JCS Vol.1 No.l August 2005

Efficient Implementation of Leap Traversal for FP-Tree Mining

M.Shashi', Ch. Sujatha?, M. Sudeepth®

'Department of Computer Science & Systems Engineering, Andhra University, Visakhapatram,

smogalla2000 @ yahoo.com

‘Department of Computer Science & Systems Engineering, Andhra University, Visakhapatnam,
chatrasi_sujatha@ yahoo.com

‘Department of Computer Science, ANITS, Visakhapatnam,

sudeepthi_mogalla@ yahoo.co.in

Abstract

Most of the research on frequent itemset mining at early
stages explored the itemset lattice breadth-wise. There
after, with the advent of FP-Tree representation of transac-
tional database, depth-wise exploration is found to be
prom-ising. Recently COFI* algorithm introduced Leap
Traversal approach to extract (maximal) frequent itemsets.
We propose a new array-based, data structure called
Conditional Pattern Lattice (CPL) to represent the
conditional pattern base suit-able for Leap Traversal. A
non-recursive algorithm for imple-menting Leap Traversal
using CPL is developed and its per-formance is found to

be better than the other state of art min-ing methods.

Key words
Association mining, maximal frequent itemsets, FP-Tree,

leap traversal, Conditional pattern lattice

1. Introduction

An association rule of the form X=>Y suggests the
occurrence of Y in the context of X. When applied to
Market Basket Analysis, X and Y represent non-
overlapping and non-empty subsets of universal item
set, I, for a given transaction database. Ina simple case of
a five element universal item set, I= {i,i, i, 1,1} the

association rule ofthe form {i, i} => {i,} sug gests

60

the occurrence of itemi, in a transaction involving items
i, and i,.This canbe used to predict possible customers
for item i,.

Association Mining aims at discovering frequently co-
occurring items referred to as frequent itemsets/patterns
in 2 transaction database in order to generate association
rules. The first phase of association mining deals with the
exirac-tion of frequent itemsets/patterns from an
exponentially (in the number of items) large collection of
candidate itemsets and thereby requires efficient
algorithms. The second phase of association mining makes
use of the outcome of the first phase to generate association
rules which is comparatively trivial and is beyond the
scope of this paper.

Most of the earlier developments towards the extraction
of frequent itemsets are based on the Apriori property.
According to the Apriori property, all the supersets of an
itemset (infrequent) can be eliminated from the candidate
itemsets as soon as the itemset is found to be infrequent,
Apriori algorithm [1],]2] makes a level-wise exploration
of the itemset lattice, starting from single jtemsets. Before
scanning the transaction database for counting the support

of a candi-date k-itemset, it is made sure that all its (k- I)-

 itern subsets are frequent. Thus Apriori algorithm requires

as many database scans as there are elements in the largest

frequent itemset. In case of very large databases because

Efficient Fmplementation of Leap Traversal for FP-Tree Mining

of limited main memory, each database scan, in tuin,
requires swap injout of database partitions one after the
other. Due to this, the basic Apriori algorithxﬁ is notsuitable
for handling large transaction data-bases. Many variations
[31,[5,[10] to the basic approach to apriori algorithm are
developed to reduce the number of data-base scans. Most
of these approaches generate a large collection of
candidate itemsets in the process of identifying frequent
itemsets.

A different approach to frequent itemnset mining known as
Frequent Pattern Growth, does not require to generate
can-didate ftemsets. It makes use of a data structure, FP-
Tree, to limit the number of database scans to two. After
identifying frequent itemns in the first database scan, the
transaction data-base is compressed and represented in
the form of FP-Tree in the next scan. A path in the FP-
Tree represents an itemset/ pattern along with its frequency
of occurrence. Reduction in the size of FP-Tree compared
to the corresponding transac-tion database is two fold.
Primarily, the level of granularity is increased from
transaction level to itemset/pattern level in FP-Tree. The
other factor is that, multiple itemsets with common prefix
share a single path in the FP-Tree. FP-Tree, the compact
form of transaction database in tertns of active pat-terns
and their frequencies, is memory resident and hence, no
more /O scans are required during the mining process.
The active portion of itemset/pattern lattice is divided into
different partitions such that each partition is associated
with a particular focused frequent item and it contains
pat-terns involving the co-occurrence of the focused item
along with more frequent items compared to itself. Such
a partition is called Conditional Pattern Base of the focused
item. Frequent Pattern Growth approach mines each of
these condi-tional pattern bases separately by building
conditional FP-Trees [9] recursively. Starting from the

