A New Approach For Adaptive Huffman Coding

A New Approach For z%,daptive Huffman Coding

Pushpa Rani Suri!

ABSTRACT

In this paper, the focus is on the use of ternary tree over
binary tree in Huffman coding. First of all, we give the
introduction of Huffman’s coding. Then adaptive
Huffman coding is discussed. Here, a one pass Algorithm
developed by Vitter for constructing adaptive Huffinan
codes using binary tree is implemented to ternary tree.
In this paper, it is shown that the use of Ternary tree
results in minimizing numbers of nodes (internaly and
path length, fast implementation, efficient menory, fast

compression ratio and error detecting & error correcting,

Keywords : Ternary tree, Huffman’s Algorithm,
Adaptive Huffiman coding, V algorithm, prefix codes,

compression ratio, error detecting & correcting.

1. INTRODUCTION

Ternary tree or 3-ary tree is a tree in which each node
has either 0 or 3 children (labeled as LEFT child, MID
child, RIGHT child).

Data compression [15] or source coding is the process
of encoding information using fewer bits or other
information bearing unifs that an encoded representation
would use through use of specific encoding' schemes,
As with any communication only works when both the

sender and receiver understand that it'is mtended to be

'Reader, Dept. of Computer Science & Applications,
Kurukshetra University, Kurukshetra, Haryana, India.

*URS, D.CS.A, K.U.K, Haryana, India. Email :
goelmadhu20@prediffinail.com, Mob.No : 9416182929

Muadhu GoeF

interpreted as characters representing the English
language. Similarly compressed data can only be
understood if the receiver knows the decoding method.
Compression {1] is useful because it helps reduce the
consumption of expensive resources such as hard disk

or transmission bandwidth.

Huffman coding is an entropy-encoding algorithm used
for loss less data compression. David A. Huffman [2]
was given the concept of Huffman coding. Huffman
coding uses a variable length [3] code table that has been
derived in a particular way based on the estimated
probability of occurrence for each possible value of the
source symbol. Huffman coding uses a specific method
for choosing the representation for each symbol, resulting
in a prefix-free code that expresses the most common
characters using shorter strings of bits than are used for
less common source symbols. Huffman was able to
design the most efficient compression method of this
type: no other mapping of individual source symbols to
unique string of bits will produce a smaller average output
size when the actual frequencies agree with those used

to create the code,

Huifman coding is divided in to two categories:-
1. Static Huffman coding

2. Adaptive Huffman coding

Static Huffman coding suffers from the fact that the
uncompressed need have some knowledge of the
probabilities of the symbol in the compressed files. This

can need more bits to encode the file. If this information

Karpagam Jcs Vol. 4 Issue 2 Jan. - Feb. 2010

is unavailable compressing the file requires two passes.
FIRST PASS finds the frequency of each syébol and
constructs the Huffman tree. SECOND PASS is used to
compress the file. We have already used the concept of
static Huffman coding using ternary tree [10]. we
conclude that represcntétion of Static Huffinan Tree using
Ternary Tree is more beneficial than representation of
Huffman Tree using Binarf Tree in terms of number of
internal nodes, Path length {13], height of the tree, in
memory representation, in fast searching and in error
detection & error correction. Static Huffman coding

methods have several disadvantages.

Therefore we go for adaptive Huffiman coding. Adaptive
Huffman coding calculates the frequencies dynamically
based on recent actual frequencies in the source string.
Adaptive Huffman coding is also called dynamic
Huffman coding. It is based on building the code as the
symbols are being transmitted that allows one-pass
encoding and adaptation to changing conditions in data.
The benefits of one-pass procedure is that the source
can be encoded in real time, through it becomes meore
sensitive to transmission errors, since just a single loss

ruins the whole code.
Implementations of adaptive Huffman coding: -

There are number of implementations of this method,

the most notable are
1. FGK (Faller Gallager Knuth) Algorithm
2. Vitter Algorithm

We have already used the.concept of FGK Huffman
coding using ternary tree [11]. We conclude that
representation of FGK Huffman Tree using Ternary Tree
is more beneficial than representation of Huffman Tree
using Binary Tree in terms of nurnber of internal nodes,

Path length [12], height of the tree, in memory

representation, in fast searching and in error detection

& error correction.

Now here we try to use the concept of adaptive Huffman
coding [4] using ternary tree with V Algorithm. All of
these methods are defined- word schemes that determine
the mapping from source messages to code- words on
the basis of a running estimate of the source message
probabilities. The code is adaptive, changing S0 as 1o
remain optimal for the current estimates. In this way, the
adaptive Huffman codes responds to locality, in essence,
the encoder is learning the characteristics of the source.
The decoder must learn along with the encoder by
continually updating the Huffian tree so as to stay in
synchronization with the encoder. Here we are given the
concept of error detection and error correction. And the
main point is that, this thing is only beneficial in
TERNARY TREE neither in binary tree nor in other

possible trees.
2. Wny WE Use Aparmive Hurrman CobING

The key idea is to build a Huffman tree that is optimal
for the part of the message already seen, and to recognize
it when needed, to maintain its optimality. Adaptive
Huffman [8] determines the mapping to code words using

a running estimate of the source symbols probabiiitieé.

