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Performability Modelling of Identical Multiprocessors
System with remodelling and restarting delay
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ABSTRACT

Computer system models provide detailed answer to
gystem performance. In designing, the models play an
important role of helping to resolve architecture of
remodelling and the system breakdown. In this paper, the
performance modelling of homogeneous multiprocessor
sys'tems; are covered. To account for delays due to
femodelling and start up of the systeni, such systems are
modelled and solved. Numerical results for various cases

are presented.
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1. INTRODUCTION

Thérc are many computer, communication, and
manufacturing systems which give rise to models where
a single bounded/unbounded queue evolves in an
-environment which changes state from time to time,
Multiprocessor system models at present are very
important and widely used in modelling transaction
processing systems, comununication networks, mobile
networks, and flexible machine shops with groups of
machines. In this paper, the performanée modelling of

homogeneous multiprocessor systems are studied.

Multiprocessor system model have been extensively
studied Trivedi [11]; Harrison and Patel [6]. Particularly,
Stecke and Kim [8]; Stecke {9]; Righter [10]; Buzacott
- and Shantikumar [1]; Fiems et al. [4] contributed their

work on nodes in communication networks, and flexible
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machine shops in a manufacturing environment. These
systems use more than one processor and can be
homogeneous (all processors are identical) or
heterogeneous (at least one processor is different from
others). Furthermore, such systems are prone to break-
downs. In this paper we study the approaches to model
homogeneous with remodelling and delay of the system
by suitably extending the resulting quasi birth death
(QBD) process in the performance models of
multiprocessor systetns Chakka and Mitrani [2]; Chakka
et al. [3]. Modelling homogeneous multiprocessor
systems with rebooting and remodelling delays was
considered and approximate performance models are
presented based on Markov reward models Gemikonakli

et al. [5].

An approximate performance modelling of this system
was carried out in Trivedi et al. [12]. We intend fo carry
out the performance evaluation of this system by spectral
expansion method considering leading eigen vector, as

explained in Gemikonakli et al. [5].

2. Stupy OF THE MULTIPROCESSOR SYSTEM

The homogeneous multiprocessor systern shown in Figure
1, consists of K identical parallel processors, numbered
1, 2,..., K, with a common queue, including the jobs in
service. Jobs arrive at the system in a Poisson stream at

rate , and join the quene. Jobs are homogeneous and the

service rates of the processors assumed identical: Thus,

the service times of jobs serviced by processor k (k+=1,
2,..., K) are distributed exponentially with a mean value

of 1/p4. The failure rate of processor is  and processor k
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éxecutes jobs only during its operative periods which are
distributed exponentially with mean 1/€. Atthe end of an
operative period, processor k breaks down and requires
an exponentially distributed repair time with a mean value
of 1/1). The number of repairs that may proceed in parallel
could be restricted. This is expressed by saying that there
are R repairmen (R £ K), each of whom can work on at
most one repair at a time. Thus, an inoperative period of
a processor would also include the possible waiting time
fora repairman. No operative processor can be idle if
fhere are jobs awaiting service and no Tepairman can be
idle if there are broken-down processors waiting for
repair, All inter-arrival, service, remodelling, restarting,
ppcrative ‘and repair time random variables are
independent of each other. The remodelling delay 1/0
and the restarting delay 1/@ relate to the system and not

to individual processors.

If the operative processors are more than jobs in the
system, then the busy processors are selected randomty.
Services that are interrupted by break-downs are
eventually resumed, perhaps on a different processor but
at a similar service rate. Similarly, if R <K and the repair
strategy allows pre-emption of repairs, then interrupted
repairs are eventually resumed from the point of
interruption and there are no switching delays.
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Figure 1 : Multiprocessor ijstem with breakdowns and

Repairs Remodelling and Rebooting Delays

3. MatEMATICAL DESCRIPTIONS OF QBD PROCESSES

Consider a queuing system that can be modeled by a
discrete time, two dimensional Markov process on semi-
infinite or finite lattice strip. The process has a Markovian
property and the state of system at observation time t can
be described by two integer random variables T(t) and
J(t). The former one is bounded and referred to as a phase;
the latter one may be either unbounded (infinite case) or
bounded (finite case) and is referred to as a level of the
system. The Markov process is denoted by Z = {I(t), X(t);
£2 0} and its state space is ([0, 1,2, . ... NI¥[0, 1,2,...1)

in the infinite case and ([0, 1,2, ..., N[0, 1,2, . .. LD in
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finite case, respectively. If the possible jumps of system's
fevel in transition are only 0, -1 or 1, the corresponding

process is known as Quasi Birth-Death (QBD) process.

