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ABSTRACT

Biometrics refers to the automatic identification of an
individual based on his/her physiological or behavioral
traits. Unimodal biometric systems perform person
recognition based on a single source of biometric
information and are affected by problems like noisy sensor
data, non-universality and lack of individuality of the
chosen biometric trait. Some of the limitations imposed
by unimodal biometric systems (that is, biometric systems
that rely on the evidence of a single biometric trait) can
be overcome by using multiple biometric modalities. Such
systems, known as Multimodal biometric systems, are
expected to be more reliable due to the presence of
multiple, fairly independent pieces of evidence. A
multimodal biometric system integrates information from
multiple biometric sources to compensate for the
limitations in performance of each individual biometric
system. An optimal framework for combining the matching
scores from multiple modalities using the likelihood ratio
statistic computed using the generalized densities
estimated from the genuine and impostor matching scores
is being proposed in this paper. The motivation for using
generalized densities is that some parts of the score
distributions can be discrete in nature; thus, estimating
the distribution using continuous densities may be
inappropriate. The two approaches for combining

evidence based on generalized densities: (i) the product

Dept. of CSE&IT, Nalanda Institute of Engineering &
Technology,Kantepudi - 522438, Guatur

447

rule, which assumes independence between the individual
modalities, and (ii) copula models, which consider the
dependence between the matching scores of multiple

modalities are being presented in this paper.

1. INTRODUCTION

Traditionally Passwords (Knowledge based Security) and
ID cards (token-based security) have been used to restrict
access to secure systems, However, security can be easily
breached in these systems when a password is revealed
to an unauthorized user or a card is stolen by an impostor.
Furthermore, simple passwords are easy to guess by an
impostor and difficult passwords may be hard to recall
by a legitimate user. The emergence of biometrics has
addressed the problems that plague traditional
verification methods. Biometrics refers to the automatic
identification (or verification) of an individual {(or a
claimed identity) by using certain physiological or
behavioral traits associated with the person. Current
biometric systems make use of fingerprints, hand
geometry, iris, retina, face, facial thermo grams, signature,
gait, palm print and voiceprint to establish a person’s

identity.

While biometric systems have their limitations they have
an edge over traditional security methods, in that they
cannot be easily stolen or shared. Besides strengthening
the security, biometric systems also enhance user
convenience by reducing the need to design and
remember passwords. Moreover, biometrics is one of the
few techniques that can be used for negative recognition

where the system determines whether the person is who
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he or she denies to be. Biometric systems can operate in
one of two modes-—the identification mode, in which the
identity of an unknown user is determined, and the
verification mode, in which a claimed identity is either
accepted (a genuine user) or rejected (an impostor).
Biometric systems are being deployed in various
applications including computer logins, ATMs, grocery
stores, airport kiosks, and driver’s licenses. The
successful installation of biometric systems in these
applications does not imply that biometrics is a solved
problem. In fact, there is significant room for improvement
in biometrics as suggested by the error rates shown in
the table-1. Biometric systems installed in real-world
applications must contend with a variety of problems.

Among them are:

i) Noise in sensed data. A fingerprint with a scar and a
voice altered by a cold are examples of noisy inputs.

Noisy data could also result from defective or improperly
| maintained sensors (for example, accurnulation of dirt on
a fingerprint sensor} and unfavorable ambient conditions
(for example, poor illumination of a user’s face in a facé
recognition system). Noisy biometric data may be
incorrectly matched with templates in the database

resulting in a user being incorrectly rejected.

ii} Intra-class variations. The biometric data acquired
from an individual during authentication may be very
different from the data used to generate the template
during enrollment, thereby affecting the matching
process. This variation is typically caused by a user who
is incorrectly interacting with the sensor, or when sensor
characteristics are modified (for example, by changing
sensors, that is, the sensor interoperability problem)

during authentication.
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iii) Distinctiveness. While a biometric trait is expected to
vary significantly across individuals, there may be large
similarities in the feature sets used to represent these
traits. Thus, every biometric trait has some theoretical

upper bound in terms of its discrimination capability,

iv) Non-universality. While every user is expected to
possess the biometric trait being acquired, in reality it is
possible for a subset of the users to not possess a
particular biometric. A fingerprint biometric system, for
example, may be unable to extract features from the
fingerprints of certain individuals, due to the poor quality
of the ridges. Thus, there is a Failure To Enrol! (FTE) rate
associated with using a single biometric trait. There is
empirical evidence that about 4% of the population may
have poor quality fingerprints that cannot be easily imaged

by some of the existing sensors.

v} Speof attacks. An impostor may attempt to spoof the
biometric trait of a legitimately enrolled user in order to
circumvent the system, This type of attack is especially
relevant when behavioral traits such as signature and
voice are used. However, physical traits like fingerprints

are also susceptible to spoof attacks.