1. It gives effective exploitation of locality. For
example suppose a file starts out with the series of
a character that are not repeated again in the file. In
static Huffman coding that character will be low
down on the tree because of its low overall count,
thus taking lots of bits to encode. In adaptive
Huffman coding, the character will be inserted at
the highest leaf possible to be decoded, before
eventually getting pushed down the tree by higher

frequency characters.

1414

A New Approach For Adaptive Huffman Coding

2. Only one pass over the data,

3. . Owerhead, in static Huffman, we need to transmité[

someway the model used for compression that is
the tree shape. This costs about 2n bits in a clever
representation. As we will see, in adaptive schemes

the overhead is nlogn,
3. Coping TecHNIQUE
3.1 Algorithm Vitter using Ternary Tree

V algorithm in Adaptive Huffman coding [7] uses binary

tree, 1s extended to ternary tree,

In this section we discuss the one-pass algorithim V using
ternary tree. The two main disadvantages of static
Huffman’s algorithm are its two-pass nature and the
overhead required to transmit the shape of the tree. In
this paper we explore alternative one-pass methods, in
which letters are encoded “on the fly”. We do not use a
static code based on a single ternary tree, since we are
not allowed an initial pass to determine the letter
frequencies necessary for computing an optimal tree,
Instead the coding is based on a dynamically varying
Huffman tree. That is, the tree used to process the t+1 st
letter is a Huffrman tree with respect to mt the sender
encodes the t+1 st letter ai in the message by sequence
00, 01 and 11 that specifies the path from root to leaf.
The receiver then recovers the original letter by the

corresponding traversal of its copy of the tree. Both

++ sender and receiver then modify their copies of the tree

- before the next letter is processed so that it becomes a

Huffiman tree p (t+1),

: p=a,.a ... &,

' The first t letters in the message

The adaptive Huffman algorithm of Vitter {Algorithm

V) incorporates two improvements over al gorithm FGK.

It runs in real time and is optimum in our model of one-
pass Huffman algorithms. There are two motivating

factors in its design:-

1. The number of mter_changes(Ts) should be bounded
by some small numbe'r. The number of interchanges
in which a node is moved upward is limited to one.
This number is bounded in algorithm FGK only by
L/2 where L is the length of the codeword for a t+1

when the recompilation begins.

2. The dynamic Huffman tree should be reconstructed
to minimize not only Zwjlj but also TI and max
{4}, which intuitively has the effect of preventing

a lengthy encoding of the next letter in the message.
Key Points Used in Vitter Algorithm

1. Swapping of nodes during encoding and decoding

is onerous.

2. In FGK algorithm the number of swapping
(considering a double cost for the updates that move
a swapped node two levels higher) is bounded by
[dt/2], where dt is the length of the added symboi
in the (ﬂd tree (this bound require some effort to be

proved and is due to the work of Vitter)

3. InalgorithmV, the number of swapping is bounded
by 1.

These two objectives are reached through a new

numbering scheme called implicit numbering.
Implicit Numbering

O One of the key ideas of Algorithm v is the use of 2
numbering scheme for the nodes that is different
from the one used by algorithm FGK. We use an
implicit numbering in which the node numbering
corresponds to the visual representation of the tree

that is the nodes of the tree are numbered in

Karpagam Jes Vol. 4 Issue 2 Jan. - Feb. 2010

increasing order by level; nodes on one level are
numbered lower than the nodes on the &xt higher

level,

B Nodes on the same level are nimbered in increasing

order from left to right.

1 The node numbering used by algorithm FGK does

not correspond to the implicit numbering

Invariant

0 The ke.y to minimize the other kind of interchanges

is to maintain the following invariant

4 For each weight w, all leaves of weight w precede
(in the implicit numbering) all internal nodes of

weight w.

0 The interchanges, in the algorithm V are designed
to restore implicit mumbering, when a new symbol

is read, and to preserve the invariant.

3.2 Algorithm V

1. The nodes of the tree are numbered in increasing
order by level; nodes on one level are numbered

lower than the node‘s on the next higher level.

2. Nodes on the same level are numbered in increasing

order from left to right.

3. If this numbering is satisfied, certain types of

updates cannot occur.

