Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS
USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

P. Thangamariappan* ', S. Mithuna’

ABSTRACT

Because of the widespread and extensive deployment of
susceptible web applications, application security is still a
challenging field. This maintains the vulnerability of easily
accessible entry points that can compromise entire apps. The
primary cause of this problem is the widespread lack of
strong validation procedures on the client and server sides.
Input Validation Attacks (IVA)—which include risks such as
Cross-Site Scripting (XSS), SQL injection (SQLi), path
traversal, and command injection (CMDi)—occur when
inputs are not sufficiently sanitized. Security is a top priority
in the application area, particularly as web application
security is an essential interface for communicating with
computer systems and the vast Internet. Given these
difficulties, the goal is to improve web application security
by implementing hybrid analysis-based static and dynamic
deterministic pushdown automata that are enhanced by an
intelligent framework. This will allow for the proactive
detection of vulnerabilities and the differentiation of normal
from abnormal requests. Even while the methods available
today are successful in detecting web attacks, there are
situations where a combination of approaches is required. As
such, the research explores hybrid approaches, enhanced by a
machine learning framework. Next, we assess if an
unsupervised method for input validation attacks based on a
quick mining tool is feasible. The results of our study
demonstrate a significant improvement in accuracy when
compared to baselines. We highlight the improved accuracy
of our technique with a 3% improvement over DEKANT, 6%
over WAP, 11% over PhpMinerll, 54% over Pixy, and 21%

Department of Computer Science and Engineering’,

Karpagam Academy of Higher Education Coimbatore, India'
thangamariappan.ponnusamy@kahedu.edu.in'

Department of Computer Science and Engineering’,

K S Rangasamy College of Technology, Tiruchengode, Tamilnadu, India®
smithuna0399@gmail.com’

* Corresponding Author

over RIPS. Moreover, its precision is 20% higher than static
taint analysis.
Keywords: Deterministic Pushdown Automata, Input

Validation Attacks, multi-classification, ML classifiers.

L. INTRODUCTION

The use of online applications has increased
dramatically in the modern digital age. Contemporary
technology has been effortlessly incorporated into a wide
range of online activities, including social networking, email
communication, banking, and shopping. Notably, more than
105 billion applications were downloaded in 2018. Estimates
indicate that between 2018 and 2021, downloads would rise
by 25%. However, online applications are vulnerable to
vulnerabilities due to the ubiquity of bad design, insufficient
input/output validation, incorrect implementations, and
weak business logic. In this situation, hackers actively look
for these weaknesses and make efforts to take advantage of
them [13].

Adapting Research Projects and Threat Strategies:
Attackers use a variety of tactics to conceal their threats and
avoid discovery. However, significant research efforts are
devoted to locating and addressing these weaknesses. Web
application vulnerabilities are a serious problem because
they act as security gaps that allow hackers to access private
user data and other application data without authorization
[16]. Two major groups of vulnerabilities are highlighted in
the current landscape of online application threats: SQL
injection (SQLi) and Cross-Site Scripting (XSS).

Reports like the Acunetix Web Application Vulnerability
Report 2019 show that SQL Injection and Cross-Site
Scripting (XSS) are among the top five security threats. This
makes it very clear that fixing these vulnerabilities is
important. These vulnerabilities are a result of poor design
decisions made during the application development and
deployment phases. Two of the top 10 threats connected to
web applications, according to the Open Web Application
Security Project (OWASP), are SQL injection and cross-site

220

Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

scripting. Specifically, online application programming
languages frequently foster an environment susceptible to
input manipulation, which allows malicious code to be
directly inserted into SQL queries. Alternative methods are
required since developers are still concerned about the lack
of system notifications during compiler and runtime
validation. Research Scope and Proposed Methodology

New Approaches and Contributions: This work presents
a novel methodology that actively detects and inhibits
prospective input validation assaults in addition to
preemptively identifying input validation vulnerabilities,
which contrasts with the prevalent prevention-oriented
methodologies. The main idea is based on a hybrid approach
that combines dynamic and static Deterministic Pushdown
Automata (DPDA) methods. Static analysis is a quick and
easy way to examine application files without having to run
them; dynamic analysis goes further and examines how these
files behave. The detection efficiency is increased while
reducing false positives by combining the thoroughness of
dynamic analysis, the speed of static analysis, and machine
learning approaches.

