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Abstract

Equalization is necessary in digital communication
system to mitigate the effect of intersymbol interference
(1SI) and other nonlinear distortions. In order to reduce
complexity the application of generalized neuron (GN)
to adaptive channel equalization in' a digital
communication system with duo-binary signals is
investigated. It uses only a single GN thus there is no
problem of selection of initial architecture of the neural
network giving optimum performance. Low complexity
and fast convergence characteristic of GN based
equalizer make it suitable for real time application. Bit
error rate (BER) over a wide range of signal to noise
ratio (SNR) is noted. It has been shown that BER

performance approaches to optimal Bayesian solution.
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1. INTRODUCTION

BAND-limited high speed digital transmission suffers

from ISI and various other noise sources. Nonlinear
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distortion is a significant factor hindering further increase
in attainable data rate. Equalization is necessary at the
receiver to overcome these channel impairments [1].
Since communication charnels are time varying in nature
hence adaptive equalization is required. Figure 1 shows
the simplified model of 2 discrete time transmission
model of a digital communication system. Figure 2 shows
the non-linear channel model. NL represents the

nonlinearities involved.

s{k], is the original sequence to be transmitted, where k
is any time instant. The block channel represents the
combined response of the transmitting filter, transmission
media and RF/IF sections of the receiver filter, glk], is
the additive white Gaussian noise (AWGN) that corrupts
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Figure 1: Simplified Block Diagram Of Discrete
Time Transmission Model
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Figure 2 : Nonlinear Channel Model
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the channel output y’fkJ. The channel output y’fkJ

corrupted with AWGN g/%/ forms the input to the

equalizer yfk]. The equalizer at the receiver makes an
estimate s°/k-d], of the expected delayed transmitted
sequence sfk-d], from the knowledge of channel output
yfk], present and past values. Where d, is equalizer delay.
The difference in the estimated sequence and expected

delayed transmitted sequence is minimized during

training of the equalizer periodically.

Band-limited communication channels are generally

modeled as digital FIR filters represented as

H(z)= ZN: hiz™

(1
‘Where, N is the channel order.
The channel output vector can be represented as
y&) = [y(®), yk-1), ... yl-m+ I @)

Where, m is the order of equalizer.

Conventionally, equalization has been considered as a
deconvolution problem, where a finite impulse response
filter (FIR) based linear transverse equalizer (LTE) is
used to invert the channel response and its parameters
are adjusted using minimum mean square error (MMSE)
criterion [1]. Least mean square error (LMS) algorithm
is mostly used to tune the tap weights of the filters to
minimize error iteratively, Linear filter based equalizers
performance degrades under severe nonlinear distortion
conditions. The maximum likelihood sequence estimation
{(MLSE) [2] requires batch processing of the entire
received sequence, gives nearly optimum results but its
' very fn’gh computational complexity restricts its use hence
practically not suitable and makes symbol by symbol
detection as a good option. The equalization can be

treated as a classification problem where, the job of an
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equalizer is to assign the received signal to one of the
signal consteflation. The optimal selution (least
misclassification) to this classification problem is given
by Bay’s theory. The channel input vector for an m" order

equalizer is given by

sk} = f5(8), stk-1), s(-2), .. ..sm+1-N)JT - (3)

And can take N5 = 2¥= _ different values.

Different, Ns possible values of noiseless channel output

vector is given by

YE) = Oy Dy —m+ DT (4)
Which, is to be divided into two classes

Y ='W | sthd) = 1)

¥ o= sthed) =-1) )

y(k) is a random process having conditional Gaussian
density functions centered at each of the ¥ and ¥;,
where 1€ {1,2 Ns/23,

If the transmitted sequence s(k) is an independent
identically distributed (i. i. d.) and equi-probable binary
sequence with values {+1, -1}. For this sequence the

optimal solution to this classification task is given by .
Bay’s theory as {3]