1416

4. The key to minimize the other kind of interchanges
is to maintain the following invariant for each
weight w, all Jeaves of weight w proceed (in the

implicit numbering) all internal nodes of weight w.

5. Theinterchanges, in the algorithms V, are designed

to restore implicit numbering, when a new symbol

is read, and to preserve the invariant.
Example 1

Construct the V tree for the message (e eae de eabe eae

dcf) with ternary tree.

Step 1

A New Approach For Adaptive Huffman Coding

. 5 . 9
! 2 3 2
3 4
0 1 2 o 1 1
Step 5 Step 9
10
6
; 2
3 3 3 5
. 0 1 ? 0 1 1
Step 6 Step 10
1
3 3 5
0 1 2
Step 11
7
5
2 2 3
o 1 1
Step 12

1417

Karpagam Jes Vol. 4 issue 2 Jan. - Feb. 2010

0 1 1
Step 16
17
i 8 9
2 3 4
0 I 1
Step 17

1418

A New Approach For Adaptive Huffman Coding

19 _
1
8
3 3
(] l i
Step 19
20
7 8
2 2 3
of [1
Step 20
21
13
3 5 5
1 2 2
0 1 1
Step 21

1419

3.3 Coding Technique For Ternary Tree

In Huffman Coding [12] the main work is to label the
edges. Huffman Coding uses a specific method for
choosing the representation for each symbol, resulting
in a prefix - free code (some times called “Prefix Codes™)
i.e. the bit string representing some particular symbol is
never a prefix of the bit string representing any other
symbol that expresses the most common characters using
shorter strings of bits that are used for less conmmon
source symbols. The assignment entails labeling the edge
from each parent to its left child with the digit 00, and
the edge to the mid child with 01 and edge to the right
child with 11. The code word for each source letter is
the sequence of labels among the path from the root to
the leaf node representing that letter. Only Huffman
Coding is able to design efficient compression method
of this type. Huffman Coding is such a widespread
method for creating prefix-free codes that the term
“Huffman Code” is widely used as synonym for “Prefix
Free Code”. We will give a coding using variable length
strings that is based on the Huffman Tree T for weighted

data item as follows: -

The Huffman Code [13] for Temnary Tree assigns to each
external node the sequence of bits from the root to the
node. Thus the above Tree T determines the code for the

external nodes

Karpagam Jcs Vol. 4 Issue 2 Jan. - Feb. 2010

Table : 1
G: 00 I: 6100 otk
F: 0111 D: 1101 A: 1111
E: 110000 | B:110001 | H: 110011

This code has “Prefix Property” i.e. the code of any item
is not an initial sub string of the code of any other item.
This means that there cannot be any ambiguity in

decoding any message using a Huffmman Code.

3.4 Compression Ratio (Fixed Length Cede Cerses
Huffman Length Code)

For example no. 1,

The number of fixed length code word bits= 4 bits (here
in ternary tree, each symbol is represented by two bits,
therefore for 7 symbols, number of fixed length code

word bits are .4)
Average codeword length: -
Lave=1ipl+12p2............... +inpn

Lave= is a measure of the compression ratio.

Word | Probability

e 821 = .38095
a 321 |=] .14285
sp 5721 | = 23809
b 1721 |=| .04761
d 2/21 = 09523
f 1/21 = .04761
c 1721 {=| 04761

Lave=2 x 38095 + 4 x 147285 + 4 x 23809
+ 6% .04761 + 6x .09523 + 8 x 04761
+ 8 % 04761

=, 7619+. 5891+, 9523+, 2856+, 5713+. 3808+, 3808
=39218

In the above example, _

7 symbols =4 bits (fixed length code representation)
Lave {Huffman) = 3.9218 bits

Compression ration = 4/3.9218= 1.02

3.5 Error Detecting & Error Correcting

When this coding technique is applied in the
message using ternary tree, then the number of
transmitted bits is always even in number that is

very beneficial in error detecting.

Error occurring during transmission is detected by

following cases: -

Case 1: Number of bits changed by addition or

deletion of a bit.
Case 2: Prefix property is violated

Case 3: Sequence of bits does not exist as described

in the labeling of edges-in the coding technigue.

If one of the cases occurs, accordingly can be

corrected.

While In binary tree, the number of transmitted bits
for a message can be either odd or even; therefore
there is a difficulty in error detecting and in error

correcting,

This thing is beneficial only in TERNARY TREE

neither in binary iree nor in other possible trees.

3.6 Benefits Of Vitier Ternary Algorithm Over Vitter

Binary Algorithm

Here, we are using message “e eae de cabe eae def” and

then point out some comparison.