II. OVERVIEW OF THE ATTACK ON INPUT

VALIDATION

Between November 2017 and March 2019, SQLI attacks
accounted for 65% of all web attacks, according to US-based
cloud service company Akamai. Significant events in April
2019 highlighted how dangerous Cross-Site Scripting (XSS)
may be. A WordPress plugin injection event led to the
introduction of malicious JavaScript code, which made XSS
exploitation easier. Users were consequently taken to strange
adverts, dangerous websites, and updates that could have
been damaging.
A.SQLInjection

SQL injection is a serious security flaw in online
applications that arises when malicious code is introduced
with user input to cause the program to generate unexpected
SQL statements and unapproved access to data on the back
end [9].

221

s C ocalhost

Hello World!

Submit

mithula or '1'=']

Figure 1: Input to sample search form

1.Cross Site Scripting (XSS)
One input validation exploit that allows a hacker to
secretly install malicious script in a target user's browser and

collect sensitive data is called cross-site scripting [10]

III. RELATED WORK

Web applications are widely used in the modern internet
world, and given the volume of research, security risks also
occur as aresult of the Internet's widespread use. Table 1 lists
recent research studies that have been conducted to
comprehend the current state of circumstances. A
straightforward technique to identify SQLIA was described
in [5] Inyong Lee, Soonki Jeong. It involves extracting the
values from SQL queries in dynamic analysis and comparing
them to predefined values. If they match, it indicates that the
request is malicious SQLI; if not, the query is run at the web
applications' backend [8]. Table 1 provides an overview of

this project.

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS
USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

Table 1: Comparison of related works

Techniques

Ref. Year Proposed SQLI XSS Merits Demerits
. highly useful and simple
Attribute R 1 . It
5] 2012 t I\‘j[:th:;nova NO | YEs to use since SQL Imeciiseisszze
attribute-based detection gty ’
8] 2013 Classification and NO YES doesn't need changing the Avoid only SQLI
Analysis source code attacks
Hybrid Analysis . . Reduced precision
) : lable while detect
[7] 2015 with Machine YES YES scatable w e detecting in the identification
. online attacks e
Learning of vulnerabilities
Learn about online Web assaults can
[6] 2016 Static Detection YES YES . only be detected
assaults quickly. .
using PHP.
. . Web vulnerability
Static Anal d . . p
[3] 2016 aue And .yslls an YES YES detection and automatic oo gramm o
Data Mining . construction
code correction
Use NLP and static
[4] 2016 Static Analysis YES YES analysis to find web needs instruments
attacks.
. practical and simple Manual assistance
S Side Cod . .
[2] 2017 elt/lvz:ii f:c:tio(l)l € YES NO because runtime is needed for
prevention-based query application testing.
Structure of
Help the devel t .
[12] | 2018 TT-XSS NO | YES S: fg on?inzv: Oiz;clgenase defense against
PP ' DOM-XSS.
. . Methods that yield
Effectivel t
w rec 1\;16‘[Z{fre‘:cit?d data are collected
ango Checker . . rom various
[1] 2019 | Django Check NO | YES ete cofext-sensirive f
cross-site scripting (XSS) .
instruments, such
assaults.
as scanners
A configuration
able to detect securit file must be
[20] 2020 MERLIN YES YES : Y included for every
holes in several languages .
programming
language.
challenges in
. precisely assessing
L . Better Capabilit
[21] 2023 Static taint analysis YES YES erer . apa .1 e the data flow and
Identification

pinpointing weak
points.

222

Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

Inyong Lee and Soonki Jeong [5] have clarified a simple
method for identifying SQL Injection Attacks (SQLIA). The
method extracts attribute values from SQL queries and
compares the extracted value to predefined values during
dynamic analysis. If a match is found, the query is classified
as amalicious SQLI request; if not, web backend execution is
initiated. utilization [8]. A system that divides users into
categories based on ethics and unethical behavior was
proposed by Nithya V. and S. Lakshmana Pandean [7].
Through the comparison of static and dynamic studies, this
method finds SQLIA assaults. In the method, a dynamically
created query at runtime is compared with the query's
Deterministic Finite Automata (DFA) structure at compile
time. An attacker's malicious code that modifies the static
structure is recognized as an abnormal query and prevents the
attacker from accessing the application's backend.

