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ABSTRACT

Current predictive maintenance methods in IloT struggle
with complex data, limited edge device resources, and real-
time adaptation. This paper proposes a novel, lightweight
machine learning framework designed specifically for IIoT
environments. Our framework utilizes efficient algorithms
for resource-constrained devices, enabling seamless
integration and potentially reducing processing time and
energy consumption. Deploying the framework on edge
devices allows for real-time monitoring and decision-
making. Rigorous evaluation, including simulations and
real-world experiments, aims to quantify the framework's
benefits, such as potentially reducing downtime and
maintenance costs. Additionally, the research explores
techniques like knowledge distillation for further model size
reduction and federated learning for collaboration between
devices, potentially enhancing adaptability. This framework
has the potential to revolutionize IIoT predictive
maintenance by offering a cost-effective and adaptable
solution for optimized operational efficiency.
Keywords: IIOT, Industrial IOT, Lightweight Learning,

Federated Learning andPredictive Maintenance.

I. INTRODUCTION
The Industrial Internet of Things (IToT) has emerged as a
transformative force in industrial sectors, revolutionizing
how machines, equipment, and processes are monitored,
managed, and optimized. It builds upon the foundation of
Distributed Control Systems (DCS) by integrating sensors,

connectivity, and powerful cloud-based data analytics. This
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enables real-time monitoring, predictive maintenance, and
advanced automation, leading to increased efficiency,
reduced costs, and improved operational outcomes.
Predictive maintenance is a crucial aspect of the IToT for
several reasons. It offers significant cost reductions by
allowing companies to identify potential equipment failures
before they happen. This proactive approach minimizes
unplanned downtime, delays the need for expensive
equipment replacements and emergency repairs, resulting in
lower maintenance costs. It provides valuable insights into
the actual condition of equipment, allowing maintenance
activities to be scheduled only when necessary. This
eliminates the need for fixed-time or usage-based
maintenance, optimizing the use of maintenance resources
and minimizing the disruptions of production processes. It
contributes to a safer work environment. Regularly
monitoring equipment health and proactively addressing
potential problems reduces the risk of accidents and
equipment failures, creating a safer work environment for
employees. Improved efficiency is another benefit of IToT-
based predictive maintenance. By minimizing downtime and
maximizing equipment uptime, these systems enable
organizations to meet production targets more consistently
and efficiently. This allows for better planning and allocation
ofresources, leading to overall operational improvements.
IIoT systems collect vast amounts of data from industrial
equipment and processes. Predictive maintenance leverages
this data to identify patterns, trends, and anomalies,
providing valuable insights into equipment performance and
maintenance needs. This data-driven approach plays a vital
role in optimizing asset performance, reducing costs, and
improving the overall reliability of industrial operations.
Devices with limited processing power benefit from
lightweight machine learning models that simplify data
processing and enable faster implementation. However, for
massive datasets from numerous interconnected devices,
more powerful machine learning and deep learning

techniques are necessary to extract the most valuable
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insights. Efficient algorithms are chosen, favouring simpler
options like decision trees, logistic regression, or basic
neural networks, due to their ease of use and minimal
computational requirements. This allows for quicker training
and deployment on resource-constrained devices with
limited processing power. Real-time predictions are a core
aspect of lightweight learning. These models are designed to
provide immediate insights into potential equipment
failures, enabling prompt intervention and preventative
maintenance actions to minimize downtime and costly
disruptions.

Furthermore, lightweight learning seamlessly integrates
with existing IloT platforms, enabling centralized
monitoring and management of predictive maintenance
across various industrial assets.Their ease of customization
and deployment across various industries and applications
showcases their scalability and flexibility, making them a
powerful tool. The ever-increasing number of interconnected
devices in IIoT systems generates massive amounts of data,
posing a challenge for traditional analysis methods. Machine
learning and deep learning emerge as powerful tools,
transforming how IIoT leverages this complex data.

Machine learning techniques are revolutionizing the
Industrial Internet of Things by excelling at identifying
patterns and relationships within data. It can be used for
various tasks in IIoT, such as anomaly detection, predictive
maintenance, and process optimization. For instance,
machine learning algorithms can analyze sensor data from
industrial equipment to detect early signs of potential
failures. This enables preventive maintenance actions to
avoid costly downtime and equipment damage.

