. Ambedkar

Karpagam JCS Vol 2 Issue & September. - October. 2008

Managing Software Risk A Lifecycle Approach

‘R. A. Khan', K. Mustafa?

ABSTRACT

In a technology driven area of study, software project
risk management has become relevant over time and
indicates the importance and complexity of the issue they
are addressing. The major objectives of software risk
management includes identifying, addressing, and
eliminating potential elements of risk before they become
either threats to successful software operation or major
sources of software rework. In order to develop risk free
software, it appears to be worthwhile to incorporate risk
management within the development process as part of
project management. A process of risk management
consisting of six phases including identification, analysis,
prioritization, planning, resolving and monitoring has
been introduced in this paper. In order to prevent project
runaways, meet deadlines, stay within the project's budget,
and simultaneously maintain the product's high quality
standards, it is essential to timely identify, ana]yzé and
mitigate risks associated with each and every phase of
software development life cycle. For that, a framework
has been proposed to integrate risk within the

development life cycle.

1. INTRODUCTION

No doubt, for the successful completion and maintenance

of software projects, there is a need for effective software

Babasaheb - Bhimrao
Lucknow, UP, India.
e-mail : khanraees(@yahoo.com

'Department of IT,

University,

*Department of Computer Science, Jamia Millia Islamia,
New Delhi, India e-mail : kmfarooki@yahoo.com

241

project managers. The long proclaimed ineffectiveness
of software development projects to mainfain their
schedule, cost, and quality, continues to plague most
development projects [1, 2, 3]. It has been observed that
over half of all software development projects are
considered a failure with respect to their cost and schedule
f1, 4]. In order to mature the development process in_terms
of cost, effort and time, an extensive ¢ffort is now being .
made by many of the software industries [1}. In the past
decade much effort has been devoted to the application
of risk management techniques in the field of software
development. Researchers and practitioners ha\-Je focused
on the identification, analysis, and mitigation of the
dangers that prevent projects from fulfilling requirements

on time and under budget.

Software plays an important role more or less in each
and every aspect of human life. But, at the same
movement, it has been the most troubling technology of
the 20th century [5]. Generally, it has been observed that
most of the software projects have the highest pfobabi]ity
of being cancelled or delayed of any known business
activity. Software projects often display excessive error
densities and low levels of reliability on deployment.
Because of its highly unreliable and disastrous nature, it
is achieving a very bad public reputation. A careful
implementation of risk analysis and mitigation may reduce

the probability of major disasters [6].

Risk is the possibility of suffering harm or loss which
causes danger. In a technology driven area of study,

software project risk management has become relevant

Kampagam JCS Vol. 2 Issue & Sepiember, - October. 2008

over time and indicates the importance and complexity
of the issue they are addressing. Not only has the issue of
software risk management been researched fér more than
two decades now, but, as years go by, it appears to have
attracted the attention of an increasing number of
researchers [7). It is evident from the literature survey
that several aspects of software project risk managément
have been studied using a variety of approaches. It has
been observed that the risk management of software
project has been an area of research since 1970' and
many of academicians and industry practitioners are
producing their views on the same [8]. In 1999, a survey
conducted on 34 empirical studies on software risk
management published during 1978-1999, reveals that
the area is enrich in terms of approaches, ranging from
action research and case studies to survey and laboratory

experiments [9].

This paper is organized as follows: Section 2 infroduces
risk management including the Barry Boehm's risk factors
in managing software projects. In section 3, a risk
' manlagerr'lent process has been introduced. Sectipn 4
proposes a framework to integrate software project risk
within the development life cycle. Contextual findings

and conclusions are made in section 5.

2. Risk MANAGEMENT

Software intensive development projects still fail to be
delivered a quality end product on time and within
budget. One area of conceniration in software project
~ management that has developed to solve these problems
is Risk Management, which attempts to assess and then
control the risks that precipitate them [10].. Risk is the
possibility of suffering loss which. describes the impact io
the project in the form of diminished quality of the end

product, increased costs, delayed completion, or ouiright

842

project failure. Risk is uncertainty or lack of complete
knowledge of the set of all possible future events. it can
be classified as either favorable or unfavorable future

events [11].