1420

A New Approach For Adaptive Huffman Coding

Ternary Adaptive Vitter Binary Adaptive
Vitter &
The FGK tree for the The FGK tree for the

message " ¢ eae de eabe eae

def " in ternary form is

message " e cae de
eabe eae def " in

binary form is

Number of Nodes (Internal +

External) in this = 12

Number of Nodes

(Internal + External)

in this > 15

Number of internal nodes in

this = 4

Number of internal

node nodes = 7

Path length 2 45

Path length 57

Height of the tree -> §

Height-of the tree >3

Memory space usedus ing
sequential representation less

as compared to Termary

Representation

Memory space used
using sequential
representation more as

compared to Binary

Representation

Memory Space using linked
list representation less as
compared to Ternary

Representation,

Memory Space using
finked fist
representation more as

compared to Binary

Representation,

Here the number of
transmitted bits is always
even in number i.¢. it is very

beneficial in error detecting.

This thing is beneficial only
in TERNARY TREE neither
in binary tree nor in other

possible trees.

Here the number of
transmttted bits for a
message can be either
odd or even; therefore
there is a difficulty in
error detecting and in

error correcting,

Searching fast

Searching slow.

4. CoNCLUSION

We can conclude that representation of Huffman Tree

using Adaptive Ternary FGK Algorithm is more

beneficial than representation of Huffman Tree using

Adaptive Binary FGK Algorithm in terms of number of

internal nodes, Path length, height of the tree, in memory

representation, in fast searching and in error detection

& error correction,

Karpagam Jcs Vol, 4 Issue 2 Jan. - Feb. 2010

(1]

[2]

(3]

(4]

(6]

7}

(8]

(91

{10]

REFERENCES

Bentley. I. L, Sleator. D.D, Tarjan R. Eéld WEL

V. K, “A locally adaptive data compression
scheme”, Commun. ACM 29, 4, 320-330, Apr.
1986.

David A. Huffman, “profile Background story:
Scientific American”, PP, 54-58, Sept. 1991.

Elias. P, “Interval and recency-rank source coding:
Two online adaptive variable-length schemes”,

IEEE Trans. InJ Theory. To be published.

Faller. N, “An adaptive system for data
compression”, In Record of the 7th Asilomar
Conference on Circuits, Systems and Computers,

PP, 593-591, 1913.

Gallager . R. G, “Variations on a theme by
Huffinan ", ITEEE Trans. Inj Theory IT-24, 6, 668-

674, Nov.1978.

Huffman.D.A, “A method for the construction of
minimum redundancy codes”, In Proc. IRE 40,
1098-1101, 1951.
Knuth. D.E, "“The Art
Programming ", Vol. 1: Fundamental Algorithms,
3" edition, Reading, MA: Addison-Wesley,

PP. 402-406, 1997.

of Computer

Knuth. D. B, “Dynamic Huffman coding”, I.
Algorithms 6, 163-180, 1985,

Mcmaster. C. L, “Documentation of the compact
command”, In UNIX User’s Manual, 4.2 Berkeley
Software Distribution, Virtual VAX- I Version,
Univ. of California, Berkeley, Berkeley, Calif,,
Mar. 1984,

Pushpa .R. Suri and Madhu Goel, “Ternary Tree
& A Coding Technique”, TJCSNS International

Journal of Computer Science and Network

Security, Vol.8, No.9, October 2008.

Pushpa R. Suri and Madhu Goel, “Ternary Tree &
FGK Huffman Coding Technique”, IJCSNS

(1]

International Journal of Computer Science and

Network Security, Vol 9, No.1, January 2009.

{12] Rolf Xlein, Derick Wood, “on the path length of
Binary Trees”, Albert-Lapwings University at
Freeburg, 1987.

Rolf Klein, Derick Wood, “On the Maximum Path

Length of AVL Trees”, Proceedings of the 13"

[13]

Colloguium on the Trees in Algebra and

Programming, PP. 16-27, March 21-24,1988.

[14] Schwartz. E. S, “dn Optimum Encoding with
Minimum Longest Code and Total Number of
Digits”, If: Control 7, 1, 37-44, Mar. 1964.

[15] Tata Mcgraw Hill, “theory and problems of data
structures”, Seymour lipshutz, tata McGraw hill

edition, PP. 249-255, 2002.

Thomas H. Cormen, Charles e. leiserson, Ronald

1. rivest, and Clifford stein, 2001.

[16}

Author’s Biography o

Dr. Pushpa Suri is a reader in the department of computer
science and applications at Kurukshetra 'Uni\«;e'rsity
Haryana India. She has supervised a number of PhD
students. She has published 2 number of research papers

in national and international journals: and conference

proceedings.

Mrs. Madhu Goel has Master’s
degrees {University Topper) in
Computer Science. At present, she is

pursuing her PhD as University

Research Scholar in Computer
Science. Her area of research is Algorithms and Data
Structure where she is working on Ternary search tree

structures.

1422