A method for anticipating web attacks using a machine
learning predictor was presented by Lwin Khin Shar, Lionel
C, et al. [7]. Instead of using trained data, this entails using
malicious scripted data for both static and dynamic analysis.
Both supervised and semi-supervised learning techniques
are used in the development of the predictive models [6].
Data flow analysis, which includes sanitization and
validation methods to uncover vulnerabilities, including
inter- and intra-procedural analysis, was the focus of
Johannes Dahse's study. Moreover, PHP injection
vulnerabilities are predicted with the extension of data flow
analysis programs. To stop web application attacks, Ibéria
Medeiros et al. [3] suggested an automated approach that
combines data mining and static analysis methods.This
method uses static analysis, Natural Language Processing
(NLP), and Hidden Markov Models (HMM) to identify web
application assaults.

The task of creating an intelligent intrusion detection
system (IDS) was met with difficulty by M. R. Gauthama
Raman and Kannan K. [24]. They investigated using
Artificial Neural Network (ANN) models to improve the
performance of IDS. In their study, they proposed a new
method for IDS classification called the Helly property of
Hypergraph and Arithmetic Residue-based Probabilistic
Neural Network (HG AR-PNN). In order to detect

223

potentially malicious input, Asish Kumar et al. [2] presented
a novel method that involves sequentially extracting user
input from dynamic queries.

Taint Tracking XSS (TT-XSS) is a framework that Ran
Wang [12] provided to solve client-side Document Object
Model XSS (DOM-XSS) vulnerabilities. In order to help
developers identify and fix vulnerabilities, the framework
uses taint tracking analysis to identify when DOM-XSS
occurs on web pages. Django Checker is a dynamic taint
analysis tool that was introduced by Antonin et al. [1] with
the goal of identifying runtime exploits. Nonetheless, some
execution-related path coverage limits were found. This
method uses server-side processing to detect cross-site
scripting attacks.

An improved static taint analysis methodology was
proposed by Abdalla Wasef Marashdih etal. [21] to find input
validation vulnerabilities in software applications. Through
an analysis of the flow of compromised data, this method
seeks to identify possible security flaws and provides
developers with useful information for fixing them. A deep
convolutional neural network architecture was presented by
G S Mahalakshmi et al. [23] for feature prediction and galaxy
morphology categorization using machine learning methods.
Research on web application vulnerability identification and
prevention is still being pursued. Although there are many
approaches and technologies available to help developers
improve web application security, static analysis typically
produces false positive results. As a result, we suggest a
novel approach to the detection and proactive remediation of
web application vulnerabilities. This innovative method
makes use of automata DPDA theory in hybrid analysis to
make it easier to identify and eliminate input validation

attacks.

IV. METHODOLOGY AND FRAMEWORK

The suggested method looks for input validation attack
vulnerabilities in web applications by analyzing their source
code. This method focuses mostly on the server side of web
applications and is strongly associated with information flow
security. The suggested design is depicted in Figure 2 and is

made up of three main modules: testing, dynamic analysis

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS

USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

and validation, and static analysis. These modules are
demonstrated by a methodical implementation.

First, the web application undergoes a static analysis to
look at its attack surface and find possible points of entry
where outside data could enter the program. Next, the
textual material is analyzed to construct a context-free
grammar (CFG). Next, using static analysis, a Deterministic
Pushdown Automaton (DPDA) is built from the CFG.
Unlike non-deterministic automata, which require
decisions between various alternatives, DPDA is uniquely
determined. In the course of its operations, the DPDA
regularly looks for any web attacks.