conditional pattern base of the frequent item with the least

61

support count, this algorithm makes a depthwise
exploration of the itemset lattice to find the possibility of
a pattern’s growth once itis found to be frequent. Being a
recursive algorithm, FP-Growth requires a lot of stack
space for extracting long frequent patterns. In order to
improve the efficiency of mining process, various attempts
are made [6], [11] towards devising a non-recursive
approach to mining FP-Tree. Co-Occurrence Frequent
frem (COFT) Tree mining is an efficient non-recursive
algorithm |7} which builds a separate COFI-Tree rooted
with a focused frequent item for mining its conditional
pattern base. Each node of COFI-Tree maintains a
participation count, in addition to the support count of
the item represented by the node. COFI-Tree mining
requires comparatively less memory since a COFI-Tree
associated with a focused item is built, mined and
discarded before the next COFI-Tree is build.

Some of the recent developments concentrated on
extracting maximal frequent itemsets/patterns rather than
extracting all frequent patterns. A frequent itemset is said
to be maximal frequent if none of its supersets is also
frequent in the transaction database. Since all the subsets
of a maximal frequent itemset are obviously frequent, a
small set of maximal frequent itemsets can be considered
as a concise representation of the set of all frequent
itemsets. In addition to association rule mining,
identification of maximal frequent patterns finds its
application in clustering, web mining, classification [4],
[12] etc.

COFI* algorithm{8} is one of the most recent algorithms
for finding the maximal frequent itemsets/patterns. The
algo-rithm uses the FP-Tree with bhi-directional parent-
child links to extract conditional pattern bases for each of
the frequent items in a given transactional database. The
algorithm introduces a new data structure called Ordered-

Partitioning-Bases (OPB) to group the patterns of a

JCS Vol.1 No.l August 2005

conditional pattern base by their lengths. This non-
recursive algorithm constructs a separate COFI-Tree for
mining maximal frequent patterns involving each of the
frequent I-itemset. It introduces the concept of Leap
Traversal for mining COFI-Trees.

In this paper, a simplified approack to leap traversal of
itemset lattice for finding maximal frequent itemsets is
pro-posed. A new data structure namely Conditional
Pattern Lat-tice (CPL) is devised to represent the reduced
conditional pattern basc of a focused frequent item. This
data structure explicitly represents the “Contained-in” (f)
refationship among the patterns which is essential for
mining process. A non-recursive algorithm that makes use
of this data structure, CPL, to effectively extract the
frequent itemsets is proposed. The proposed mining
algorithm requires very less memory compared to the other
proven algorithms used for FP-Tree mining.

The rest of the paper is organized as follows. In Section 2
the design of Conditional Pattern Lattice is presented.
Suitability of Conditional Pattern Lattice for leap traversal
of itemset lattice is discussed in section.3. Section 4
provides the algorithin in full length and explains the
algorithm with a simple running example. Section 5
tabulates the experimental results and compares the
proposed algorithm with established FP-Growth algorithm
and the recent COFI* algorithm. Con-clusions are given

in Section 6.

2. Conditional Pattern Lattice

This is a new data structure devised by us to sup-port
mining of a conditional pattern base associated with a
focused frequent item. The conditional pattern base is a
part of itemset/pattern lattice, whose elements are partially
related by “Contained-in” ({) relation, which is essential
for mining process. This partial relation, “Contained-in”,

plays an impor-tant role in the mining process in the sense

62

that the support of a pattern is determined as the surmation
of the frequencies of all its super patterﬁs. The data
structure, Conditional Pattern Lattice{CPL), provides a
simple way of accommodating the “Contained-in”
relationship among the itemsets of conditional pattern
base. It represents each pattern in terms of name of the
patterm, its length, frequency of co-occurrence, active flag
and an index to the list of its super patterns. An array of
such patterns constitutes Conditional Pattern Lattice
associated with a focused frequent item. A global array of
indices is used to accommodate the list of super patterns
of each entry of CPL one after the other with -1 as
delimiter.

For example, let the conditional pattern base of a focused
frequent item H be {<FDBC: 1>, <FBC:2>, <DBC: 1>,
<FDC:1>, <FC:1>}. The corresponding Conditional
Fattern Lattice is shown in Figure 1. The first pattern
FDBC is repre-sented by the 0" entry of the CPL. The
pattern contains 4 items and it co-occurs only once with
the focused item. The -1" in the last field indicates that
there are no super patterns to it. Similarly the last pattern
FCis represented by the 4" entry of the CPL and its list of
super patterns is stored in 6" to 9" entries of the array of
super patterns. All active flags are ini-tialized to true and

Array of Super
Patterns

their usage is explained in Section 3.

