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Abstract
This paper presents a Simple Algebraic scheme for
obtaining a second order approximant of a given absolutely
stable higher order Linear Time invariant Multivariable
system available either in state space or transfer function
form. A guideline has been suggested for identifying an
expansion point ‘a’ based on centroid concept for the
purpose of order reduction. Two point expansion scheme
in the s-domain betweens =0 and s=aisused to geta
suitable second order system for the individual SISO
systems that constitute the given MIMO system. A new
algebraic scheme is proposed for obtaining the common
denominator of the required second order MIMO model.
Based on this common denominator and the Transient and
Steady state gains of the original system, the individual
second order SISO models are reconstructed and the final
transfer function matrix of the second order MIMO model
s declared. For discrete systems, a linear transformation
can be used to analyze the problem in the s-domain.
The proposed methodology is illustrated with a numerical

example taken from the literature,

Keywerds: Multivariable systems, State Space, Transfer
function Matrix, Second order systems, Root Loci
Centroid, Continued Fraction Technique, Linear

transformation.
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1. Introduction

Due to the increasing complexity of systems that must be
controlled and in the interest to achieve optimum
peeformance, the importance of control system engineering
has grown in the past decade. As the systems become more
complex, the interrelationship of many controfled
variables must be considered in the control scheme. This
leads to control systems that have more than one feedback
loop. Such systems are nontrivial and are much more
challenging than single-loop control systems, Multiple
control loops ate required whenever a plant has multiple
sensors and actuators. While many single-loop concepts
hold in principle in the multi-loop case, the technicalities
are much

more involved. The performance benefits of multi-loop
control are often far more than one would expect from a
collection of single-loop controllers. Such multivariable
control is essential in Multi-input Multi-output (MIMO)
systems. They use measurements of several output variable
and may involve manipulation of more than one input
variable. The computer control systems used to control
the fuel injectors and spark timing of automobiles are
excellent exanuples of Multivariable control systems.
The exact analysis and synthesis of a high order
multivariable system is often difficult and possibly not
economic and Computational

desirable on

considerations.
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Hence, it is necessary to obtain a lower order model so
that it may be used for simulating the system. It is essential

that the obtained lower order model preserve the important

characteristics of the original system. This will minimize

variations. During design and realization of suitable
control system components to be attached to the original

system.

Several model reduction methods [1-5] have been
developed during the past three decades, which may be
broadly placed into two categories. The first category
includes Time domain methods [6-9] and the second
category consists of Frequency domain methods [10-14}].
Each method has its merits and applications. For time
domain method, it is mandatory that the original higher
order system is represented in state space form. In the
frequency domain method, a Linear Time Invariant g input
and p output system is to be given in p x ¢ transfer function

mafrix.

In this paper a computationafly simple algebraic scheme
is praposed for obtaining a second order transfer function
matrix for a given absolutely stable higher order
multivariable system in the frequency domain. If the
original system is represented in state space form, it is
converted to transfer function matrix formusing standard
algorithms [15]. The rest of the paper is organized as
follows. Section 2 defines the problem and Section 3
outlines the steps of an algorithm to implement the
proposed methodology. Numerical illustrations are
presented in section 4, followed by discussion and

conclusion in section 5.

1. Problem Statement
Consider an n®order linear time invariant dynamic

multivariable system with g inputs and p outputs described

in time domain by state space equations given as:

} (2.1)

where x is n dimensional state vector, u is ¢ dimensional

(1)
y(t)

Ax () + Bu (1)
Cx (1)

confro] vector and y is p dimensional output vector with
P=n and g <n.Also, 4 is nxn system matrix, B is

#xq input matrix and C is p *#» output matrix.

Alternatively, the above system may be described in

frequency domain by the transfer matrix G(s) of order

P X { piven as:

(2.1

where N¢s) is the numerator matrix polynomial and D(s)
1s the common denominator of the original systern. Also,
A are the constant matrices of order pxg and 4, may be

nmull matrix and a, are constants,

Irrespective of the form represented in equation (2.1) or

(2.2) (time or frequency domain) of the original system

- (s}, the problem is to find a &* order reduced model
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RY(s), where & < n in the following form represented by
equation (2.3), such that the reduced model retains the
important characteristics of the original system and
approximates‘its response as closely as possible for the

same type of inputs.

R*(s) = (s
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where N* (s) and D* (s)are respectively, the
numerator matrix polynomial and the common
denominator of the reduced model. Also, B, are the
constant matrices of the same order P X ¢ and b, are

constants.