The system now can be represented by a QBD process
with finite or infinite state space. The state of the system
can be defined by [I(t), J(t)] where I(t) represent the
operative states of the system and J(t) is the number of
jobs in the system. Let the operative states be represented
in the horizontal direction and the number of jobs in the
vertical direction of a two-dimensional lattice strip. Here
A is the matrix of instantaneous transition rates from
operative state i to operative state k with zeros on the
main diagonal, caused by change in the operative state
ie. a break down followed by remodelling or restarting
and repair. These are the purely lateral transitions of the
model Z. Matrices B and C are transition matrices for
one-step upward transition rate matrix caused by job
arrival rate and one-'steﬁ downward transitions matrix
caused by departure of a serviced job respectively, When
the transition rate matrices depend on j for j = M, where
M is a threshold having an integer value, the process Z
evolves with the following instantancous transitions for J

= 0,1,2,....
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e Aj : purely phase transitions - From state (i, ] ) to
state (01, kSEN;i# k)

% Bj: one-step upward transitions - From state (1, j )
Ctostate (k, j+ D0, kEN)

T &

(i, j)to state (k, j - D0 S1, k EN).

one-step downward transitions - From state

4 Stubpy OF THE SYSTEM

In multiprocessor systems, in practice however, some
délay is encountered when a failed processor is being
fnapped out of the system, and when a repaired processor
is being admitted into the system. A Markov maodel of
the availability of a hormogeneous multiprocessor system
is developed and parameters such as probability of
rejection, probability of interruption of an accepted task,
énd probability of late completion of an accepted task
are also computed Trivedi et al. [12]. It is possible to
model the system affected by such remodelling and
restarting delays effectively using the spectral expansion
method for performability measures. In this section such
Ay—:;'lmodels are developed for multiprocessor systems with

breakdowns, repairs, remodelling and restarting delays.

In the homogeneous multiprocessor system with K
processors, it is assumed that there is a single repair
facility with repair rate 1. When a processor fails the
faultis cbvered with probability ¢ and is not covered with
probébility 1-c. Subsequent to a covered fault, the system
comes up in a degraded mode after a brief remodeiling
delay, while after an uncovered fault 2 longer reboot
action is required to bring the system up at a degraded
mode. Here, degraded mode indicates a state with one
less operative processor than the previous state.
Remo&eliing and restarting times are exponentiaily

distributed with mean 1/ and 1/ respectively.
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Figure 2 : Multiprocessor Sysiem with Breakdowns,

Repairs, Restarting and Remodelling Delays

Figure 2 is the Markov chain that represents the operative
states of the homogeneous multiprocessor system
considered. The states labelled 1, 2, ..., K are the K
working states of the multiprocessor system, with that
many number of operative processors in each state. State
0 means no processor is operational. The K-1 states,
labelled as X, X,, ..., X;, are the states representing the
case where the system is out of service for mapping a
failed processor out and a remodelling delay is needed
to bring the system up at a degraded mode. The K-1 states
labelledas Y., Y,, ..., Y,, are the states representing the
case where the system is out of service for mapping a
failed processor out and a rebooting delay is needed to
bring the system up at a degraded mode. Hence, the total
number of operative states is 3K-1. Let these be
renumbered as, states 0,1,...

S X as K+ K2,
Y, as 2K, 2K+1, ...,

K unchanged, states X, X,,
2K-1, and the states Y, Y,
3K-2; hence, resulting in 3K-2 states

for a K-processor system.

Clearly, the elements of the matrix A depend on the
parameters X, &, 1), ¢, 8, and ¢. By following the model
presented in Figure 3, the state transition matrices A, Aj,

B, Bj, C, and Cj, can be given as follows.
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[N = JL

Bj=B,=0,1,2, ...