Deep learning is particularly adept at handling complex
and high-dimensional data. Deep learning models can be
trained on vast amounts of sensor data to perform tasks like
image recognition, speech recognition, and even anomaly
detection. In an IIoT setting, these models could analyze
video footage from security cameras to detect safety hazards
or monitor product quality on a production line. By
leveraging the power of machine learning and deep learning,
IToT systems can gain valuable insights from data, enabling

them to automate and optimize operations, and make data-
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driven decisions for improved efficiency and productivity.

II. LITERATURE SURVEY
Hasan, M.K., et. al., (2023) proposed an explainable

ensemble deep learning approach for intrusion detection in
IIoT systems integrating Shapley Additive Explanations
(SHAP) and Local Comprehensible-Independent
Clarifications (LIME) methods to provide clarity on
Intrusion Detection Systems decisions. Karacayilmaz, G., et.
al., (2024) proposed an expert system utilizing Al techniques
to detect and prevent IToT device attacks like denial-of-
service, data manipulation, device hijacking, and physical
tampering, promoting stronger security for critical
infrastructure. Alalayah, K.M., et. al., (2023) proposed the
Hunger Games Search Optimization with Deep Learning-
Driven Intrusion Detection (HGSODLID) model for IloT
security leveraging linear normalization and HGSO for
feature selection along with Sparrow Search Optimization
(SSO) and a Graph Convolutional Network (GCN) for
intrusion identification. Bugshan, N., et. al., (2022) proposed
Federated Learning based Deep Learning service framework
to address privacy concerns in IloT. It aggregated locally
trained deep learning models without sharing raw data
leveraging a service-oriented architecture and differential
privacy for secure execution. Mohy-eddine, M., et. al,,
(2023) presented an ML-based intrusion detection approach
for IIoT security. It employed feature selection techniques
like Pearson's Correlation Coefficient (PCC) and Isolation
Forest (IF) to optimize data for a Random Forest classifier,
improving attack detection Accuracy.

Tkram, S.T., et. al., (2022) proposed a two-phase IToT
traffic prediction model for anomaly detection using Multi-
objective Non-dominated Sorting with Whale Optimization
Approach (MNSWOA) and Ideal Point Method (IPM) for
feature selection, identifying key attributes for an random
forest classifier to predict normal and anomalous traffic. Xu,
L., et. al.,, (2024) proposed a mobile communication
performance analysis and prediction algorithm based on FL-
GLP-Net addressing security concerns in 5G-enabled IloT
environments leveraging N-Nakagami channels to analyse

Non-zero Secrecy Capacity Probability (NSCP) and utilize
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XGBoost for optimal feature selection. The model integrates
Graph Attention Network (GAT), LSTM and Pyramid
Visual Converter (PVT) modules to handle diverse signal
features, achieving high accuracy in NSCP prediction.
Roopa, M.S., et. al., (2021) introduced Social Internet of
Things (SIoT) for predictive maintenance in manufacturing.
This ontological model predicted Remaining Useful Life
(RUL) of machine elements, minimizing downtime and
costs by anticipating failures in IIoT environments. Bulla,
C,, et. al., (2022) proposed a multi-agent system with fog
computing for anomaly detection in IloT improving Quality
of Service (QoS). Their approach used multi-step prediction
with a Gated Recurrent Unit (GRU) model optimized by an
Artificial Bee Colony (ABC) algorithm for high accuracy
anomaly detection. Li., H., et. al., (2024) proposed a
lightweight privacy-preserving predictive maintenance to
address privacy concerns in 6G-enabled IIoT with its vast
data exchange. This method used homomorphic encryption
for secure machine learning on encrypted data and
leveraged inary Neural Networks (BNNs) to train privacy-
preserving maintenance models.