Active Frequ| Super 0
Length | Name 7

Flag -ency| Patterns S

T 4 FDBC {1 - Ale

S

T 3 FRC |2 |0 A -

T 3 DBC {1 2 Al

-’ "‘ D

T 3 FDC l 4 A4 . .

T 2 FC 1 |6 ! 3

-1

Figure 1: Conditional Pattern Lattice of H.

Efficient Implementation of Leap Traversal for FP-Tree Mining

3. Leap Traversal Using Conditional Pattern Lattice
A simple non-recursive algorithm to extract maximal
frequent itemsets/patterns from a transaction database is
proposed. The algorithm uses the data structure FP-Tree
with bi-directional parent-child links to represent the
essence of the transaction data-base compactly. Once the
FP-Tree is constructed, the mining of frequent patterns
starts with focus on the frequent itemn with least support
count and proceeds to focus on the more frequent items
as was suggested in FP-Growth algorithm. FP-Tree is
traversed in bottomn-up manner for finding the conditional
pattern bases of frequent items one by one. Conditional
pattern base of a focused frequent item consists of patterns/
itemnsets involving the co-occurrence of a focused frequent
itern with other items having more glo-bal frequency than
itself. However, it is possible that an item 1, which is
globally frequent enough, might not have sufficient
number of co-cccurrences with the focused frequent itens,
“f*. 1t implies that no frequent pattern involving “f” also
contains such an item, ‘i’. So the patterns constituting the
F-conditional pattern base are processed to find co-
occurrence fre-quencies of relevant iterns and accordingly
the patterns are trimmed/reduced by removing infrequent
iterms. The collection of trimmed patterns in the conditional
pattern base are represented as a Conditional Pattern
Lattice associated with a focused frequent item, ‘f".

Starting from the longest pattern to the shortest pattern,
the trimmed patterns are represented by successive entries
of a partially ordered (length-wise) array that stands for
the Conditional Pattern Lattice. An entry of the CPL
accom-modates a reduced pattern in terms of its name,
length, active flag, co-occurrence frequency and a pointer
to the list of its super patterns. The length of a pattern is
the number of items constituting it and it also indicates
the level of the pattern in the itemset lattice. The super

patterns of each patternventry are found by performing

63

subset-checking of the present pattern in the patterns
already entered in the Conditional Pattern Lattice at higher
levels {(longer patterns). Subset checking involves
comparing the corresponding items of the given pair of
patterns as long as they match. Since the items of a pattern
are in the ascending order of their global frequencies, most
of the itemsets which are not related through “Contained-
in” relationship are identified at an early stage of subset-
check-ing process. This process results in an ordered list
of CPL indices to super patterns of the present pattern
{except itself) and it is attached to the corresponding entry
of the CPL through a pointer. A pattern is active until and
unless it is recognized as either a maximal frequent itemset
or a subset of a maximal frequent itemset. The active flags
of all entries are initialized to True.

The frequency of & pattern indicates the number of co-
occurrences of the corresponding itemset {as a whole and
on its own) with the focused item. In addition to this, a
pattern inherits co-occurrence frequencies of all its super
patterns, if any, in the CPL. Hence the support of a pattern
is the summa-tion of the frequencies of all its super patterns
including itself. The list of CPL indices to supér patterns
is used in order to find the support of a pattern.
Extraction of local maximal frequent patterns is taken up
in two passes over the entries of the CPL. In the first pass,
the support count of each of the active patterns is found
and if the support is more than the given support threshold,
the pattern is entered into the list of Maximal Frequent
Itemsets. The active flag of the correéponding entry of
CPL is made false. Once a pattern is recognized as a
maximal frequent pat-tern, none of its sub-patterns can
be maximal frequent. Hence, the process of counting the
support of & pattern terminates upon finding an inactive
pattern in the list of its super pat-terns and the pattern is

made inactive.