Understanding thel internal and external project
influences that can cause project failufe is called risk
management. It consists of risk assessment and risk
control. Risk assessment addresses whether the software
intended to use is good enough for the task at hand. Once
the project plan is built,l a risk analysis will be performed
on it. The result of the initial risk analysis is a risk plan
that is being reviewed regularly and adjusted
accordingly. The main purpose of risk management is to
identify and handle the uncommon causes of project

variation.

Dangers in the new and emerging field of software
engineering must often be learned without the benefit of
lifelong exposure, An approach involving studying the
experiences of successful project managers as well as
keeping up with the léading practitioneré and researches
in the area is required. The major objectives of software
risk management includes identifying, addressing, and
eliminating potential elements of risk before they
become either threats to successful software cperation or
major sources of soﬁw'are rework. Barry W. Boehm, .in
his article Software Risk Management: Principles and
Practices listed out following factors associated to risk in

managing software projects [121.

Personnel] Shortfalls
® Unrealistic schedules and budgets

Developing the wrong functions and properties
Developing the wrong user interface
Gold-plating

Continuing stream of requirements changes

Managing Software Risk- A Lifecycle Approach

Shortfails in externally furnished components

Shortfalls in externally performed tasks
~Real-time performance shortfalls

Straining computer-science capabilities

3. Risk MANAGEMENT PROCESS

In spite of plenty of work in the area of software project
management, it has been commonly accepted by the
researchers and industry professionals that the software
development projects still fail to deliver acceptable
systems on time and within budget. It has also been
revealed from the survey report that pro-active planning
and considering risk factors may assist in reducing the
occurrence of failure. It is better to chock out an accurate
and efficient plan and to identify the risks within the
development process in ordt;r to timely predict and
mitigate the flaws, rather than waiting for problems to

occur and then trying to react. Risk management has

been proposed as a solution to provide insight into
potential problem areas and to identify, address, and

eliminate them before they derail the project [10].

The objectives of software risk management are to
identify, address, and eliminate software risk items
before they become threats to success. A good project
manager is supposed to be a good manager of risk. In
order fo achieve success in software development
strategy, it is recommended that the development process
should incorporate risk management as part of project
management [6]. Figure 1 depicts a process of risk
management consisting of six phases including
identification, analysis, prioritization, planning, resolving
and monitoring. Following section describes each phase

and its activities in detail.

=

Monitor

- -

Figure 1: Software Project Risk Management Process -

843

Karpagam JCS Vol. 2 lssue 6 September. - Cctober, 2008

3.1 Identify

Risk may be defined in terms of risk exposures, risk
impacts or risk factors. Identifying risk is one of the
. biggest challenges in managing software project. It forms
the basis for managing risks in order to deliver reliable
and risk free system in time and budget. The purpose of
idehtifying risk is to consider the risks before they
actually become problematic and to incorporate this
information into the project management procesé; It hag
been observed that various risk items have different
imf:acts, and therefore, specific project risk items are
required to be identified in advance for the successful

completion of software project.

3.2 Analyze

After identifying risks, it is to be critically examined by
the experts in order to propose é solution to overcome
the identified problem. Analyzing risk includes
determining the probability of loss to be incurred. The
- purpose of analysis is to convert the data into decision-
making information. The cost associated with 'each
identified risk items is examined. This will help
managers to reduce the budgét overhead. In time
identification and analysis of software project risks
assists software development team to control and

manage software under development.

3.3 Rank

No doubt, identification and analysis of risk may
~ produce a long list of associated items with varying
impacts on software project. Therefore, there is a need to
prioritize the identified risk items in ofdef to mitigate
thetn accurately and in time. Risk prioritization produces
a ranked order of risks identified and analyzed. As a

result, the risk will be handled according to their ranks.

