will be used.

Transfer Learning Backbone

Recurrent Neural Network Architecture: A network of recurrent neural networks architecture will be incorporated into the suggested system to efficiently collect the temporal and sequential nature of the visual characteristics associated with plant leaf diseases. RNNs are well-suited for this task, as it can process input data in a sequential manner, allowing them to analyze the intricate patterns and textures present in plant leaf images.

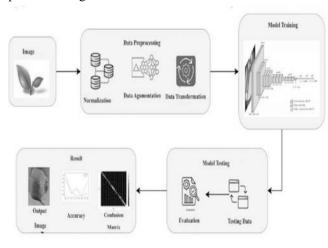


Figure 1: Proposed System Architecture

The RNN component of the system will be designed to work in conjunction with the backbone of a convolutional neural network with pre-existing training. CNN will serve as the feature extractor, providing high-level visual representations that will be fed into the RNN layers. The RNN will then process these features sequentially,

leveraging its ability to model dependencies and capture the temporal dynamics of the leaf disease patterns. Depending on the specific implementation, the RNN architecture may incorporate different types of RNN cells, renowned for their capacity to manage dependency over time in sequential data, including Gated recurrent units and long short-term memory cells. To discover the intricate connections between the visual elements and the RNN layers, they will be loaded and trained. The corresponding plant disease classes, ultimately enable the system to identify a variety of diseases of leaves with precision and promptness.

IV. RESULT AND DISCUSSION

The user must provide a photograph of a cotton leaf in order to forecast the illness. Image processing starts with a digitalized color image of the vegetation leaf after the user uploads an image. After reading the photographs, the Image Data Producer will downsize them to a target measurement of 150×150 , modest and nearly a quarter of the usual image size. Lastly, CNN can be used to predict plant disease. The technology can predict illnesses on various picture sizes and resolutions. Size, direction, and light intensity have no effect on the output result. However, the accuracy of image detection will be great in high-resolution images. There are 217 photographs in the testing dataset and 520 photos in the training dataset. The method's overall accuracy is 89%.

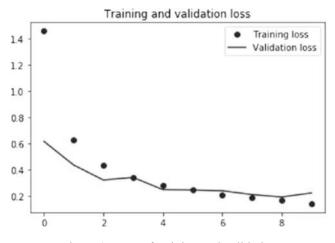


Figure 2: Loss of training and validation

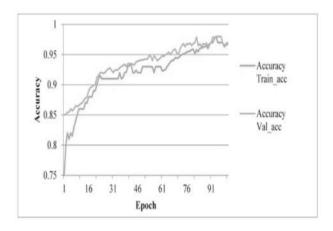


Figure 3: Accuracy of Training and Validation

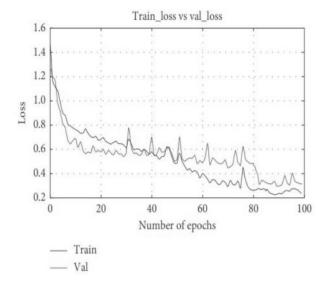


Figure 4: Train loss vs Val loss

Figure 5: Screenshot for UI

One crucial indicator that assesses the suggested system's performance correctness is overall effectiveness in correctly identifying and classifying plant leaf diseases. It represents the proportion of photographs in the dataset that were properly categorized to all images of the data set in question. This accuracy score offers a thorough assessment of the system's capacity to precisely identify and differentiate between different plant diseases, which is crucial for facilitating efficient disease control and ensuring sustainable agricultural practices. A high performance accuracy indicate the system's capability to reliably identify a diverse range of plant leaf diseases, while a lower accuracy would suggest the need for further model refinement and optimization to enhance the system's robustness and efficacy. The loss function is a critical component that quantifies how well the proposed deep learning architecture is able to model the underlying data and relationships. It serves as the optimization objective during the process of training, directing the model to acquire the most effective feature representations and decision boundaries for accurately classifying the diverse range of plant leaf diseases. The loss function captures the discrepancy between the ground truth labels and the equation's predicted outputs, giving a numerical evaluation of the model's efficacy. In order to reduce this loss, the training process iteratively adjusts the model parameters to improve its ability to correctly identify the visual patterns and characteristics associated with different plant pathologies, ultimately enhancing the plant disease categorization system's overall dependability and accuracy. One important statistic is precision, which calculates the proportion of accurately predicted favourable results to all of the model's positive predictions. It offers information on the system's the capacity to precisely locate cases of a certain kind of plant disease, without being overly inclusive or making erroneous optimistic forecasts. A high accuracy score reduces the frequency of false positives and shows that the model is producing accurate and confident predictions. This is especially crucial given the circumstances of plant disease identification, as false alarms can lead to unnecessary interventions and potentially waste valuable resources. By optimizing the precision of the proposed system, the model can accurately identify the

existence of specific plant pathologies, enabling timely and targeted treatment strategies to be implemented, ultimately enhancing the general efficacy and efficiency of managing agricultural diseases. Recall is a crucial performance metric that determines the ratio of correctly anticipated good outcomes to all encouraging findings in that class. It offers information on how well the system can detect every occurrence of a certain plant disease without overlooking any real positive cases. With a high recall score, the model may identify a significant percentage of positive instances while reducing false negatives. This is also crucial, given the circumstances of plant disease identification, as missing the detection of a disease can lead to delayed treatment and potentially catastrophic consequences for crop health and yield. By optimizing the recall of the proposed system, the model can reliably capture the presence of diverse plant pathologies, ensuring that all instances of a disease are correctly recognized and addressed, therefore improving the agricultural disease prevention process's overall effectiveness.