FCS Vol.l No.t August 2005

In the second pass, the leap traversal of the active part of
the Conditional Pattern Lattice is carried out to extract
the hidden maximal frequent patterns/itemsets. Unlike the
member patterns of the Conditional Pattern Lattice, a
hidden pat tern may not confine itself to a single prefix
path in the FP-Tree. Instead, 2 hidden pattern occurs on
two or more prefix paths. The common items of the active
member patterns representing these prefix paths constitute
a hidden pattern which is possibly maximal frequent. The
successive entries of CPL representing active patterns are
processed as follows. A new non-null itemset is generated
as the intersection of the present pattern with a lower
indexed, overlapping active pattern. A pair of patterns
which are not related through “Contained-in” {c) relation
are referred to as overlapping patterns. The or-dered list
of super patterns associated with the present patiern is
used to identify overlapping patterns. For examiple if the
list of super patterns of i* entry in CPL is (kk+2,...)
where k<i the (k+1)" entry of CPL is possibly an
overlapping pattern of 1" pattern and if its active flag is
true, the intersection of i™ and (k)™ pattern, if non-
nuil, can be considered as a candidate for hidden maximal
frequent pattern. The support count of the new itemset is
calculated as the summation of the occurrence frequencies
inherited from all patterns of CPL con-taining the new
itemset.

If the support count of the new itemset is greater than
support threshald, then the new itemset is entered into the
set of local maximal frequent patterns. Otherwise, the
pattern generated as an intersection of the new itemset
with the remaining patterns in the CPL should be explored
in the similar way. This step aims at finding hidden patterns
resulting from intersection of two or more member
patterns. For example while finding fre-quent itemsets
fw ith m Inum support count, ¢ =5) three conditional
patterns namely ABCDEF, ABEFGH and ABCDGH, each

64

having a frequency of 2 result in a hidden pattern AB
with a frequency of 6. Such pattern which is formed as an
intersection of more than two conditional patterns could
be recognized as detailed below: The intersection of
ABCDEF and ABEFGH forms a new itemset ABEF whose
support count is only 4. Due to lack of support count the
new itemset ABEF should be further explored by taking
its intersection with the remaining pattern ABCDGH and
there by the resultant itemset AB is found to be having a
support count of 6 and entered into local maximal frequent
itemsets.

Some more hidden patterns are possibly generated as an
intersection of 1" pattern with the next overlapping active
pattern identified by processing the remaining poztion of
the list of super patterns of i entry of CPL. In this way
the second pass over the entries of CPL, brings out the
hidden maximal frequent patterns and adds them to the
list of local maximal frequent patterns of the focused item.
Once a maximal frequent itemset is identified, the support
count of its sub-patterns is calculated as the summation
of co-occurrence frequencies of member patterns
(available in CPL) that contain the sub-pattern.
Acﬁordingly the support counts of all frequent itemsets
co-occurring with the focused item ‘f” are calculated and
stored in the list of frequent itemsets with prefix *f°.
Similarly the conditional pattern bases of the remaining

frequent items are mined one by one.

ABCDEFGHI

BCDEKJ

CEFGH C10
BCDEM B 8
FCBAHI D6
FCDI F &6
BCDH H6
BML AS
AM I5
CMB E4
ARCFHI M4
ACDFHI

Figure 2a: Transaction database & Header Table

Efficient Implementation of Leap Traversal for FP-Tree Mining

4. Proposed Algortthm For Fp-Tree Mining Input:

a) Transaction database, T

b} Support threshold, 6

Output: List of frequent itemsets with their support
counts, FIS.

Uses: :, MFIS to accommodate the list of maximal
frequent itemsets co-occurring with a focused frequent

item, f.

Algorithm

Step 1. Scan the transaction database T to find the support

counts of individual items. Based on the minimum support

threshold, o, insert the frequent 1 -itemsets into FIS.

Step 2. Scan the transaction database again and process

each transaction as given below to construct the FP-Tree.

a) Reduce a transaction by removing infrequent items
and then re-arrange the frequent items of the
transaction in non-descending order of their support
count.

b) Construct FP-Tree (a trie-like structure) to
accommodate the reduced transactions in the form
of shared prefix paths along with a header table to
accommodate the frequent items, their support
counts and a pointer ta the first occurrence of the
item in the FP-Tree [11 . Anode in the FP-Tree has
a count (in addition to the name of an item) that
indicates the frequency of occurrence of an itemset
represented by its path. Nodes representing a
reduced transaction are linked with bi-directional
parent-child relation.

Multiple occurrences of an item in terms of nodes
on different paths are also linked so that all itemsets
involving a selected focused frequent item are
readily accessible starting from the corresponding

entry of the header table.

¢) FP-Tree represents the transaction database in a
com-pressed form in terms of various pattemsf
itemsets and their frequency of occurrences.