844

3.4 Plan

It is well accepted fact that planning is a key to success.
Therefore, an appropriate risk management plan is to be
chocked out in order to address the identified risks
according to their priérities. The plan outlines the way to
mitigate the risk items to control the overall risk of the
software under development. This also tells how to
integrate individual risk plans into overall project

management plan.

3.5 Execute

After planning, the very next step is to execute the set
plan. Resolution of risks executes the risk management
plan. As a result the actions or activities implemented
either eliminate or resolve the risk involved with the

particular risk item.

3.6 Monitor

This is the last and very important step in risk
management process. After the risk is idefxtifie'd,
analyzed, prioriti_zed., plammed, and resolved, a corrective
action will be taken to monitor the progress of the
project in the light of risk management. It is the most
challenging task of the process of managing risk of
software project, which requires a skilled manpower to
accurately monitor the activities performed during risk

mitigation.

4. SOFTWARE PROLIEC’F Risk WitHIN THE DEVELOPMENT
Lire CYCLE ' |

Acquisition, development, and deployment of software
projects continue to suffer large cost overruns, schedule
delays, and poor technical performance. Ample literature
exists on the process of risk assessment and
management. The majority of these literatures, however,
are devoted to theories and methodologies that have not

been subjected to the ultimate test of practice. There is a

Managing Soﬁwore'R!sk- A lfecycle Approach

need for comprehensive framework to be developed,
deployed and tested for the release of risk free software
project. It has been observed that cost generally
increases with the phases of software development life
cycle for the impact of errors shown in figure 2.
Therefore, it is well justified to make an effort to fix the
bugs and errors early in the development life cycle in

order to produce safe software.

Time is one of the critical factors contributing to risk.
Therefore, an early act before a source of risk evolves
. into a major crisis is highly recommended. It has been
observed that being reactive in risk mitigation and
control rather than proactive in risk prevention and
control is at the heart of good risk management. Software
project risk assessment is not an mdependent activity to
be carried out at a specific phase or time. Rather, it
should be integrated within the development life cycle in
ordér to enable engineers, managers, and other dec'ision
makers to identify, sufficiently early, the risks associated
with software acquisition, development, integration, and
deployment. In order to prevent project runaways, meet
deadlines, stay within the project's budget, and
simultaneously maintain the product's high quality
standards, it is essential to timely identify, analyze and
mitigate risks associated with each and every phase of
software development life cycle. This will help the
management to adapt appropriate mitigation strategies
on a timely basis. Integrating risk within the software
development life cycle provides a structured process,
suﬁported by methods and tools, for identifying,
analyzing, and mitigating the uncertainties encountered

in a specific software engineering effort.

845

4.1 Safe Requirement 6]

Requirement specification phase collects cofnplet'e,
unambiguous and understandable requirements from the
end-users, and quickly stabilizes the requirements
specified. The major risks associated with this phase are
that the wrong software will be developed, the software
will not be completed on schedule, and the requirements
will not be testable. In order to minimize the risk,
customers requirements needs to explicitly, accurately
and completely stated. It is generally accepted that
poorly written and rapidly changing requirements are a
principal source of project risk, which may lead to
project failure. Depending solely on a customer's high
level requirements could lead to ambiguity and errors in

later life-cycle activities.

There are various attributes associated with the
requirement specification. Some of the pertinent
attributes have been identified and defined in table 1 [6).
Table 2 defines the metrics for the identified requirement

attributes,

No doubt, later in the life cycle changes are made to
requirements, the more resources needed to implement
them. It is also observed that late requirement changes
may cause a ripple effect, causing additional changes in
associated areas. The earlier in the life cycle the
requirements smbihze, the lower the risk. It is commonly
accepted fact that heavy cost and high risks are
associated with the changes made late in the life cycle.
Therefore, it is recommended to measure requirements

attributes and risk throughout the life cyle.