+1 fp (k)20

s'(k —d) =sgn(f; (y(k)) = {_1 F3((k)) <0

©
) RoRAl
fz(k)= z‘_:eXP —T)
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Where O',f is the variance of the AWGN. Goo

equalizers for this channel will than approximate tﬁ{:
function given by (7) as a decision boundary for
classification, which is a nonlinear function. Bayesian
equalizer provides the lower performance bound for
symbol-by-symbol equalizers in terms of probability of
error or BER. Nonlinear mapping capability of artificial
neural network (ANN) and fuzzy logic make them a
suitable choice for nonlinear equalization. Several

equalizers are developed in the past to address this

problem using ANN and fuzzy logic. Some of them are

reported in [3-11]. Such structures usually outperform

LTE and also compensate for nonlinearities in the channel
with varying degree of success. ANN based equalizers
work even if the channel is unknown while fuzzy
equalizers require that the channel must be known a prior.
The major problem of such equalizers is the high
complexity and computational requirement which can
further be reduced. An integration of ANNs and fuzzy
set theoretic approach will offer advantages of both the
techniques.

The common neuron model has been modified to obtain
a generalized ncuron (GN) model using fuzzy
compensatory operators to reduce the complexity of the
structure and overcome the problemsl' such as initial
selection of architecture of neural network giving
optimum performance for complex function mapping,
which affects the training time requirement and also fault
tolerant capabilities of the ANN [12]. This neuron
provides flexibility and fault tolerant capability to cope
up with the nonlinearities involved in the system. GN
has been used successfully for power systems problems
[13-14]. Application of this significantly reduced
complexity GN as a channel equalizer in digital

communication systems is demonstrated in this paper.
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There have been introduced many different nonlinear
devices models and channel models, so a unitary
comparison between all known equalizers is difficult 1o
be done. Bayesian solution provides the minimum
average BER achievable for symbol decision and
indirect-modeling equalizer structure. It has been shown
that BER of proposed equalizer outperforms
conventional LTE LMS equalizer approaches to that of
optimal Bayesian equalizer under linear and non-linear
conditions. The proposed equalizer provides acceptable

training and BER performance.
2. GENERALIZED NEURON MODEL

Existing conventional neuron model generally uses an
aggregation function and its transformation through an
activation function. Generally summation is used as
aggregation and sigmoid, radial basis, tangent hyperbolic
or linear limiters etc. as activation fanction. Generalized
neuron structure shown in figure 3 is developed by
modifying the conventional neuron structure using fuzzy
compensatory aggregation operators along with fuzzy
activation functions. Aggregation operation in GN is
performed partly by sum (Z,) and partly by product (IT)
functions. Bipolar sigmoid function (f1) is used as a
transformation function for X, part and Gaussian function
(f2) is used as transformation function for I part of the
structure. The final output is the summation of the z,
output and IT output with weight sharing as W and (7-W)
respectively. The input output relationship for GN is

given by following expressions,

Let ¥ represents the input vector to the equalizer which
is y{k] as given by equation (2).

The Z, part output of GN  is calculated as

Os=2*s out—1

(®
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Figure 3 ; Structure of GN
As , is the gain scale factor for I, part of GN,
sum_s = ZWSEYHXOS
Xos, is the bias to I, partand Wi, is the weight vector.
The IF part output of GN is calculated as

Op=e~ 22 * prod _r° (10)

Where, Ap is the gain scale factor for IT part of the
GN,
prod _p= HWpiYi * Xop
Xop, is the bias to II part and #pi, is the weight vector.
The final output is
Oi=W*0Os +(1-W)*0Op 1y
Where, I is the weight vector. O, is the estimated outpﬁt
vector s 'fk-dJ.

3. LearninG Avcoritam OF Gn
Back propagation learning algorithm is used to train the
netw_ork. '

Following steps are to be followed to train the network

till the mean square error reaches to minimum.

Step 1 Calculate the output for each pair of input using
equation no. 8, 10 & 11,

Step 2 Calculate the error using the following relation
Ei = (Oi-Di) (12)
Where, Di is the desired output sfk-dj.

Step3 Calculate the mean square error for

CONvergence as
E=05+) Ei*/N (13)

Where, N is the total number of training patterns and a
multiplication factor of 0.5 has been taken to simplify

the calculations.