Figure 2.(b) depicts the FP-Tree representation of the

transaction database given in Figure 2.(a) with support

threshold of 3.

Step 3. Select a frequent item with the least support count

from the header table and refer to it as focused frequent

itern, ‘f*. Extract the local maximal frequent patterns and
all frequent itemsets involving ‘f” as detailed below.

a) Traverse the FP-Tree upwards from each occurrence
of item ‘f to find the conditional pattern base of ‘f.
For the transaction database given in Figure 2, the
conditional pat-tern base of the frequent item “H’
is found to be {<FDBC:1>, <FBC:2><DBC:
1><FDC: 13.

b) Find the co-occurrence frequency of each relevant

item

Figure 2b: FP-Tree
and note the frequent items with prefix ‘f in the FIS along

with their support count.

-FCS Vol.1 No.l August 2005

c) Trim the patterns of the conditional pattern base by
re-moving the items with insufficient co-occurrence
" frequency. I the length of a pattern is one discard
it.
d) Enter the reduced/trimmed patierns whose length is

more than one, into the successive entries of the array
representing Condition Pattern Lattice in the non-
ascending order of their length/level as detailed
below.
Set the active flag and fill the other fields.
Length of a pattern is the number of items contained in it.
Frequency of a pattern is given by the count of node °f
along the path.
i) List of super patterns is NULL for the patterns at
the highest level.
1) While adding the patterns at fower levels, find the
super patterns of the present pattern and attach the
list of super patterns in terms of their indices to the
comresponding entry of the Conditional Pattern
Lattice.
Refer to Figure 1 for the Conditional Pattern Lattice of
item’H’,
e) Starting from the highest level pattern to the lowest
~level in the CPL, find the support of a pattern by
adding the frequencies of its active super pattermns
(found in the list attached) to the frequency of itself.
if the support is greater than or equal to the support
threshold, inactivate the pattern and insert it in the
MFIS. During the process of support aggregation,
if a pattern is found to have an mactive super pattern,
mark the pattern as inactive and continue the process
of support aggregation for the next active pattern in
the conditional pattern lattice. In our running
example, at the end of first pass over the CPL entries
the pattern FBC is found to be maximal fre-quent
and the active flag of FBC and its sub-pattern FC

are marked False. At this stage, MFIS= {FBC}.

66

For each active pattern in the CPL starting with the
second pattern referred to as the present pattern, find
the lower indexed active patterns which are not
mcluded in the list of super patterns of the present
pattern. These patterns are referred to as overlapping
patterns of the present pattern.

Repeat the following steps on each of the overlapping
patterns.

i) Generate-a new itemset as an intersection of the
present pattern with the selected overlapping pattern.
ii) Find support count of the new itemset as the sum
mation of frequencies of all member patterns
containing the itemset.

iii) If'the support is greater than or equal to 6 then insert
the new itemsct in local MFIS and continue
processing with next overlapping pattern. Else take
intersection of the new itemset with the next pattern
in the CPL and make the resultant as the new iternset.
tv) Repeat the steps (ii} and (iii) on successive patterns
in the CPL

In the running example, the iternset DC is formed as an
intersection of FDC and DBC and since its support is
greater than or equal to 6, DC is inserted into local MFIS,
At this stage, MFIS={FBC,DC}.

g) Generate all subsets (size>1) of each of the maximal
frequent iteniset as and when it is identified and
determine their support counts as the summation of
the frequencies of all the patterns of CPL which
contain them, Insert the itemset with prefix ‘f into

the FIS. At this stage FIS includes

{<C:10>, <B:8>, <D:6>, <F:6>, <A:5>, <[;5>, <G:4>,
<M:4>, <HC:6>, <HB:4>,<HD:3>, <HF:5>, <HFBC:3>, .
<HFC:3>, <HFB:3 >, <HBC:4 >, <HDC:5>}

Efficient Implementation of Leap Traversal for FP-Tree Mining

h) Re-initialize the list of local maximal frequent
itemset, MFIS to NULL. Remove the conditional
pattern lattice and its associated array of indices to
super patterns.

Step 4. Repeat the Step 3 for mining the conditional pattern
bases of all frequent items except the most frequent item.
This results in the collection of global frequent itemsets
along with their supports stored in FIS,

5
FP-Growth algorithm is a highly accepted and successful

Experimental Results

algorithm for extracting frequent itemsets based on the
pattemn-growth approach. Due fo its recursive nature it
fails to extract very long patterns from huge transaction
databases on simple systems with memory limitations.
COFI* is one of the recently developed promising
algorithm, It has introduced the concept of Leap Traversal
for COFI-Tree mining.