Karpagam JCS Vol. 2 lssue 6 September. - October, 2008

-
%
=1
&
7]
[
-
3
I 1 | I 1 >
% . . WO .
Qe A6
R
Development Phases P
Figure 2: Cost For Safe Development With Phases
Table 1: Software Requirement Specification Attributes
Attributes Definition
Ambiguity 1t is the property of being ambiguous.

Code posses the characteristics completeness to the extent that all its parts are present
and each part is fully developed.

Completeness

~ Understandability | Code posses the characteristics understandability to the extent that its purpose is
clear.

Volatility It is the measure of the state of instability.

Traceability It describes the ability of the mechanism and its design process to provide links
between requirement specification, design, code and test [13].

Table 2: Requirenient Metrics

Attributes Metrics Definition
Ambiguity WPM This metrics identifies ambiguous, optional and weak phases in
the requirement specification.
Completeness TBD, TBA, This metrics counts number of items not yet specified. It will
TBS measure the items to be added, to be determined, and to be
supplied. -
Understandability RDM This metrics measures the readability of requirement
documents.
Volatility VLM It counts the ratio of number of requirements changed to the
total number of requirernents.
Traceability TRM Traceability metrics measures the percentage of trace up and
down.

846

Managing Soffware Rlsk- A Lfecycle Approacﬁh

Figure 3: Integrating Risk Within The Development Life Cycle

4.2 Safe Design

Software design is the skeleton of any software, which
serves well as a communication medium between the
designer and the user on the one end, and act as a basis
for implementation on the other end. Design is an
important sfage spanning the whole software lifecycle,
not only for software development but also for re-
developing legacy systems [14]. It is concerned with
accurately mapping the requirements from the analysis
stage to logical models for implementation. The risk
assessment at software design heavily affects the risk
associated with the final products. Controlling and

improving software design risks have been one of the

important issues in software project risk management.
Because of unavailability of any standard formats for
complete and detailed design, metrics for this phase are

often ignored or omitted from risk evaluation.

Generally, design of software project is depicted by
control flow, data flow, or object—orie‘ntedffunctionai
structures. Since the design phase is the transition
between requirements and code, most of the attributes
and metrics identified for design overlap these two
phases. Table 3 shows design attributes and their
definition. Table 4 defines the metrics for the design

attributes,

Table 3: Design Attributes

Attributes Definition
Completeness Completeness defines the ltems left to be specified.
Coupling Defined as the interdependency of an object on other objects in a design.
Inheritance It is a measure of the ‘is-a’ refationship between classes.
Cohesion It is the high degree of internal relatedness of elements

847

Karpagam JCS Vol 2 Issue 6 September. - October. 2008

Table 4: Design Metrics

Attributes Metrics Definition
Completeness CMmP This metrics measures the number of modules, not at the lowest

level, whose structure is hot specified [6].

Coupling COM This metric count of the different number of classes that a class

: is directly related to.

Inheritance INH This metric count of the number of class hierarchies in the
design.

Cohesion LCOM This metric computes the relatedness among methods of a class
based upon the parameter list of the methods [computed as
LCOM, 1993 Li and Henry version] ‘

4,3 Safe Coding write test cases, it is highly demanded to develop an

The ultimate objective of software profeséionals is to
write code and document it in 2 proper manner by
keeping the projects requirement in mind, Writing code
- for a module is entirely dependent on the design details
from the design phase. This phase will form the baéis for
testing the module for which code has been written.

Therefore, in order to perform an optimal test and to

accurate, reliable, understandable, maintainable and
reusable code. Moreover, reusability of code also
depends on how the code has been written. Coding also
decides the maintenance cost of the developed project.
These two major attriButcs of code contributes to risks in
this phase. Table 5 shows the attributes in this phase, and

table 6 represents the metrics along with their definition.

Table 5: Code Attributes

Attributes Definition
Maintainability This is the ease of finding and fixing an error.
Reusability This defines the feasibility of reuse of software
Documentation Documentation defines adequacy and usability of internal and external
documentation.
Table 6: Code Metrics
Attributes Metrics Definition :
Maintatnability MBL This metrics counts the number of lincarly independent test
paths.
Reusability RUM It counts the number of calls to and from the modules
Documentation DOM This metrics counts the percentage of comments in code and
gives measures to readability of documents.