V. CONCLUSION

This study has put out a fresh and thorough method for identifying and classifying a range of plant leaf diseases. By seamlessly integrating the powerful feature extraction and sequence modeling capabilities Recurrent Neural Networks' benefits include transfer learning, the presented methodology aims to provide a highly versatile and robust solution for timely and accurate plant disease diagnosis. This hybrid approach leverages the innate ability of RNNs to effectively capture the temporal dynamics and intricate visual patterns associated with various plant pathologies. while also benefiting from the rich feature representations and learned knowledge acquired from pre-trained Convolutional Neural Network models. Through this innovative combination of cutting-edge deep learning methods, the suggested system aspires to make a significant contribution towards supporting promoting sustainable farming methods and guaranteeing world food security by making it possible to precisely and promptly detect plant leaf diseases.

REFERENCES

- [1] Raida Moyazzoma, Md. Al Amin Hossain, Md. Hasanuzzaman Anuz, Abdus Sattar "Transfer Learning Approach for Plant Leaf Disease Detection Using CNN with Pre-Trained Feature Extraction Method Mobilnetv2" 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST)
- [2] Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, YA. (2020, June 1). "Using deep transfer learning for image-based plant disease identification", Elsevier BV, 173, 105393-105393. https://doi.org/10.1016/ j.compag.2020.105393
- [3] Kalvakolanu, ATS. (2020, January 1). "Plant Disease Detection from Images." Cornell University. https://doi.org/10.48550/arxiv.2003.05379
- [4] Kathiresan, G S., Anirudh, M., Nagharjun, M., & Karthik, R. (2021, May 1). "Disease detection in rice leaves using transfer learning techniques." IOP Publishing, 1911(1), 012004-012004. https://doi.org/10.1088/1742-6596/1911/1/012004
- [5] Bansal, R. Sharma, V. Sharma, A. K. Jain and V. Kukreja, "A Deep Learning Approach to Detect and Classify Wheat Leaf Spot Using Faster R-CNN and Support Vector Machine," 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Lonavla, India, 2023, pp. 1-6, doi:10.1109/I2CT57861.2023.10126124
- [6] P. Sharma, P. Hans and S. C. Gupta, "Classification of plant leaf diseases using machine learning and image preprocessing techniques", Proc. 10th Int. Conf. Cloud Comput. Data Sci. Eng. (Confluence), pp. 480-484, Jan. 2020.
- [7] Talukder, M S H., Sulaiman, R B., Chowdhury, M R., Nipun, M S., & Hassine, B H. (2023, January 1). PotatoPestNet: "A CTInceptionV3-RS-Based Neural Network for Accurate Identification of Potato Pests", Cornell University. https://doi.org/10.48550/ arxiv.2306.06206

- [8] Waleej Haider; Aqeel-Ur Rehman; Nouman M. Durrani; Sadiq Ur Rehman; "A Generic Approach for Wheat Disease Classification and Verification Using Expert Opinion for Knowledge-Based Decisions", IEEE ACCESS, 2021
- [9] Geetabai S Hukkeri, B C Soundarya, H L Gururaj, and Vinayakumar Ravi "Classification of Various Plant Leaf Disease Using Pretrained Convolutional Neural Network On Imagenet" The Open Agriculture Journal 20 May 2024 DOI: 10.2174/0118743315305194240408034912
- [10] Angel Sheril J, Mary Eugine J, Dikshna U. "Deep learning based disease detection in tomatoes" 3rd International Conference on Signal Processing and Communication (ICPSC) 13-14 May 2021; Coimbatore, India, 2021, 2021
- [11] Hassan Amin, Ashraf Darwish, Aboul Ella Hassanien, Mona Soliman "End-to-End Deep Learning Model for Corn Leaf Disease Classification" IEEE Access (Volume: 10) 14 March 2022 DOI: 10.1109/ACCESS.2022.3159678
- [12] Yang Wu, Xian Feng, Guojun Chen "Plant Leaf Diseases Fine-Grained Categorization Using Convolutional Neural Networks" IEEE Access, Vol 10, 2022 DOI: 10.1109/ACCESS.2022.3167513
- [13] Changjian Zhou, Sihan Zhou, Jinge Xing, Jia Song "Tomato Leaf Disease Identification by Restructured Deep Residual Dense Network" IEEE Access Vol 9, 2021
- [14] M. Lv, G. Zhou, M. He, A. Chen, W. Zhang and Y. Hu, "Maize leaf disease identification based on feature enhancement and DMS-robust alexnet", IEEE Access, vol. 8, pp. 57952-57966, 2020.
- [15] B. Liu, C. Tan, S. Li, J. He and H. Wang, "A data augmentation method based on generative adversarial networks for grape leaf disease identification", IEEE Access, vol. 8, pp. 102188-102198, 2020

[16] K. Veerasamy, E.J. Thomson Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation, Journal of Internet Services and Information Security, Vol.13, Issue 4, November 2023.