Soliman, S., et. al., (2023) introduced an intelligent
detection system to identify cyberattacks in IIoT networks
tackling issues like lack of attack comprehensiveness, high
feature dimensionality, outdated datasets and imbalanced
datasets utilizing Singular Value Decomposition (SVD) for
feature reduction and SMOTE to mitigate bias in
classification. Friha, O., et. al., (2023) proposed a secure,
decentralized and Differentially Private (DP) federated
learning based IDS (2DF-IDS) for smart factories. This
approach leveraged differential privacy and a decentralized
architecture to balance security and privacy. Misbha, D.S.,
et. al., (2022) proposed attention-based Convolutional
LSTM (Conv-LSTM) and Bidirectional Long Short-Term
Memory (Bi-LSTM) network, a new attack detection
system for IIoT. It extracted features from both temporal and
spatial aspects of the data, fused them and classified data as
normal or abnormal. The algorithm achieved a high
accuracy of over 95%.Schmieg, T., et. al., (2024) surveyed
deep learning techniques for time series forecasting,
focusing on their role in representation learning. Among the

17 architectures reviewed, the most commonly used

techniques were one-dimensional CNN, LSTM and
attention-based methods. Input embedding and masking also
play significantroles in some architectures.

Yang, H., et. al., (2023) proposed a deep learning based
Remaining Useful Life (RUL) prediction model utilizing
CNN to find important patterns in equipment data, LSTM to
understand how these patterns change over time and self-
attention mechanisms to focus on the most important parts of
the data for prediction to improve equipment maintenance
practices in IToT environments. Chander, N., et. al., (2024)
proposed Enhanced Pelican Optimization Model with an
Ensemble Voting-Based Anomaly Detection (EPOA-EVAD)
a new anomaly detection system for IloT. It tackled class
imbalance and selected optimal features. This method
combined Gated Recurrent Unit (GRU), Bi-Directional
LSTM and stacked auto encoder for anomaly detection and
achieved high accuracy in dynamic IIoT environments. Isah,
A.,et. al., (2023) proposed digital twin temporal dependency
that used LSTM to analyze temporal dependencies in time
series data from I1oT systems. This approach captured long-
term relationships between variables, leading to improved
al., (2023)
proposed Double-Density Discrete Wavelet Transform
(D3WT) for feature extraction and a combination of CNN

prediction accuracy. Smmarwar, S.K., et.

and LSTM models for malware identification and
classification with high accuracy of over 96%.

Current IIoT predictive maintenance methods face
challenges in handling the complexities of data generated by
industrial machines. These datasets can be large and
intricate, posing difficulties for existing approaches.
Additionally, these methods may not be optimized for the
limited resources of edge devices typically deployed in [IoT
environments. This can lead to processing delays or render
the methods infeasible altogether. Furthermore, the ability to
adapt to real-time changes is often limited in current
solutions, hindering their effectiveness in dynamic industrial
settings. This paper proposes a novel, lightweight machine
learning framework specifically designed to address the
limitations of existing methods in IloT predictive

maintenance. The potential contributions include:

Attention-based LSTM network captures temporal
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dependencies and prioritizes relevant features for accurate
machine failure prediction, enhancing interpretability and
performance.

Optimizes the framework for deployment on resource-
constrained edge devices using lightweight algorithms to
minimize processing time and energy consumption and
enabling real-time monitoring and decision-making.

The paper is organized into five sections. The
Introduction discusses how IloT improves industrial
monitoring and optimization through sensors, connectivity
and cloud analytics. It highlights the role of predictive
maintenance in reducing costs and downtime by detecting
equipment failures early and optimizing maintenance
schedules. The literature survey examines existing literature
on predictive maintenance in IIoT environments, identifying
the strengths and limitations of current approaches to provide
context for the proposed framework. The methodology
details the proposed framework covering the data
preprocessing pipeline, the architecture of the attention-
based LSTM model and techniques for optimizing
performance on edge devices. The results and analysis
section describes the experimental setup, the datasets,
evaluation metrics, and implementation details
demonstrating the effectiveness of the proposed approach.
Finally, the conclusion summarizes the key contributions of
the study and suggests directions for future research to
further enhance predictive maintenance in IIoT

environments.