No doubt, a module with higher complexities is more
difficult to understand than a module with lower
complexity, as the complexity has a direct impaet on
maintainability and reusability, in general. Therefore,
risk is associated with the module to be maintainable and
reusable. Madules that have a high complexity for a few
numbers of executable statements may be of highest risk.
These modules are tending to be very difficult to
understand, increasing the difficulty of maintenance and

decreasing the possibility of reuse [6].

848

4.4 Safe Testing

Software development processes typically focus on
avoiding errors, detecting and correcting software faults
that do occur, and predicting reliability after
development. It is believed that software industry is ata
risk for a disaster of some kind, & disaster in which the
blame will clearly lay on the software. Many computer
systems are used in critical applications such as
spacecraft and defense systems. When lives and fortunes

depend on software, software quality and its verification

Managing Software Risk- A Lifecycle Approach

demand increased attention. Increasing emphasis placed
on high quality and customer satisfaction of software
‘calls for rethinking on the objectives and management of
testing. Software testing has an obvious role in finding
bugs, and less obvious role in evaluating reliability. Test
and evaluation methods and tools, in themselves, do not

guarantee effective testing and ensure high quality of

software. Testing is often considered an expensive and
uncontroliable process, which takes too much time, costs
more than planned, and offers insufficient insight of the
quality of the test process. Testing is a process of
planning, preparing, executing and analyzing the
difference between the actual status and the required
status [15].

Table 7 : Test Atiributes

Attributes Definition

Correctness Correctness of a piece of code is defined as the likely number of errors remaining in
that piece of code. :

Reliability Reliability of a module is defined as the likely number of highly critical errors
remaining in that module.

An effective testing locates and repairs faults in the
software, and also identifies error-prone modules in the
software under development. The associated risks are to
schedule the optimal test and produce reliable software.
A piece of code with more than the average number of

errors is supposed to be highly risky, and needs to be

investigated. Several attributes have been identified by
the various researchers and practitioners for testing a
piece of code, some of them are discussed in table 7.
Table 8 shows the metrics for each identified attribute in
testing phase [6].

Table 8 : Test Metrics

Attributes Metrics Definition

Correctness COR It counts the percentage of errors within a program that must be
removed.

Reliability REB It estimates the number of errors.left in the software that are of
high criticalify. :

4.5 Safe Implementation

This is not a specific phase, but starts with the
requirement specification and continues till release of
software project. The major objective of this phase is to
maximize the utilization and effectiveness of resources in
time and within project budget in order to carry out the
various activities during development [6]. Pertinent
attributes identified to accomplish the goals of
implementation are described in table 9, and their

corresponding metrics are defined in table 10.

Appropriateness of tasks assigned in a specific phase

will form the basis for risk at that particular phase. There

849

may be chance that the tasks for which resources are
being utilized during development do not match with the

expected or planned activity, leading to high risk.

Karpagam JCS Vol. 2 Issue 6 September. - Oclober, 2008

Table 9 : Implementation Attributes

Attributes

Definition

Resource
Utilization

This defines the utilization of resources to carryout various activities corresponding -
to different phases of software development life cycle.

Completion Rate

This defines the progress rate for completion of any activity during development.

Table 10 : Implementation Metrics

Attributes Metrics Definition
Résource REM It measures the resources utilized for completion of an activity.
" Utilization .
Completion Rate COR This counts the rate of completion of assigned activity.