Table 1 : State-of-the-art error rates associated with

fingerprint, face and voice biometric systems.

Biometric } Test Test Parameter False Reject | False Accept
Type : Rate (FRR) | Rate (FAR)
| FVC ,
PFingerprint 2002 Users mostly in the age growup 20-39. 0.2% ¢.2%
Enrolment and test images were collected in 10% 1%

Face |FRYT [varied lighting, outdoor/ indoor environtment
2002 {and could be on different days

NIST |Text dependent
2000

Yoice 10-20% 2-5%

Biometrics refers to the automatic identification of an
individual based on his/her physiological traits [1].
Biometrie systems based on a single source of information
(unimodal systems) suffer from limitations like the lack of

uniqueness, non-universality and noisy data [2] and
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‘hence, may not be able to achieve the desired performance
requirements of real-world applications. Some of the
limitations imposed by unimodal biometric systems (that
is, biometric systems that rely on the evidence ofa single
biometric trait) can be overcome by using multiple
biometric modalities. Such systems, known as Multimodal
biomeltric systems, are expected to be more reliable due
. to the presence of multiple, fairly independent pieces of
evidence. Multimodal biometric systems have several
advantages over unimodal systems. Combining the
evidence obtained from different modalities using an
effective fusion scheme can significantly improve the
overall accuracy of the biometric system. A multimodal
biometric syster can reduce the Failure to Enroll (FTE)/
Failure to Capture (FTC) rates and provide more resistance
against spoofing because it is difficult to simultaneouslty
spoof multiple biometric sources. Multimodal systems
can also provide the capability to search a large database
in an efficient and fast manner. This can be achieved by
using a relatively simple but less accurate modality to
prune the database before using the more complex and
accurate modality on the remaining data to perform the
final identification task. However, multimodal biometric
systems also have some disadvantages. They are more
expensive and require more resources for computation
and storage than unimodal biometzic systems. Multimodal
‘systems generally réquire more time for enrollment and
verification causing some inconvenience to the user.
-Finally, the system accuracy can actually degrade
compared to the unimodal system if a proper technique is
not followed for combining the evidence provided by the
different modalities. However, the advantages of
multimodal systems far outweigh the limitations and
hence, such systems are being increasingly deployed in
security-critical applications. These systems are also able

to meet the stringent performance requirements imposed

by various applications. Multi biometric systers address
the problem of non-universality, since multiple traits can
ensure sufficient population coverage. Furthermore,
multimodal biometric systems provide anti-spoofing
measures by making it difficult for an intruder to
simultaneously spoof the multiple biometric traits of a
legitimate user. By asking the user to present random
subset of biometric traits, the system ensures 2 live user
is indeed present at the point of data acquisition. Thus, 2
challenge-response type of authentication can be

facilitated using multi biometric systems. A variety of

 factors should be considered when designing a multi
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biometric system. These include the choice and number
of biometric traits; the level in the biometric system at
which information provided by multiple traits should be
integrated; the methodology adopted to integrate the
information; and the cost versus matching performance
trade-off. The choice and number of biometric traits is
largely driven by the nature of the application, the
overhead introduced by multiple traits (computational
demands and cost, for example), and the correlation
between the traits considered. In a cell phone equipped
with a camera it might be easier to combine the face and
voice fraits of a user, while in an ATM application it might
be easier to combine the fingerprint and face traits of the
user. In a multimodal biometric system, integration can
be done at (i) feature level, (ii) matching score level, or
(ii1) decision level. Matching score level fusion is.
commonly préferred hecause matching scores are easily
available and contain sufficient information to distinguish
between a genuine and an impostor case. Givena number
of biometric systems, one can generate matching scores
for a pre-specified number of users even without knowing
the underlying feature extraction and matching algorithms
of each biometric system. Thus, combining information
contained in the matching scores seems both feasible

and practical.
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This paper proposes a framework for optimally combining
the matching scores from multiple modalities based on
generalized densities estimated from the genuine and
impostor matching scores. The motivation for using
generalized densities is that some parts of the score
distributions can be discrete in nature. As a result,
estimating the densities using continuous density
functions can be inappropriate. This paper presents two
approaches for combining evidence based on generalized
densities: (i} the product rule, which assumes
independence between the individual modalities, and (ii}
copula models, which parametrically modei the
dependence between the matching scores of multiple
modalities. The proposed method bypasses the need for
score normalization and selection of optimal weights for
the score combination on a case-by-case basis {3, 9], and
therefore, is a more principled approach with performance