When input is provided via online forms, a Dynamic
Deterministic PDA (DDPDA) is generated at runtime. This

(1) ' . ; e _
W D &
A cb Vulnerable Area CFG T SDPDA .
”" } Y-

DDPDA is utilized for validation, wherein the DDPDA and
the statically generated DPDA (SDPDA) are compared. The
goal is to find any illegal code entered by the user; if a cheat
code is found during the validation process, the request is
marked as abnormal. The execution of the related query is
thus forbidden. On the other hand, if the request is deemed
normal and compliant with the SDPDA, it is approved for
execution and does not include any cheat codes.

The creation of thorough reports describing Input
Validation Attacks (IVA) is the result of this classification
procedure [18]. By improving detection rates and lowering
the number of false positives, machine learning is an
effective weapon in the fight against changing security
threats [22].

e |

.l_h) $
@ ?Z—w

o [](?) —] I —
;) - S |] ; .
i ' i NORMAL xeCULe
User IP Wb Page »1 , DDPDA | : — Reques
. 11 i e o8

e

L *(Sl}

[TOP S CLASSIFIER]
_“:‘—-I:"E\ .'.-

I~ Ceneraized L near

- (.‘ollrclrcr\‘
(__ Amnbutes) »
.x"‘h--._.-—--'/.-.

NOT NORMAL

N, [TepmeGpeion
FartLarge ar e

“Deep Learning
Daciiion fres
Racdem Foren
Cradiaci Boostad Trees

Watidation
Attack Results

Figure 2: Attack Detection Model with DPDA and ML Classifiers for Input Validation

The steps of the suggested technique are described in the
states pseudo code explanation below.

Static Examinations

Step 1: Examine the created web application and determine
its vulnerability.

Step 2: From the web application's Entry Point (EP), create

a Context-Free Grammar (CFG).

Step 3: During compile time, create a Deterministic
Pushdown Automaton (DPDA) based on the CFG.

Dynamic Examinations

Step 4: Generate a Deterministic PDA (DPDA) once again

during runtime, in response to user input entered into the web

224

Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

formin Step 4.
Validation
In Step 5, apply an XOR operation to the dynamically
created DPDA (DDPDA) and the statically generated DPDA
(SDPDA).
Step 6: If the response is 0, proceed to regard the request as
normal and permit its backend execution in the application.
Step 7: Mark the request as abnormal and block it if the
outcomeis 1.
Phase of prediction
Step 8: Gather the abnormalities that have been found and
run them through the top 8 Machine Learning (ML)
classifiers that the fast miner software application offers.
Step 9: In the end, the classifier groups attack types—such as
SQL Injection Attacks (SQLIA), Cross Site Scripting
Attacks (XSS), and others—according to certain attributes.
A.Phase 1: Static Analysis

This process often involves delicate software operations
including file access, database updates, and HTML output
production. Input validation attacks may arise if the software
is not sufficiently examined. By using hybrid analysis to
validate input on tainted variables, our goal is to find
potential vulnerabilities. Static analysis is a pre-execution
procedure that takes place during the program development

compilation phase. It entails looking at web applications'

source code and all possible runtime weak spots that could be
used by bad actors. In our suggested method, we represent
these sink points in the static analysis of web applications
using Context-Free Grammar (CFG). A Static Deterministic
Pushdown Automaton (Static DPDA) records this
representation. In order to efficiently recognize language
strings, the Static DPDA captures the entire set of valid input
values that can be conveyed by the context-free language.
Table 2 describes the steps involved in creating a Static
DPDA from a CFG and the static analysis that is done for
real-time applications. The Hotel Management Information
System, which may be downloaded from SourceForge at
https://sourceforge.net/projects/hotelmis, provided the test

subjects.

The program starts by locating every potential point of
entry and vector of input from the webpage. After that, it
creates a CFG specifically for the page and produces a
matching Static DPDA. This DPDA is kept up to date in a
database. For example, if we look at the login page shown in
Table 2, the login process involves two inputs: the password
and the login name. For these sink points, CFGs are created,
and instances of DPDA are created. These DPDA instances
are called static since they are derived at compile time.
Similarly, before the program is executed, all other drains are

examined and appropriate DPDAs are made.