Step 4 Different weights of the networks are updated
as following
(a) Weights associated with E1 and 2 part of the GN
areupdatedas W{k)= W(k-1)+AW (14)
Where, AW =n68,(0s~Op)+aW{k-1)
and 8, = Y (0i-Di)
(b) Weights associated with inputs and Z1 part of the
GN are updated as Wsi(k)= Wsi(k ~1)+ AWsi
Where, AWsi= ndsYi+ a Wsi(k —1)
And, &= 8, (1-Os)*(1+ Os) (15)
(c) Weights associated with inputs and IT part of GN are
updated as Wpi(k)= Wpi(k - 1)+ AWpi
Where, AWpi=nd Yi+aWpi(k-1)
and
5, =2.6,(1-W)*(=2* prod _p)*Op (16)

Where, 77is the learning rate and ¢ is the momentum
factor, whose values ranges between 0 and 1 determined

by trial and error.
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4. StMuLATION RESULTS AND DISCUSSION *’/

Following channel model is used to sinmlate the channe.
H(z)=0.3452 + 0.8704 z'+0.3482 z? 17
For linear channel NL=0, y’fk]= x/k] (18)
The nonlinear channel, NL=1 is modeled to nonlinearity
introduced due to saturation of amplifiers used in the
transmission systems as

YK = tanh (x[k]) + g[k]

X(2)
5(z)

=0.3482 + 0.8704z7" + 0.3482z72 (19)

NL = 2 is modeled to random nonlinear distortions as
Yk = x[k] + 0.2 X*[k] — 0.1 k] +qfk] 20
Fourth order, m=4 equalizer with delay, d=1 is simulated.

Channel equalizer is implemented using GN. For training
a random sequence of 1000 duobinary signals of {1, -
1}, equi-probable and independent identically distributed
(i-i.d.) is generated and passed though the channel.
Norlinearities and white Gaussian noise are further
introduced. Initial weights are generated randomly. This
generated sequence is used to train the equalizer with
back propagation learning algorithm for 300 epochs to
obtain minimum mean square error. Values of 7 and o

are chosen as 0.0015 and 0.5 respectively.

Fig (4) shows the convergence characteristics for the
three nonlinear channe! models for SNR=16 dB. The
chafacteristics show fast and smooth convergence of
error for all the three nonlinear channel models and make

it suitable for real time applications.
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Figure 4 : Convergence Characteristic of the
Equalizers For The Three Channel Models At
SNR=16 DB

The trained equalizer is tested using separately generated
duo-binary, equi-probable and i.i.d. sequence with
nonlinearities and white Gaussian noise added. The
results are averaged over 10 repetitions using testing
sample of size 10000 each. SNR is varied between 2-20
db in steps of 2 db to ascertain performance under
different noise conditions. Fig (5-7) shows the plot of
BER performance of channel for the channel with NL=0,
NL=1 and NL=2 respectively which clearly shows the
capability of the GN based equalizer to reconstruct the
received destroyed signalé. The BER performance is also
compared with conventional LTE LMS equalizer and
optimal Bayesian solution. BER of the proposed
equalizer outperforms conventional filter based LMS
equalizer and approaches to Bayesian performance even

when the equalizer is operated under severe nonlinearity

and low SNR conditions. Superior performance of GN

based equalizer over linear LMS equalizer for all the
three channe] models is quite evident from the figures 5-
7. There is severe BER performance degradation in the
conventional LMS equalizer as the severity of
nonlinearity increases while the BER performance of the

GN based equalizer is quite similar to each other for both
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the linear and nonlinear channel models and approaches

to optimal Bayesian solution especially for Severe

nonlinearity NL=2 through out wide variation of SNR.
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Figure 5 : BER performance of the Channel
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Figure 6 : BER Performance of the Channel

. log10BER)

L ! L
12 14 1% 18 20
SNRindB

L L L "
2 4 ] 8 10

Figure 7 : BER Performance of the Channel with
NL=2
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5. ConcLUSION

Computationally efficient GN based equalizer is
described. There is no problem of selection of initial
architecture of neural network as only a single GN is
required. No hidden layer is required. Reduced
complexity and much simple design procedure is
fequired. Fast convergence of error during training is
achieved because it has a much smaller mumber of
weights to be adjusted hence suitable for real time
applications. The simulation results show that this neuron
provides flexibility and fault tolerant capability to cope
up with the nonlinéarities involved and that proposed
equalizer BER performance outperforms conventional
filter based LMS equalizers and approaches to optimal
approaches to optimal Bayesian solution for both linear
and nonlinear conditions. GN based equalizers offer the
advantages of both reduced complexity and good
acceptable BER performances hence attractive
alternatives for designing equalizers for digital

communication systems.
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