comparable to the commonly used fusion methods,

2 GENERALIZED DENSITIES

2.1 Estimation of Marginal Distributions

Let X be a generic matching score with distribution
function £, i.e., P(X < x) = F(x). We denote the genuine
{impostor) matching score by X (X,.mp) and the

corresponding distribution function by Soon (f.-mp)-

Assuming that j; SA)and £ (x) have densities fg Ax) and

P
A ) Tespectively, the Neyman-Pearson theorem states
that the optimal ROC curve is the one corresponding {o
the likelihood ratio statistic NP(x) = j; E,"(x)/fl.m(x) [10]. The
ROC curve corresponding to NP(x) has the highest
Genuine Accept Rate (GAR) for every given value of the
False Accept Rate (FAR) compared to any other statistic
Ulx) # NP(x} (this is true even for the original matching
scores corresponding to U{x) =x). However, when ); 0
and j:mp(x) are unknown (which is typically the case) and

are estimated from the observed matching scores, the
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ROC corresponding to NP(x) may turn out to be
suboptimal. This is mainty due to the large errors in the
estimation of o) and ﬁmp(x). Thus, for a set of genuine
and impostor matching scores, it is important to be able
to estimate fg (%) and ffmp(x) reliably and accurately.
Previous studies by Griffin [10] and Prabhakar et al, [11]
assume that the distribution function F has a continuous
density with no discrete components. In reality, most
matching algorithms apply thresholds at various stages
in the matching process. When the required threshold
conditions are not met, specific matching scores are
output by the matcher (e.g., some fingerprint matchers
produce a score of zero if the number of extracted minutiae
is less than a threshold). This leads to discrete
components in the matching score distribution that cannot
be modeled accurately using a continuous density
function. A score value x, is said to be discrete if
P(X = x_)=p>0. It is easy to see that F cannot be
represented by a density function in 2 neighborhood of
x,, (since this would imply that P(X = x,) = 0). Thus,
discrete components need to be detected and modeled
separately to avoid large errors in estimating f; o(ch and
Jinp (%). Our approach consists of detecting discrete
components in the genuine and impostor matching score
distributions, and then modeling the observed
distribution of matching scores as a mixture of discrete
and continuous components. Hence, this approach
generalizes the work of [10,11]. The following
methodology can model a distribution based on a generic
set of observed scores. For a fixed threshold T the
discrete values are identified as those values x, with
P(X =x)> T where 0 < T< 1. Since the underlying
matching score distribution is unknown, we estimate the
probability P(X = x) by N(x /N, where N(x;) is the
number of observations in the data set that equals X

and N is the total number of observations. The collection
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of all discrete components for a matching score

distribution will be denoted by

DE{xG:M>T}
N

The discrete COI}[\POI‘! nts constitute a proportion
PD = Z (x03
=Lx,eD

obtain the collection C by removing all discrete

(1)

of the total observations. We

components from the entire data set. The scores in C
constitute a proportion PC =1- PD of the entire data
set, and they are used to estimate the continuous
component of the distribution (F.(x)) and the
corresponding density (f(x)). A pon-patametric kemmnel
density estimate of f,(x} is obtained from C as follows.
The empirical distribution function for the observations

in C is computed as
(2)

where I{s <

Ns=N,. Note that F(x)=0V x<sy, and

x}=1ifs<x and =0, otherwise; also,

F.(x)=1VXx 28, where s and s,
respectively, are the minimum and maximum of the
observations in €. For values of x, 5 <x<s_, not
contained in C, F {x), is obtained by linear interpolation.
Next, B samples are simulated from F(x), and the density
estimate of f.(x), f(x), is obtained from the simulated
samples using a Gaussian kernel density estimator. The
optimal bandwidth, 4, is obtained using the “solve-the-
equation” bandwidth estimator {12}, which is an automatic
bandwidth selector that prevents over smoothing and
preserves important features of the distribution of

matching scores. The generalized density is defined as

N
I(x)= pe fe(x)+ xOZED (xo).I{x=x0} 3)

where T{x =x,} = 1 ifx=x,and=0, otherwise. The
distribution function corresponding to the generalized

density is defined as

L(x)=pe f Jelu)du+ ¥ Nix,)

Q)
(@) (b) {©)
(d) (e) (f)

Fig 1: Histograms of genuine scores for face (a), finger

(b}, and hand-geometry (¢).