Table 2 Phase II: Dynamic Analysis and validation

Input Files Sm © Dp Type of request Cheat code
administrator' or '1'="1 admininstrator.jsp Abnormal ‘or'l'="1
abcd123568
Login login.jsp Normal -NULL-
Abcd123
Mithula“><script>for User_register.jsp Abnormal “><script>for (;;)
(;;)alert(document.dom alert(document.doma
ain)</script> in)</script>
abcd567
Mithula contact.jsp Abnormal <fontsize="4">AJAX
mithula@gmail.com
Enquiry
< font size="4">
AJAX

225

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS

USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

B. Phase2: Dynamic Analysis & Validation

The Static Deterministic Push-Down Automata (Sm)
and the Dynamic Deterministic Push-Down Automata
(Dm) are compared. When these structures line up, it means
that a valid request can be carried out. On the other hand, in
the event that they diverge, the request is refused and

marked as anomalous.

This determination is governed by the following conditions:

Sm ® Dm=0: Normal (Accepted).............vveeeenen.n. (1)

Sm ® Dm 7 0: Abnormal (Rejected)..................... 2)

An input that complies with equation (1) is accepted as
normal during the validation phase and is authorized for
execution. On the other hand, input that matches equation
(2)isrejected.

Next, an assessment was carried out by providing inputs
like 'admin' or '1'="1" as a hack within the 'admin.jsp' website
login process. A dynamic DPDA was created using this
information, and it was compared against a static DPDA.
Their discrepancy caused the request to be flagged as
anomalous, which led to its rejection from backend
execution. The cheat code was recorded as a component of
the dataset in order to be classified later on in order to
determine the type of attack. On the other hand, the static
DPDA was in line with an input such as "Distributor" that
was given without a cheat code. As a result, the request was
approved for backend execution and deemed normal. We
performed this process at multiple access points using
different cheat codes. Using a multi-classification approach,
the test results were examined to forecast the particular kind
ofinput validation attack.

C.Predication Phase

First, we use a hybrid analysis strategy to tackle the
problem of identifying abnormal requests from normal
ones. To be more precise, our model is capable of
identifying input validation assaults, including SQL
injection, cross-site scripting, command injection, and route
traversal. These harmful acts make use of web request
parameters, so developing a model requires a thorough
strategy that includes both URL and HTTP request body

content. In order to do this, we use an integration technique

in which expert-defined features that are manually extracted
are combined and supplied into the classification pipeline
using quick miner software. Specifically, we concentrate on
obtaining essential characteristics in order to guarantee the

sustainability of our feature extraction process.

V. ANALYSIS AND DISCUSSION

A. Evaluation Questions and Objectives

The objective of the empirical evaluation is to tackle
significant inquiries concerning the efficiency and potential
of our suggested method in identifying and categorizing
threats in real-time. We specifically want to respond to the
following questions:

Comparison of Accuracy. Is the accuracy of our method
higher than that of current detection methods?

Accurate Prediction for Class. Can our system correctly
identify the type of assault that will occur?
B. Interpreting Confusion Matrix Metrics

As an aid for comprehending the effectiveness of our
detection method, Table 3 displays a confusion table. Within
the framework of a web application, this table compares the
expected and actual classes of requests. The arrangement of
the table is as follows:

Table 3: Confusion Metrics

Prediction
class
Abnormal Normal
Actual Abnormal |true positive| false positive
Class Normal false true negative
negative

We define the phrases that describe the four possible
results when we analyze the confusion table:
True Positive (TP). When a request is accurately recognized
by the system as anomalous and a user alert is raised.
Positive Falsehood (FP). when a false alarm is falsely raised
by the system for an unusual request that never happened.
True Negative (TN). when no unusual request is made and
the system appropriately does not sound the alarm.
Not true at all (FN). when an actual abnormal request is

made but the system does not sound the alarm.

226

Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

A true positive (TP) in the context of the confusion table
signifies that our system successfully identifies an unusual

request and swiftly notifies the user.