III. METHODOLOGY

The proposed predictive maintenance model for IIoT
environments is developed through a structured approach,
beginning with data preprocessing. Min-Max normalization
is applied to the sensor data to scale all features within the
range of [0, 1], enhancing model performance by preventing
any single feature from dominating. Label encoding is used
to convert categorical labels into numerical values, which
facilitates machine learning processing. To address class
imbalance SMOTE is used generating synthetic examples of
the minority class and improving the model's ability to

predict these outcomes. After preprocessing, the data is fed
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into an attention-based LSTM network which is designed to
capture temporal dependencies within the time-series sensor
data. An attention layer is integrated to focus on the most
relevant time steps, thereby enhancing prediction accuracy
by weighting significant input sequences more heavily.
Figure 1 shows overall architecture for binary classification
designed to predict failure or non-failure outcomes. It
employs techniques like normalization, label encoding,
SMOTE, self-attention and LSTM to process input data and

make accurate predictions.

o (L.M.H)
.| (. » —(0.1,2) o SM
M 1) OoT
Min Max
Input Normalization Label
A 4
Failur Self- LST
e Attenti M
Non-
Failur
Fully
Connected
Layer

Figure 1: Overall architecture

3.1. Pre-processing

Data pre-processing is a critical step that ensures the
sensor data is clean, normalized and ready for model training.
The raw data from the UCI Al41 dataset comprises multiple
features including air temperature, process temperature,
rotational speed, torque and tool wear which require
transformation before sending them into the predictive
model. The first step of this methodology involves pre-
processing the sensor data. The raw sensordata V' € R™ ™,
where n is the number of data points which is 10,000 and m is

the number of features which is 13 is processed.
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3.1.1 Min-Max Normalization:

Min-max normalization is applied to ensure uniformity
across different sensor readings and to standardize the
features by scaling each feature to a range of [0,1]. The
formula used for normalization is:

v = V=Vnmin
Vmax—Vmin
Where v’ is the normalized value, v,,;,andv,,,, are the
minimum and maximum values of feature respectively.
3.1.2 Label Encoding

The dataset includes a categorical feature representing
the product type containing categorical values ('L','M', 'H").
L (Low) is assigned a numerical value of 0, M (Medium) is
assigned a numerical value of 1 and H (High) is assigned a
numerical value of 2.

Label encoding is performed to map each category to a
numerical value. This step converts the categorical data into
amachine-readable format.
3.1.3SMOTE

SMOTE addresses class imbalance inmachine failure
data by generating synthetic samples for the minority class
to balance the dataset and improve model generalization.
Let Vi € R™min>  represent the minority class data
points, where ;5 is the number of minority class samples.
SMOTE generates synthetic data points 1, using the

following interpolation formula:
Vnew = 1;minority + A(vneighbor

- 1Jnllinority)

Where 1,,,,, isanew synthetic point,1 € [0,1] and Vneighpor
is arandomly chosen sample from the nearest neighbor from
the minority class Vininority-This creates synthetic data to
balance the dataset.
3.2. Attention-based LSTM Model

Once the data is pre-processed, it is passed to an
attention-based LSTM model for machine failure
prediction.
3.2.1LSTM Layer

The first layer of the model is the LSTM which captures

temporal dependencies between the 10,000 rows of

sequential data points. Each data point has 13 features, which
makes the input to the LSTM layer V' € [R19:000%13  Thjg
layer produces hidden states for each timestep that represent
the learned temporal patterns. The LSTM processes this

input and output hidden states

He R10,000X64

where 64 represents the dimensionality of the hidden state.
Each hidden state is a compressed representation of past
sensor readings. The LSTM captures long-term
dependencies, which are essential for analyzing sequential
data over time.
3.2.2 Self-Attention Mechanism

The output from the LSTM is then passed into the self-
attention mechanism. The attention mechanism is important
because it enables the model to learn which time steps are
more important for predicting machine failure. The attention
mechanism computes attention weights for each time step by
comparing the query, key and value vectors derived from the
LSTM output.

The self-attention mechanism computes attention scores
&y ¢’ between every pair of time steps ¢ and t" anduses
these scores to generate weighted sums of the value vectors
for each time step. This allows the model to focus on the most

relevant time steps.

= R10,000><64

The output Z contains weighted feature representations
that prioritize time steps based on their importance to the
prediction task.

3.2.3 Fully Connected Network (FCN)

The self-attention output is passed into a fully connected
layer for final classification. This layer transforms the
attention-weighted outputs into a final prediction. The FCN
includes a dense layer that aggregates the sequence
representations and reduces the output to a single probability
indicating machine failure or no failure. The fully connected
network applies a final layer with a sigmoid activation
function to convert the output into a probability between 0

and 1, indicating whether the machine is likely to fail or not.