Histograms of impostor scores for face (d), finger (), and

hand-geometry ().

For a multimodal system with K modalities, the
generalized densities and distributions estimated for the
genuine (impostor) scores for the k% modality will be
denoted by e (%) and Dy y (%) Uiy () and
Linpk (%) ), respectively, fork=12, ..., K. Figures 1 (a)-
(f) give the plots of lgen,k(x) and limk(X) for the
distribution of observed genuine and impostor matching
scores for K = 3 modalities of the EXP-Multimodal
database (see Section 4). Figures 1 (a)-(f) also give the
histograms of the genuine and impostor matching scores
for the three modalities. The “spikes” (see Figure 1 (c)
and (e)) represent the detected discrete‘ components and
have a height greater than the threshold T = 0.02. Note
that the individual “spikes” cannot be represented by a
continuous density function. Forcing a continuous
density estimate for these values will result in gross

estimation errors and yield suboptimal ROC curves.
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2.2 Joint DensiTy Estivation using Copuna MODELS

The methodology described in Section 2.1 only estimates
the marginal score distributions of each of the K
modalities without estimating the joint distribution. One
way to estimate the joint distribution of matching scores
is by using copula models [13]. Let H,, H,.,Hbe K
contintous distribution functions on the real line and
H be a K-dimensional distribution function with the k*
marginal given by H, for k = 1, 2,..., K. According to
Sklar’s Theorem [13], there exists a unique function

Clu,u, ....u) from[0, /7% to [0,1] satisfying
P2

H(s,8,,..58¢) = C(H (5,), H,(8,),.... H,(5,))

&)
where 5 1 Sy..,8, are K real numbers. The function C is
known as a K-copula function that “couples” the one-
dimensional distributions functions H.H,. ., H . foobtain
the K-variate function A. Equation (5) can also be used to
construct K-dimensional distribution functions # whose
marginals are the distributions H,H,...H_: choose a

copula function C and define # as in (5).

Copula functions are effective in modeling the joint
distribution when the marginal distributions are non-
normal and do not have a parametric form (as is usually
the case for biometric data). The family of copulas
considered in this paper is the K-dimensional multivariate
Gaussian copulas [14]. These functions can represent a
variety of dependence structures using a K x K
correlation matrix R . The K-dimensional Gaussian copula

function with correlation matrix R is given by

Cp (), 1ty ) = DX (@), @7 (1,),..., D™ ()
| ©
where each u, [01]fork=1, 2., % @ (*) is the
distribution function of the standard normal, @ -'() is its

inverse, and (I)R is the K-dimensional distribution

function of arandom vector 7 = (7, Z ... Z o with
component means and variances given by 0 and 1,
respectively. The (m,n)" entry of R, ©__, measures the
degree of correlation between the m-th and n-th
components form, n =1, 2,..., K. In practice, A'm will be
unknown and hence, will be estimated using the product
moment correlation of normal quantiles corresponding
to the observed scores from the K modalities. We denote

the density of CI]: by

OCK (1,1 ey thy)
Ou,0u,..0u,

Cf(ul,uz,...,uk)a

K@ 1), @7 (1), D7 ()
1%, (07 (,)) o

where @E (%,%,...,%,) is the joint probability density
function of the K-variate normal distribution with mean 0
and covariance matrix R, and ¢ ( x) is the standard normal
density function. We will assume that the joint distribution
function of genuine (impostor) matching scores for X
modalities, Fg[:n (Eip) is of the form (5) for some
correlation matrix R, (R1). For the genuine (impostor)
case, H, willbe estimated by L\ (x) (L, (X)) for
k=12..K

3 Fusion Basep On GENERALIZED DENSITIES

Two methods of fusion have been considered in this
paper. The first method assumes independence between
the K biometric modalities and combines the estimated
marginal densities using the product rule. For the matching
score setS =(S, §,..., ), the product fusion score of S,
PF5(S), is given by

11% lgen,k (Sk)

PFS(S) = p 3
k=1 1mp,k( k)

(8
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where /g, () and lapy (") are the estimates of
generalized densities of the genuine and impostor scores
of the ¥* biométric modality. The copula fusion rule
combines the individual modalities using the estimated
Gaussian copula functions for the score distributions.
The copula fusion score of a matching score set 5=
(SI,S?..., S,J, CFS(5), is given by