1.2

VA
0.8 \ / \\
\ \
0.6 \ : - / \

\ /
\ // D
\ / \

0.4 {_; \
\ / \
\/ &

0.2 v
[]
TPR FFR TNRE FNR
= work[22] == work|21] Proposed work

Figure 3 : Rate analyses of TP, FP, TN, and FN for the

suggested work with works

Figure 3 illustrates the examination of performance
measures, such as the false positive rate (FPR), true positive
rate (TPR), false negative rate (FNR), and true negative rate
(TNR). Compared to the results of other works, the positive
predictive measures, TPR and TNR, consistently display
high values, while the negative predictive measures, FNR
and FPR, continuously maintain low values [26, 27]. These
findings confirm that, when compared to previous methods,
our system performs better thanks to the parameter selections
and procedures we employed.

C. Metrics and Measures for Analysis:

Setting up accurate measurements that shed light on
these techniques' performance is crucial for assessing the
effectiveness of detection and classification strategies. A
thorough understanding of the fundamental analysis
measures formulas used in this study is provided by table 4.
These metrics have been carefully selected to capture critical
facets of the system's performance. Three fundamental
analysis measures are included in the table: F1 Score,
Accuracy (ACC), Positive Predictive Value (PPV), and
Sensitivity (SE).

227

Table 4 The Analysis Measures Formula

Measure Formula
ACC TP-TN / (TP -TN+FN+FP)
PPV TP/ (FP - TP)
SE TP/ (TP - FN)
F1Scorec Fiscore=3. p.r
ptr

D. Web Application Test Subjects
1.Analyzing Different Web Applications for
Vulnerabilities

When it comes to protecting online applications from
possible attacks, the process of carefully choosing test
subjects and then analyzing vulnerabilities is essential.
2.Comparison and Performance of Classifiers

In this study, we thoroughly examined a number of
machine learning models to judge how well they performed
inatask involving population-wide prediction.
3.Model Assessment and Performance Measurements.

The Generalized Linear Model (GLM), Gradient
Boosted Trees, Decision Trees, Random Forests, Fast Large
Margin, Naive Bayes classifier, and Deep Learning were the
models that were being studied. We conducted a thorough
evaluation of the models with 1,000 rows of data from a
variety of sources, and our main focus was on their predicted
accuracy. The GLM classifier demonstrated an astounding
96.20% accuracy, in contrast to the Naive Bayes classifier's
29.10% accuracy. In contrast, Deep Learning and Fast Large
Margin both scored an impressive accuracy of 97.20%,
closely followed by Logistic Regression, which showed a
slightly higher accuracy of 96.70%. A competitive accuracy
0f 96.90% was obtained by the Decision Tree model, while
97.10% and 97.20% were obtained by Random Forest and
Gradient Boosted Trees, respectively.

4. Analysis of Population Standard Deviation.

We also looked at the population standard deviation to
investigate the variability of the model's performance.
Interestingly, the models showed different degrees of
deviation; Fast Large Margin had the lowest, at
0.001000161, and Deep Learning was next closest, at
0.001608685.

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS
USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

Table 5 Assessment of the classifiers used on the Phase II Data Set

Model Accuracy(Acc) Population Gains | Total Time Time to Time to
standard training 1000 Scoring 1000
deviation TOWS TOWS

Naive Bayes 39.10% 0.003803319 -2077 240232 64.15446905 570.9836495
classifier
Generalized 97.20% 0.010383504 1619 257256 442.6450744 560.0830523
Linear Model
Logistic 97.70% 0.002558068 1649 485221 177.7224126 1118.608878
Regression
Fast Large 98.20% 0.001000162 1671 504986 506.1766845 1010.121989
Margin
Deep 98.20% 0.001608686 1675 342032 1642.894219 718.9203219
Learning
Decision Tree 97.90% 0.002566817 1659 273654 52.32014950 677.9133145
Random 98.10% 0.001303218 1665 2308857 111.3879375 8756.293799
Forest
Gradient 98.20% 0.001598414 1673 736630 295.5465589 927.0698159
Boosted Trees

E.Multi-Classification Confusion Matrix

1. Performance Analysis Using a Multi-Classification
Confusion Matrix

In addition to identifying other input validation threats
like command injection (CMDi) and path traversal, this
classifier shows a 38% detection rate for XSS attacks and a
33% detection rate for SQL injection [18].