294



Karpagam JCS Vol.19 Issue 06 Nov - Dec 2024

Ypred = U(Woutz & bout) ER!

Where ¥,r0q € [0,1] is the predicted probability of machine
failure and o(-) isthe sigmoid activation function. The final
output is a scalar value, with y,,..q > 0.5 indicating failure

(y =1) andyyreq < 0.5 indicating no failure (v = 0).

3.2.4Model Training and Optimization
The model is trained using the Adam optimizer with a
binary cross-entropy loss function, appropriate for binary

classification tasks such as predicting machine failure.

N
1
L= —;y (i IOg(ypreﬂ’-:i)

y pred

i + (1 _yi)log(l _ypred,i))

1 —t
Where N is the number of samples, Vp;-0q € {0,1} isthe
actual label for the i - th sample and y,,.q; € {0,1} isthe
predicted probability for that sample.

This methodology leverages the temporal modelling
capability of LSTM layers, the interpretability of self-
attention mechanisms, and the power of fully connected
layers for classification to predict machine failure or no
failure. Data flows through each layer, transforming from
raw sensor readings into highly informative feature
representations, and culminating in an accurate binary

classification output.

Algorithm: Adaptive_Attention-Based_LSTM()
Input:
Sensor Data V from the UCI AI4I dataset (10,000

samples, 13 features)

o
B

Output:

o
B3

Prediction of machine failure (1 for failure, 0 for no

failure)

1. Data Preprocessing:

o
oo

Min-Max Normalization:

For each feature vin V, apply normalization :
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’ U = Vnin
v =
Vmax — Vmin
+ Label Encoding:
Identify Categories:

Extract unique categories:

(.FLF’ .FM!, _FHI)
« Assign Labels:
Map each category to an integer:

fo — O

'M' -1

fHI - 2
%+ Replace Values:

For each entry in Product Type replace with
corresponding label:
fL.r ey O,IMfé ]_,IH’

- 2

Y
o<

SMOTE for Class Imbalance:

For each minority class sample, generate synthetic

samples by interpolation:

Unew
= Vininority
+ 4 (vneighbor

- Uminority)

where A is arandom value between 0 and 1,and Vneighbor
isarandomly chosen nearest neighbor of the minority class.
2.Model Architecture:

LSTM Layer:

Input normalized data V" to the LSTM to capture

temporal dependencies across time steps.

Generate hidden states A representing temporal

patterns for each time step.
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<+ Self-Attention Mechanism:

Calculate attention weights to prioritize key time steps:
a = Attention (Hy, Hyr)

Compute weighted sums of value vectors for each time

step, producing a focused representation Z

% Fully Connected Layer:
Feed Z toadense layer for binary classification.

Apply sigmoid activation to produce a probability:

Vpred = o(WourZ + boue)

Classify as failure (1)if Vpred > 0.5,elseno failure
(0).

3.Model Training and Optimization:
%+ Binary Cross-Entropy Loss:

1 N
L= _NZ(yilog(ypred,i)
i=1

+ (1
—yi)log(1
- ypred,i))

%+ Optimizer: Use Adam optimizer for gradient descent.

Early Stopping: Monitor validation loss to prevent over
fitting, stopping if no improvement is observed over a

set number of epochs.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Dataset Description

The UCI AI4I dataset consists of 10,000 records with 14
attributes primarily focused on machine operating
conditions and failure types (Table 1). Each record is
uniquely identified by a Unique Data Identifier (UDI) and is
categorized by Product ID and Type representing different
machine models. The dataset includes numerical features
such as Air temperature [K], Process temperature [K],

Rotational speed [rpm], Torque [Nm] and Tool wear [min],

which capture the operating parameters of industrial
machines. The target variable which is Machine failure and it
is binary which is 0 for no failure and 1 for failure indicating
whether a machine failed during operation. Additionally,
there are categorical indicators of different failure types, Tool
Wear Failure (TWF), Heat Dissipation Failure (HDF), Power
Failure (PWF), Overstrain Failure (OSF) and Random
Failure (RNF). These failure types help identify specific
causes contributing to overall machine failure. The dataset is
complete with no missing values across any of the attributes
making it well-suited for analysis of machine reliability and
predictive maintenance applications.