B =Diag [6, G, ....0 ] of size (3K-1)x(3K-1).
Ci=CforjzK,

C = Diag [w(O), w(1)UL, ..., w(3K-2}u]:

C, = Null Matrix;

Cj = Diag[Min{w(0), j}1t, Min{w(1), j}L, ...,
Min{w(3K-2),j} p ] for 1< j <K

where, w(i) (i=0, 1, 2, ..., 3K-2) is the number of working

processors in the operative state 1.

The matrix A is given for general K processor system.
Since time-dependent failures are considered, the matrices

Aj do not depend on j, and hence, Aj =A for all values of j.

5 Tug STEADY STATE SOLUTION

The solution for the system explained above is given for
an unbounded queue ( i.e. K £ L < « ) and the given
solﬁtion is valid for study states of homogeneous systems.
The study state probabilities of the system considered

can be expressed as:

p., =lmPU()=i,J()=j}; 0isN, 0<j<w (1)

It is convenient to define row vectors of probabilities

corresponding to state with j jobs in the system:

V_j=(p0_j, pu: ----- sp,;‘j) ; J -5031925"- (2
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Then the balance equations for the equilibrium

probabilities can be written as

V{D}" +D] + D=V, B #V At Vi G,

1<j<M-1 @)

Where Dj*, Dj?, Dj¢, are diagonal matrices whose i
element is the sum of i® row sum of the matrices Aj.s, Bj.s,
C respectively of size (N+1)X(N+1). By definition
V,=0andB,= 0.

When j is greater than the threshold M, those equations

become

V[D* +D® +D]=V, B+ VA +V ,C,

=M+, “)
In addition, for j = 0, the balance equation is:
V,[D oA + DuB}: VoA + VG, (3)
And all probabilities must sum up to 1:
Z vV,e= 1.0 (6)

7o

Where e is a column matrix whose elements are unit

values of size N+1,

The balance equations with constant coefficients (4), are
usually written in the form of a homogeneous vector

difference equation of order 2:

V,Q, Vi Q +V;p Q= 0, j=MMA L ()

Where Q,=B,Q,=A-D*-D?-Dand Q,=C.

Furthermore, the characteristic matrix polynomial Q (A)

can be defined as:
Q) = Qo+ Q2 + Q47 ®

Where wQ (1) = 0; det [Q (1)] =0 9)
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A and W are N+1 eigenvalues and left-eigenvectors of

Q(M) respectively with (A[<I.

For unbounded queue system, and avoiding large numbers
resulting from the positive powers of eigenvalues greater

than 1.0, one can obtain the general solution as:
N

ijz Oﬂg\IJ;k,-‘ i=M, M+1,... (10)
=0

where ali, i=0,1,2,....N are constants may be complex.

Note that if there are non-real eigenvalues in the unit disk,
then they appear in th-e complex conjugate pairs. The
corresponding eigenvectors are also complex conjugate.
The same must be true for the appropriate pairs of
constants ak , in order that the right hand side of (10) be

real.

From eq (3), the constants ¢, and probability vectors \
for j = 0,1,2,... M are to be determined. This is a set of
‘- {M+1)(N+1) linear equations with M(N+1) unknown
probabilities and the N+1 constants Q. Since the
generator tatrix is singular hence only (M+1){N+1)-1
of these equations are linearly independent. To make
generator matrix non singular it requires another equation

and eq (6) do this job.

The quadratic eipenvalue-eigenvector problem (9), for
computational purposes can be reduced to a linear form
WQ = Ay, where Q is a matrix of size (2N+2)(2N+2),
The process of evaluation, in detail discussed R Chakka
Cin[2)

In what follows, Proposition 1 will be used to derive
approximations, rather than exact solutions. The
approximate solution is in detail discussed Isi Mitrani
[7]. A centrai role in those developments is played by the
largesf eigenvalue, AN+1, and its corresponding left

eigenve_ctof. When the queue is stable, AN+1, is real,
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positive and simple. Moreover, it has a positive
eigenvector. From this onward, AN+1, will be referred to
as the dominant eigenvalue, and is denoted by ? and its

corresponding vector as ..