F. Discussion

Compared to DEKANT [14] our suggested method
works better in terms of detection rate (Acc=2%, PPV=1%)
than DEKANT. In a similar vein, WAP [6] shows a standard
classifier for vulnerability classification despite relying on
contaminated analysis without machine learning.

Our approach shines, achieving a detection rate
(Acc=10%, PPV=10.8%) that is higher than PhpMinerll.
Our method outperforms Pixy [13], which is well-known
for its taint analysis in SQLI and XSS assaults, with a
detection rate (Acc=53%, PPV=46%).

When compared to RIPS[19], our suggested approach
produces better results (Acc=20.2%, PPV=49%). Our
research outperforms MERLIN [20], which relies on
evaluating data flow in intermediate code representation to
identify security vulnerabilities (Acc=23.65%, PPV=
30%).Compared to traditional static taint studies, our hybrid
approach—which combines static and dynamic
analyses—achieves a greater detection rate (PPV=21%)
[21].

VI. CONCLUSION

This paper provides a novel approach that uses machine
learning to uncover vulnerabilities in online applications,
motivated by deterministic push down automata. We propose
an approach that looks for input validation errors by
combining data mining, static and dynamic source code
analysis, and a set of grammars. Here, data mining is used to
uncover different Web vulnerabilities using the Rapid Miner
tools that have the top 8 classifiers for machine learning. In
addition, it was compared using code analysis from
DEKANT, WAP, Pixy, and PhpMinerll. The results of the
study demonstrate that our proposed method can both detect
and prevent these types of input validation vulnerabilities
and be more accurate and precise. Furthermore, we will be
concentrating on refining the suggested system's detection
rate and capacity to recognize unclassified attacks in the

future.

REFERENCES

[1] Steinhauser Antonin, Tdma Petr 2018 Django
Checker: Applying Extended Taint Tracking and
Server Side Parsing for Detection of Context-
Sensitive XSS Flaws. Software: Practice and
Experience 49, no. 1,130-48: 1097-024X.

228

Karpagam JCS Vol.20 Issue 04 Jul - Aug 2025

(2]

(3]

(3]

(7]

(9]

Dalai Asish Kumar and Jena Sanjay Kumar 2017
Neutralizing SQL Injection Attack Using Server Side
Code Modification in Web Applications.Security and
Communication Networks 1-12:1939-0122.
Medeiros Iberia, Neves Nuno Ferreira and Correia
Miguel 2016 Detecting and Removing Web
Application Vulnerabilities with Static Analysis and
Data Mining.IEEE Transactions on Reliability no.
1,54-69:0018-9529

Lee Inyong , Jeong Soonki , Yeo Sangsoo, Moon
Jongsub 2012 A novel method for SQL injection
attack detection based on removing SQL query
attribute values. Mathematical and Computer
Modelling .
68:0895-7177

Volume 55, Issues 1-2, Pages 58-

Dahse Johannes 2016 Static detection of complex
vulnerabilities in modern PHP applications Doctoral
dissertation, Ruhr University Bochum.

Shar Shar Lwin Khin , Briand Lionel C,Tan Hee Beng
Kuan 2015 Web Application Vulnerability Prediction
Using Hybrid Program Analysis and Machine
Learning. IEEE Transactions on Dependable and
Secure Computing 12, no. 6: 688—707.

Nithya V, Pandian Lakshmana S , Regan R 2013 The
SQL Injection Attack and Prevention by
Classification and Analysis. Asian Journal of
Information Detection Technology 12,131-139
:1682-3915

Nithya V, Regan R, Vijayaraghavan J 2013 A survey
on SQL injection attacks, their detection and
preventiontechniques”,Int.J.Eng.Comput.Sci.
2(4):886-905

Nithya V, Pandian Lakshmana S, and Malarvizh C.
2015 A Survey on Detection and Prevention of Cross-
Site Scripting Attacks. International Journal of
Security and Its Applications Vol.9,No.3,pp.139-152

229

[10]

[11]

[12]

[13]

[15]

[17]

Nithya V and Senthilkumar S 2019 Detection and
Avoidance of Input Validation Attacks in Web
Application Using Deterministic Push Down
Automata Journal of Automation and Information
Sciences 51,n0.9 pp 32-51:1064-2315

Wang Ran, Xu Guangquan , Zeng Xianjiao , Li
Xiaohong , Feng Zhiyong 2018 TT-XSS: Anovel taint
tracking based dynamic detection framework for
DOM Cross-Site Scripting,Journal of Parallel and
Distributed Computing,Volume 118,Pages 100-
106:ISSN 0743-7315.