5. CoNCLUSION

VSoftware risk management is the formal process in which
risk factors are systematically-identified, assessed, and
mitigated. The determination of the risk in a project
either due to external or internal causes is a major part of
project management. Risk analysis is a good general-
puriaose yardstick by which security effectiveness can be
| judged. It has been observed that roughly 50 percent of
security problems are the result of design flaws.
Therefore, performing a risk anaiysis at the design level
is an important part of a solid software security program.
Taking the trouble to apply risk-analysis methods at the
) design level for any application often yields valuable,
| business- relevant results. The process of risk analy'sis is
continuous and applies to many different levels, at once
identifying system-level vulnerabilities, assigning
probability and impact, and deterrﬂining reasonable

mitigation strategies,

Design, Coding and installation phases have the highest
project execution risk reduction potential. It has been
observed that the risk continues to be reduced and the

" value of the project investment smoothly increases.
REFERENCES

[11 D. Merrill, “Software Development Project
Managers with a Software Project Simulator,”

Master of Science Thesis Proposal, Department of

850

[2}

[3]

(4]

(71

Computer Science and Engineering Arizona State

University Training February 4, 1996.

B. W. Boehm, “Software Engineering
Economics ", Prentice-Hall, Englewood Cliffs,

New Jersey, 1981.

D. H.Kitson and S. Masters, "4n Analysis.of SEI

Software Process Results 1987-1991.",
Proceedings of the Fifteenth International
Conference on Software Engineering, PP. 68-77,

1693,

C. Jones, “dApplied Software Measurement:

. Assuring Productivity and Quality ", McGraw-Hill,

New York,.1991.

Jones, Capers, “Minimiéing the Risks of Software”,
May 1998.

A, D. Buttigieg, “Risk Managerﬁent in a Software
Development Life Cycle”, Web reference.
Available at: http://www.cis.um.edu.mt/~abut/

#Section%202

H. Barki, 8. Rivard, and J. Talbot,‘ “An Integrative
Contingency Model of Software Project Risk
Management”, Journal of Managemeﬁt
Information Systems / Spring Vol. 17, No. 4, PP.
37-69, 2001.

[8] M. Keil, P. E. Cule, K. Lyytinen and R. C.
. Schmidt, “A framework for identifying software
pr;oject risks ", Communications of the ACM, 41,

11, 76-83, 1998.

[

J. Ropponen, “Software Risk Management:

Foundation”, Principles and Empirical Findings.

- Jyviskyla: Jyviskyld University Printing House,

1999,

[10] R. Bechtold & P. McNeece, “Managing Risk With
Metrics: A Term Paper for the MJY Team, Software
Risk Management WWW SITE”, TP-PM Final, 21

© April 1997.

[11] Don Shafer, “Risk Software Risk: Why must we
' keep 'Iearm'ng Jrom experience? Dynamic
Positioning Conference”, Athens Group, Inc.,
- Houston, Texas, USA, September 28-30, 2004.

Available at: www.athensgroup.com

“Introduction to Software Risk & Risk
April 24, 1997, Web

[12)

Management”,

_ Referencehttp://ww.baz.conﬂkjordan/swse_éZS/

intro.html

[13] S. Martin, “Software Security Evaluation Based on
" a Top-Down Mc Call-Like Approach™, 1EEE 1988,

PP. 414-418.

G. Peterson, “Collaboration in a secure

[i4}

development process, part 1, Information Security

851

Managing Software Risk- A Lifecycle Approach

bulletin™, 9:165-172, 2004, Available at: http://
www.arctecgroupnet/ISBOSOGP. pdf

{15] K. Mustafa & R. A. Khan, “Software Testing:
Concepts and Practices ” Narosa Publication,
2007.

Author’s Biography -

Dr. R A Khan is currently working
as a Reader in the Department of
Information Technology, Babasaheb
Bhimrao Ambedkar Uhiversity {A
Central University), Lucknoﬁ, 833
His area of interest is Software Security, Software
" Quality and Software Testing. He has
authored two books on software

quality and software testing.

Dr. K. Mustafa is currently working
és. a Reader in the Department of
Computer Science, Jamia Millia Islamia New Delhi-
India. Dr. Mustafa has published several papers and
articles in Internationals and National Joﬁmals. He is the
author of books 'Software Quality: Concepts and
Practices" and Software Testing: Concepts and

Practices'.