Table 1: Machine failure types and variables

Failure Type ];;;2 Variable
Tool Wear 0.1) Tool Wear
Failure (TWF) ’ [min]
T Process
Heat Dissipation
Failure (iDF) | (%D Teml[”%at“re
Power Failure
(PWF) 0,1) Torque [Nm]
Overstrain 0.1) Rotational
Failure (OSF) ’ Speed [rpm]
Random Failure 0.1) (\R/Z;lggrsn
(RNF) Causes)

4.2. Experimental Setup

The research was conducted on a computer equipped
with an 11th Gen Intel Core 17 processor, 16 GB of RAM and
Microsoft Windows 11 as the operating system. The
framework was implemented using Python, developed
within the Anaconda IDE which facilitated efficient
management of project dependencies through its virtual
environment capabilities.
4.3. Performance Analysis

The proposed work leverages a deep learning model to
predict machine failure using sensor data. Data
preprocessing involves normalizing features to ensure
consistent scales and encoding categorical features. To

address potential class imbalance, SMOTE is employed to
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generate synthetic samples for the under represented class.
The core of the model is an LSTM model, which is expert at
capturing temporal dependencies within the time series data.
A self-attention mechanism is incorporated to focus on the
most relevant parts of the input sequence. Finally, a fully
connected layer with a sigmoid activation function produces
the probability of machine failure. The model is trained using
binary cross-entropy loss and optimized with the Adam
optimizer. Early stopping is employed to prevent over fitting
and ensure optimal performance.

Seon, J., et. al., 2023 introduced Graph SAGE with
Contrastive Encoder (GCE) to address the challenge of
imbalanced datasets in [loT systems. By leveraging graph-
based representation and contrastive learning, GCE
significantly improved classification accuracy compared to
traditional methods. Venkatasubramanian, S., et. al., 2022
explored the potential of IIoT sensor data for industrial
device breakdown detection. By addressing challenges like
data noise and missing values, and by employing data fusion
techniques, the study leveraged deep learning models to
effectively identify faults. The proposed method evaluated
on the CWRU dataset, demonstrated high accuracy and
efficiency. Assagaf, L., et. al., 2023 explored the integration
of machine learning to enhance predictive maintenance by
developing optimized models using Logistic Regression
(LR), K-nearest Neighbors (kNN) and Artificial Neural
Networks (ANN). After data cleaning and feature scaling,
the models had predicted and classified failures based on
environmental features, machine characteristics and tool
wear. The results had shown that the ANN model had
outperformed others achieving the highest classification
accuracy and consistently balanced performance across

various validation methods.
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Table 2: Performance Metricsobtained by the proposed
work and the works of Seon, J., et. al., 2023,
Venkatasubramanian, S., et. al., 2022 and Assagaf, 1., et.
al., 2023

F-1

Works Sensitivity | Specificity | Accuracy | Precision | Recall Score

Proposed Method 0.967 0.963 0.961 0915 | 0.947 | 0.965

Seon, J., et.al, 2023 | 0.954 0.958 0.951 0912 | 0.935 | 0.964

Venkatasubramanian,
S.,et.al., 2022

Assagaf, [, et. al.,
2023

0.947 0.941 0.943 0.909 | 0.932 | 0.959

0.829 0.826 0.805 0.807 | 0.825 | 0.813

Table 2 presents the performance metrics achieved by the
proposed method compared to the works of Seon, J., et. al.,
(2023), Venkatasubramanian, S., et. al., (2022) and Assagaf,
L., et. al., (2023). The metrics include sensitivity, specificity,
accuracy, precision, recall, and f-1 score. Table 2 shows that
the proposed model outperforms the works of Seon, J., et. al.,
2023, Venkatasubramanian, S., et. al., 2022 and Assagalf, I.,
et. al., 2023 with accuracy of 96% for failure detection.
Attention mechanism effectively focuses on key sensor
features, improving prediction accuracy. Figure 2 shows
Graphical representation of performance obtained by the
proposed work and the works of Seon, J., et. al., 2023,
Venkatasubramanian, S., et. al., 2022 and Assagaf, L., et. al.,
2023. The proposed method found to be the effective
approach for this predictive task, exhibiting superior

performance in all evaluation metrics.
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Figure 2: Graphical representation of performance
obtained by the proposed work and the works of Seon, J.,
et. al., 2023, Venkatasubramanian, S., et. al., 2022 and
Assagaf, 1., et. al., 2023

Table 3 provides a comparative analysis of performance
measures for the proposed method against those in the
works of Seon, J., et. al., (2023), Venkatasubramanian, S.,
et.al., (2022), and Assagaf, L., et. al., (2023). Metrics include
True Negative Rate (TNR), True Positive Rate (TPR), False
Negative Rate (FNR), and False Positive Rate (FPR). This
table highlights the proposed model's improved balance in

true and false detection rates compared to previous models.