Park YongJoon , Park JaeChul 2008 Web Application
Intrusion Detection System for Input Validation
Attack.Third International Conference on
Convergence and Hybrid Information Technology,
pp-498-504:978-0-7695-3407-7.

Jovanovic Nenad,Kruegel Christopher, Kirda Engin
2006 Precise alias analysis for static detection of web
application vulnerabilities. PLAS '06: Proceedings of
the 2006 workshop on Programming languages and
analysis for security.Pages 27-36

Medeiros Ibéria, Neves Nuno, Correia Miguel 2016
DEKANT: A Static Analysis Tool That Learns to
Detect Web Application Vulnerabilities.Proceedings
of the 25th International Symposium on Software
Testing and Analysis. Pages 1-2

Alsariera Yazan Ahmad, Elijjah Adeyemo Victor &
Balogun Abdullateef O 2020 Phishing Website
Detection: Forest by Penalizing Attributes Algorithm
and Its Enhanced Variations Arabian Journal for
Science and Engineering 45, no. 12: 10459-70.
Somesha M, Pais
Srinivasa & Rathour Vikram Singh 2020 Efficient
deep learning techniques for the detection of phishing

websites. Sadhana , 45:165
Shar Lwin Khin and Tan Hee Beng Kuan 2013

Alwyn Roshan, Rao Routhu

Predicting SQL Injection and Cross Site Scripting
Vulnerabilities through Mining Input Sanitization
Patterns. Information and Software Technology 55,
no. 10:1767-80.

DETECTION AND CLASSIFICATION OF INPUT VALIDATION ATTACKS

USING MACHINE LEARNING - MIXED-METHOD ANALYTICS

(18]

[19]

[20]

(21]

[22]

(23]

[24]

Pan Yao , Sun Fangzhou , Teng Zhongwei, White
Jules , Schmidt Douglas C,Staples Jacob and Krause
Lee 2019 Detecting Web Attacks with End-to-End
Deep Learning Journal of Internet Services and
Applications 10,no. 1,pp 10:16

Dahse, Johannes, and Thorsten Holz. “Simulation of
Built-in PHP Features for Precise Static Code
Analysis.” Proceedings 2014 Network and
Distributed System Security Symposium, 2014.
https://doi.org/10.14722/ndss.2014.23262.
Figueiredo, Alexandra, Tatjana Lide, David Matos,
and Miguel Correia. “MERLIN: Multi-Language
Web Vulnerability Detection.” 2020 IEEE 19th
International Symposium on Network Computing
and Applications (NCA), November 24, 2020.
https://doi.org/10.1109/nca51143.2020.9306735.
Abdalla Wasef Marashdih, Zarul Fitri Zaaba, Khaled
Suwais,”An Enhanced Static Taint Analysis
Approach to Detect Input Validation
Vulnerability,Journal of King Saud University -
Computer and Information Sciences,Volume 35,
Issue2,2023,Pages 682-701,ISSN 1319-1578
Geetha T V., & Sendhilkumar S. (2023). Machine
Learning: Concepts, Techniques and Applications
(1st ed.). Chapman and Hall/CRC.
https://doi.org/10.1201/9781003290100
Mahalakshmi G S, Swadesh B, Aswin RRV et al.
Classification and Feature Prediction of Star,
Galaxies, Quasars, and Galaxy Morphologies Using
Machine Learning, 29 August 2022.

Raman, M R Gauthama, Nivethitha Somu, Kannan
Kirthivasan, and V.S. Shankar Sriram. “A
Hypergraph and Arithmetic Residue-Based
Probabilistic Neural Network for Classification in
Intrusion Detection Systems.” Neural Networks 92
(August 2017): 89-97. https://doi.org/10.1016/
j-neunet.2017.01.012.

230