1. Algorithm for the Proposed Scheme

In this paper, assuming that the original system is
described by equation (2.2) , our proposed scheme finds
a suitable second order modet of the form represented in

equation (2.3) for k=2.
The steps involved are as follows:

1. With the common denominator D(s). of the original
system, the transfer function of the syster: can be

represented in the matrix form:

”ME(S) Np(s) - ]\qu(*s')T
Ny(s) Ny(s) - qu(s)

|_Npi(s) Ny(s) . prr(s)_
Xs)

Gs)=

(3.1
rn-l

.ok

where NV (s)= Z A, ))s

=0

i=L2,...,p

j=12,...9
2. Foreach Gr;,- (8) do the following:
2.1 From equation (2.2), we can write

G;(s) = Ny(s)/ D(s)
(3.2)

2.2 Compute

(i} Isumoﬁnolesl =a, /1

-1

= ‘4Ir—2 (i’])'/‘/ia—] (ISj)
(iii) Numberofpoles =
(iv) Numberofzeroes — =n-1

i) !sumofzeroes]

2.3 Compute four expansion points using the following

guideline:

|sumafpoles| |sumofzeroes|

* " Numberofpoles + Numberofzeroes

3.3)
2.4 Compute a single expansion point a as, 2.4
4
>a
q =+
4
3.4

2.5 Using continued fraction expansion technique about
two points s = 0 and s = a [16], obtain a second

order model for the transfer function

N, (s}/ D(s)as,

N2(s)
2 — i
M H®
i
T IO iy T
dygy +dpqys+ s’

§(0) ii{1)

(3.5)

where Cy0y» Cyy» @y 200 d,and are constants.

Without loss of generality , the coefficient of term in the
denominator can be arrived at as 1.
2.6 Compute the Transient gain( Tg ;) and Steady state
gain { Sg,;,-) of G!-]- (s)as:
Tg; =4, i N/l
| 3.6)
Sgij = 4,00, )/ a
(3.7
3 Determine the common denominator [ 2 (s)as the

arithmetic mean of the corresponding cocfficients of
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each D; (s} which is mathematically represented by

Dsy=d,+d;s+s°

3.8)
where
LR
Z Z d &)
d, =+ k=0,1
P tyq
(3.9)
4 Reconsiruct the numerators of each GU: (5) as,
2
N;(s)=(d, xSg; )+ Tg,
(3.10)

so that the characteristics of the original higher order
system are maintained in the proposed second order

model.

.5 The transfer function matrix of the second order

system can now be represented as,

~N12| (5) Ni(s) N,i, (s) j
sz {5) N?g (s) N.jq {s)

Na(s) o No(s)

p2N

D¥(s)

V)

G()=

(3.11)
Note:
1. Further, if required an expansion point, ¢2 = //a can
also be considered for model reduction.
iL. For Linear time invariant nultivariable discrete systerns,
a linear transformation of z =s + 1 is to be used in step 1
to obtain the equivalent transfer function matrix in the s-
domain. In step 3, the reverse transformation of s =z — 1
is to be used for declaring the transfer function matrix of

the second order model in the z-domain.
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4. Numerical Hlustration

Linear Time Invariant Continuous MIMO System
Consider the sixth order system{17,18] described by the
transfer function matrix

[ 2s+5) (s+4)
(s+DEs+1Q (s +2)(s + 5)

Gl G6+10  (s+6)

(s+DE+20 (s +2)(s +3)

(4.1)
1. The common denominator D¢s) of sixth order system
is,
Dis)=

(s +1)(s + 2)(s + 3)(s + 5)(s + 10)(s + 20)
=5% +41s° +571s* +34915° + 1006052
+13100s + 6000

4.2)
2. Now, G{5) can be represented as
EG(°)1 I’G':I(S) GIE(S)—{
B j =
: !_sz (s) G, ()]
{4.3)
where
G ls)=
25 + 705 + 762 + 36167 + 770G+ 600
IXs5)
(4.4)
(}'!2(5)=
& 387 44597 4218237 +4166+240C
s}
(4.5)
Gy (5)=
5°+30" £33% +16567 +3700+3000
Ls)
(4.6)
Gyuls)=
& +42" +605" +366G7 +9100+600C
Xs)
4.7
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2. Itisobserved thatfor G, (s}, G, (s), G5, (s) and
G5, (s) , the Number of Poles is 6 and Number of

Zeroes 18 5

4. The values of | Sum of Poles | , | Sum of Zeroes |,
Expansion Points (‘a”, *{/a’) , Transient gain (Tg}
and Steady state gain (Sg) required for the algorithm
are tabulated in Table 4.1:

Table 4.1 Parameters of original higher order MIMO

system represented in equation (4.1)

Parameter Gl : (S) Gl2 (S) G?,] (S) G22 (S)
| Sum of | 41 41 41 41
Poles |
| Sum of | 35 38 30 42
Zeroes |
‘a' 22.3636 | 223636 | 21.8181 22.909
A’ 0.0447 0.0447 0.0458 0.0436
(Tg) 2 i 1 1
(Sg} 1 0.4 0.5 1

5. The transfer functions of the second order models
R, (5), R}, (5), R, (5)and R, (5) corresponding
to G,,(5),G,,(s), G, (5)and G, (s) obtained
by Continued Fraction technique using Two point
expansion scheme between s =0 and s = 1/a are:

1.8892s +8.7478

E.(5=
n(s) s £9.76225 + 8.7478
(4.8)
Ro(s) = 70.99035 +3.6465
. 52 +6.5780s +9.1162
(4.9)
Ry (5) = — 0.8778s + 7.4139
: 52 +15.84195 +14.8278
(4.10)
Ry () = — 1.0284s + 5.6552
* 5%+ 4.79865 + 5.6552
(4.11)

6. Using the denominatorsof R, (s), R}, (5), Ry (5)
and R, (s) represented by equations (4.8} through
(4.11), the common denominator for the second order
MIMO system is obtained by computing the
Arithmetic Mean of the corresponding coefficients,
which is represented as:

D*(s)=57 +9.2451s +9.5866
(4.12)

7. Using the Transient Gain and Steady State Gain of

G,,(5),G,(8), Gy (s)and G, (s) from Table
4.1and D? (), the transfer functions represented
in equations (4.8) through (4.11) can be

reconstructed as:

25+9.5866
R”(S) = 2
§°+9.24515 +9.5866
(4.13)
§+3.8346
R,(s)= 7
s° 4924515 + 9.5866
(4.14)
s +4.7933
Ry (s) = 2 ;
5 +92451s +9.58606
(4.15)
Ro(s)=— s+ 9.53866
- §°+9.24515+9.5866
{4.16)

8.  The second order MIMO model in transfer function

matrix 1s:

R, (s) RIE(S)\’

= |:R21 (s) Ry(s)

-d

1 [25+9.5866 s+3.8346
T Dis)| s+4.7933  5+9.5866
4.17)
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9. The unit step time responses of the original higher
order system represented in equation (4.1}, the
proposed second order model given in equation
(4.17) and the models obtained by the other methods
from the literature {17-18] are shown as in Fig 4.1(a)
- 4.1(d).

10. The Integral Square Error ‘J° for the proposed

" scheme and the other schemes are tabulated in Table

4.2

Table 4.2 Comparison of Integral Square Error for

ﬂlustration .
Model Cormmlative Error Index J for 10 Secs
Reduction
Method . | Gy (8)| G, (8)| G ()| Gyp(s)
Proposed | -0.0576 0.0384 - | 0.0281 0.1222
R.Prasad | 0.1676 0.0955 0.0307 0.1970
[19]
JPal[20] | 03068 | 3.8578 0.7160 02168
Routh 0.2301 0.0887 0.0468 02114

From the unit step time responses shown in Fig 4.1{(a) -
4.1(d), it is observed that the characteristics of the
proposed second order MIMO model is in close agreement
with that of the original higher order MIMO system. Also,
the cumulative error index *J” is minimum when compared
with that of the other methods[14,19,20] taken from

literature.
5. Discussion and Conclusion

In this paper a simple algebraic scheme for model
reduction of Linear Time Invariant MIMO Systems has
been presented. A guideline for identifying an expansion
_point has been suggested. The expansion point ‘a’ is
computed using the number of poles, zeroes and their

absolute sums. This is related to the centroid of a system
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and hence provides a scientific choice for the expansion
point. In case this expansion point is not suitable, an
alternate expansion point of ‘//«’ has been suggested.
Continued Fraction Expansion technique about two points
s = {and 5 = 4 is used to obtain second order models for
the transfer functions of the original higher order MIMC
system expressed in transfer function matrix form with
commorn denominator. The denominators of the obtained

second order models are combined to form the common

R Prasad, J Pal, A K Pant {J = 0.3068)

Routh Hurwitz Array (J =0.2301)

Qriginal System

Praposed model {J = §.0576)

R Prasad, J Pal, AK Pant {1 = 0.7180)

R Prasad, S F Sharma, A Kiviittal (J =0.0307)

Fig 4.1(b} Unit step time response of G (5)
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R Prasad, S P Bhamna, A K Wittal {J = 0.0855)

Proposed model (J = 0.0384)

Routh hureitz Array () = B.0887}

¥ Onginal System

R Prasad, J Pal, A Panl (4 = 3.8578)

Fig 4.1(d) Unit step time response of G, (5)

denominator of the proposed second erder MIMO model.
This is done by computing the Arithmetic Mean of the
corresponding coefficients of the terms involved in the
individual guadratic polynomials. This is a good
approximation as we are computing the average of the
summ of the roots and product of the roots of the
characteristic equations of the individual second order
models. Further, Transient and Steady State Gains of the
original MIMO systen: are used to declare the transfer

function matrix of the required second order MIMO
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model. The proposed scherne is applicable for both Linear
Time Invariant Continuous and Discrete Systems. From
the unit step time response of the numerical illustration,
it is observed that the proposed second order MIMO
model maintains the characteristics of the original higher
order system with minimum value for the cumulative error
index.. The obtained second order model can be further
used for designing suitable state space observers and
controllers for the given higher order MIMO system. The
proposed methodology can be easily implemented on any

digital computer.
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