Table 3: Comparative analysis of performance measures
obtained by proposed work and the works of Seon, J., et.
al., 2023, Venkatasubramanian, S., et. al., 2022 and
Assagaf, 1., et. al., 2023

Works TNR | TPR | FNR | FPR

Proposed Method 0.91 | 0.94 | 0.06 | 0.08

Seon, J., et. al., 2023 | 0.87 | 0.88 | 0.12 | 0.13

Venkatasubramanian,

S.ct.al,2022 | 0830851 0.1510.17

Assagaf, Loet.al, | g0 | 029 | 011 | 0.14

2023

Figure 3 compares the performance of the proposed
system with the works of Seon, J., et. al., (2023),
Venkatasubramanian, S., et. al., (2022), and Assagaf, L., et.

al., (2023). The proposed system consistently demonstrates
higher precision across most recall values, indicating
improved accuracy in positive prediction identification. This
graph highlights the proposed system's superior performance
in achieving high precision over a range of recall values,

making it more reliable for accurate predictions.

Precision Recall analysis

! Proposed
System
0.8 p—
s VT Work
:50‘6 (Seon,J., et.
3 al., 2023)
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a
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(Venkatasubr
0.2 amanian, S.,
et. al., 2022)
0 Work
0 02 04 06 08 1 (Assagaf. 1.
t.al., 2023)

Recall

Figure 3: Precision Recall Analysis of proposed work and
the works of Seon, J., et. al., 2023, Venkatasubramanian,
S., et. al., 2022 and Assagaf, L., et. al., 2023

Figure 4 compares the True Positive Rate (TP Rate) against
the False Positive Rate (FP Rate) for the proposed system and
the works of Seon, J., et. al., (2023), Venkatasubramanian, S.,
et. al., (2022), and Assagaf, 1., et. al., (2023). The proposed
systemachieves a consistently higher TP Rate across most FP
Rate values, indicating better overall classification
performance. This analysis illustrates the superior capability
of the proposed system in distinguishing true positives from
false positives, showcasing higher reliability and accuracy in

classification.
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The proposed predictive maintenance model leverages
an attention-based LSTM network to enhance machine
failure prediction in IIoT environments by combining
temporal modeling with a self-attention mechanism. This
approach offers significant advantages over existing
methods by capturing long-term dependencies within time-
series data and focusing on critical timesteps, resulting in
high accuracy, precision, recall, and F1-score. Compared to
existing works the proposed work surpasses their results by
effectively balancing the dataset with SMOTE and
emphasizing relevant features, which improves both
predictive accuracy and interpretability. Unlike the work by
Assagafetal. (2023), the proposed work is better equipped to
handle class imbalance, resulting in more consistent

prediction performance.
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V. CONCLUSION

In conclusion, this paper presents a lightweight
predictive maintenance framework for IIoT environments,
addressing challenges such as data complexity, limited edge
resources, and the need for real-time adaptability. The
proposed work incorporates an LSTM model that effectively
captures temporal dependencies and prioritizes critical
features, enhancing the accuracy and interpretability of
failure predictions. By employing techniques like Min-Max
normalization, SMOTE for class balancing, and self-
attention, the framework achieves high accuracy, precision,
recall, and Fl-score making it well-suited for predictive
maintenance tasks. Compared to existing models, this
framework demonstrates significant improvements in
predictive performance while also optimizing computational
efficiency for deployment on edge devices. With rigorous
evaluation through simulations and real-world tests, the
framework shows promise in reducing downtime,
maintenance costs, and energy consumption in [ToT settings.
Thus this study provides a foundational step toward more
adaptive, cost-effective predictive maintenance solutions in

IToT environments.
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