Expression (10} implies that the tailk of the joint
distribution of the queue size and the environmental phase
is approximately geometrically distributed, with
paramneter equal to the dominant eigenvalue, ¥. To see
that, divide both sides of (10) by Y and j—<C. Since v is
strictly greater than in modulus than all other eigenvalues,
all terms in the surnmation vanish, except one:

v,
I

_LI i _aN+]uN+l

Jjow Y

(1)
when j is large, the above form can be expressed as:

(12)

~ J
v_j =yl

This product form implies that when the queue is large,
its size is approximately independent of the environment
phase. The tail of the marginal distribution of the queue

size is approximafcly geometric:

P~ Oy Uy €)Y

(13)
Where e is the column matrix defined earlier.

These results suggest seeking an approximation form:

v, =auy.y’ Ol is a constant. (14)

Note that ¥ and UN+1 can be computed without having
to find all eigenvalues and eigenvectors. There are
'techniques for determining the eigenvalues that are near
a given number. Here we are dealing with the eigenvalue

that is nearest to but strictly less than 1.

One could decide to use the approximation (14) only for

] =M. Then the coefficient a and the probability vectors
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viforj=0,1,2,...,M-1canbe obtained from the
balance equations (4), e.g., for j 2 M, and the normalizing
équatiou (6). In that case, one would have to solve a set
of M (N + 1) + 1 simuitaneous linear equations with
M (N + 1) + 1 unknowns. If that approach is adopted,
then the approximate solution satisfies all balance

equations of the Markov process except those for j=M.

Alternatively, and even more simply, (14) can be applied
toallv, forj=0,1,2,... Then the approximation depends
on just one unknown constant, ¢t. Its value is determined

by (6) alone, and the expressions for v, become

=Yy 7 =0,1,2,...

v, = i5
T (uyae) (3

and the mean queue length is calculated by

. __Uyu 7

MOL — (16)

" (yage) 7Y

This last approximation avoids completely the need to
solve a set of linear equations. Hence, it also avoids all
problems associated with ill-conditioned matrices.‘
Moreaver, it scales well. The complexity of computing
¥ and UN+1 grows roughly linearly with N when the
mairices A, B, and C are sparse. The price p;aid for that
convenience is that the balance eqﬂations for j <M are
no longer satisfied. The geometric approximation is
asymptotically exact when the offered load increases ie.
the arrivals or services of the jobs are done rapidly so
that system becomes heavily loaded and approaches

saturation.

6. NUMERICAL RESULTS

To show the effectiveness of the method presented and
evaluate the performance of the multiprocessor system

with homogeneous processors, we considered, 4, 5, and
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mean quauo fenglh

6-processor systems with break-downs with an infinite
queune. Other parameters are given as £=0.01, n=0.05,
=1, ®=2, and 0= 1 unless stated otherwise.

Figure 3 shows the relationship between the mean queue
tength and the mean arrival rate , for different number of
servers and is observed that performances increases with
proportion to number of servers. Here ¢ is considered as
zero, Figure 4 shows the mean queue length as a function
of c. It is clearly evident that an increase in c results a
decrease in the mean quene length because remodelling

delays are shorter than restarting delays.
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Figure 3: MQL Versus Mean Arrival Rate
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Figure 5 shows that number of jobs in the queue decreases
as mumber of servers increases with arrival rate 0.66%K
and queue length increases as remodelling delay
increases. Here again ¢=0 is considered.
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multiprocessor systems.
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Figure 6 shows mean queue length as a function of ¢,
with K = 5. This shows that as ¢ increases mean queue
length increases along with O increases. Where as figure
7 shows that, for small & values mean queue length
decreases as ¢ increases and increases as 8 increases.
Figure 8 shows mean queune length decreases for constant
arrival rate of jobs with respect to number of server
increases. It is observed that as ¢ increases, number of

jobs in the queue decreases.
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7. ConcLUstONS AND RECOMMENDATIONS

In this paper multiprocessor system with break-downs,
repairs and remodelling delays have been modelled for
exact solution. Numericéi results have been obtained and
presented for various performability parameters, for

unbounded as well as bounded queuing systems.

In conclusion, the discussion is out of scope for a
processor to be added. Depending on various parameters,
such as queuing capacity, processor speeds, and cover,
an informed choice can be made. The approach to
evaluating the performance of multiprocessor systems
presented here lends itself as a most reliable tool in

making such decisions.

The method can be extended to the case of heterogeneous

multiprocessor system with on identical servers and many
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of high performance, highly reliable computer

architectures.
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