CE (@ (L (D P LS P L (S D)
Cf:((b-l (11"’” (Sl )): q)-l (Llnpl (S) ))’ "':q)-l (Lhm..lf (SK )))

®
where L, (S,) and Ly (S, ) are, respectively, the

* CFS(S)= PFS(S):

estimates of generalized distribution functions for the k*
biometric modality, and clé is the density of CRK as
defined in (7). This fusion rule assumes that the Gaussian
copula functions can adequately model the dependence

between the X biometric modalities,

4 EXPERIMENTAL RESULTS

Experiments on fusion of matching scores using rules (8)
and (9) were carried out on two different multimodai
databases. For each experiment, 70% of the genuine and
impostor matching scores were randomly selected to be
the training set for the estimation of the generalized
* densities and the correlation matrices. The remaining 30%
of the genuine and impostor scores were used to generate
the ROC curves. This training-testing partition was
repeated 20 times and the performance results reported
for each value of FAR(False Accept rate) are the median

GAR(Genuine Accept Rate) values.

4.1 DATABASES

The first database which is referred to as the EXP-
Multimodal database, consisting of 250 *virtual” subjects
each providing five samples of face, fingerprint (lefi-index)
and hand-geometry modalities collected using different

sensors and over different time periods, Face images were

represented as eigenfaces{15] and the Euclidean distance
between the Eigen coefficients of the template-query pair
was used as the distance metric. Minutia points were
extracted from fingerprint images and the elastic siring
matching technique [16] was used for computing the
similarity between two minutia point patterns. Fourteen
features describing the geometry of the hand shape [17}
were extracted from the hand images and Euclidean
distance was computed for each template-query pair.
Experiments were also conducted on the first partition of
the Biometric Scores Set - Release | (BSSR1) released by
NIST[18].

Table 2 Multimodal Databases

Databsse Modalities K | No.of users
EXP-Multimodal Fingerprint, Face, Hand-geometry k] 250
NIST-Musiimodal | Fingerprint{Two fingers), Face (Two matches)| 4 517 J

The NIST-Multimodal database consists of 517 users and
is “truly multimodal” in the sense that the fingerprint and
face images used for genuine matching score computation
came from the same individual, One fingerprint score was
obtained by comparing a pair of impressions of the left
index finger and another score was obtained by comparing
impressions of the right index finger. Two different face
matchers were applied to compute the similarity between
frontal face images. Even though the number of subjects
in the NIST database is relatively large, there are only

two samples per subject.
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Fig 2. Performance of product and copula fusion on the
EXP-Multimodal database based on (a) continuous and

(b} generalized density estimates.
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Fig.3. ROC curves for the NIST-Multimodal database for

all four modalities

Figure 2 gives the ROC curves for the two fusion rules
and the ROC curves based on the matching scores of
individual modalities for the EXP-Multimodal database.
F igu;e 2(a) shows the recognition performance when the
genuine and impostor score distributions of the three
modalities are modeled purely by contimious densities.
The performance improvement obtained by modeling the
matching score distributions as a mixture of discrete and
continuous components (generalized densities) can be

observed by comparing Figures 2(a) and 2(b).

The ROC curves for the two fusion rules on NIST-
Multimodal database are shown in Figure 3. We can see
that both fusion rules give significantly better matching
performance compared to the best single modality in each
database. It is also observed that the best single modality
in both the databases is uncorrelated to the other
modalities. For the EXP-Multimodal database, the
estimates of the correlation of the best single modality
(fingerprint) with the other two modalities (face and hand-
geometry) are -0.01 and -0.11 for the genuine scores, and

-0.05 and -0.04 for the imposter scores.
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5 ConcLusion

Based on the generalized density estimates of the genuine
and impostor matching scores, two methods of fusion
that follow the Neyman-Pearson rule are described. The
first fusion rule computes the product of the likelihood
ratios for each component medality of a multimodal system
and is optimal when the modalities are independent of
each other. The second fusion rule assumes that the
generalized joint density of matching scores can be
modeled using a Gaussian copula function and is a
generalization of the product rule when the component
modalities are not independent. Experimental results
indicate that the two fusion rules achieve better
performance compared to the single best modality in both
the databases. The proposed method bypasses the need
to perform score normalization and choosing optimal
combination weights for each modality on a case-by-case
basis. In this sense, the proposed solution is a principled
and general approach that is optimal when the genuine
and impostor matching score distributions are either

known or can be estimated with high accuracy.
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