The proposed algorithm is an efficient implementation of
Leap Traversal of itemset lattice for extracting local
maximal frequent itemsets and there by all frequent
itemsets. The proposed algorithm is expected to give better
results in terms of memory requirements due to the

following reasons.

1) It is non-recursive in nature so it handles long
patterns more efficiently compared to recursive
mining algorithms.

2} Ttusesacompact data structure, Conditional Pattern

Lattice that accommodates “Contained-in”
relationships among patterns which is essential for
leap traversal.
FP-Growth algorithm, COFI* algorithm and proposed
algorithm are implemented in Java and their performance
is tested on a simpte PC with Intel Celeron processor of
1.7GHz speed and 256MB RAM. Experimental results
are tabulated in Tables |, 2 and 3 for different datasets

namely Chess, Mushrocn and Retail databases.

67

Support(%) Time in seconds
FP-Growth COFI* Propos
algoritht
95 1.5 0795 0.5
90 4.5 125
85 33 10.75 9
80 Memory space| 121.25 96
75 exception 746 575
Table 1, Chess dataset
trans=3196_ # items=73
Support(%) Fime in seconds
' FP-Growth | COFi* | Proposcd
algorithm
90 3 2.55 2
80 3 2,55 2
70 3 2.55 2
60 3 235 2
50 3 2.55 2
40 4.5 375 30
30 21 17.5 17
Table 2. Mushroom dataset
#trans=8124 # items=119
Support(%) Time in seconds
FP-Growth COFI* Proposed
algorithm
10 i5 125
3 16.75 25 2
2 17.58 275 235
1 4185 375 77
Table 3. Retail datase

t# trans=88162 # items= 16469

6. Conclusions

The proposed algorithm adopts divide and conguer
strategy for mining a given transaction database in the
form of FP-Tree. Patterns representing the co-occurrence
of a focused frequent item with its more frequent items
are grouped as a conditional pattern base and are
accommodated in a new data structure Conditional Pattern
Lattice. An effective implementation of Leap Traversal
for finding frequent itemsets using Conditional Pattern

Lattice is presented. This algorithm is expected to require

JCS Vol.1 No.l August 2005

very less memory space because the conditional pattern
lattice for each of the frequent item is built, mined and
discarded before the next frequent item is dealt with.
The expectation is rightly supported by the experimental
results. Our implementation of Leap Traversal requires
much less memory space while handling sparse as well ag
dense databases. The proposed implementation out
performs the state of art methods in view of both time and
MEMOry Space requirements.

In order to obtain better response time, multiple threads
can be employed to handle the conditional pattern base of

different frequent items simultaneously.

7. References

[1] R.Agrawal,T.Imielinski, A.Swamy. Mining asseciation rules
between set of items Marge databases. In Proceed-ings of the
ACM SIGMOD Conference on Management of Data, (1993),
207-216.

{2] R.Agrawal, R.Srikant. Fast algorithms for mining asso-ciation

rufes. In Proceedings of the International Confer-ence on Very
Large Databases, (September 1994), 487-499.

RAgrawal, R.Manniia, R.Srikant, H.Toivonen, Verkano. Fast

(3]

68

[4]

i3]

I7]

(8]

(91

[10]

(11}

(12]

discovery of asseciation rules. In Advances in Knowledge
Discovery and Data Mining, (1996), 307-328.

MAntonie, Q.R.Zafne. Text Document Categorization by Term
Association. In Proceedings of [EEE International Conference
en Data Mining, (December 2002), 19-26.

R.J.Bayarde Ir. Efficiently mining long patterns from databases.
In Proceedings of the ACM SIGMQD nter-naticnal Conference
on Management of Data, ACM Press,(1998),85-93.

B.Goethals. Survey on frequent pattern mining, http-tf
www.cs.hrelsinki fifu/goethals/publications/surveys.ps

M.E.Hajj, O.R Zaiane. Non-recursive generation of fre-quent k-
itemsets from frequent pattern tree representa-tions. In
Praceedings of 5 International Conference on Data Warehousing
and Knowledge Driscovery DaWak, (September 2003), 371-380.

M.E Hajj, O.R Zaiane. COFf approach for mining fre-guent item-
sets revisited. In Proceedings of International Conference on Data
Mining and Knowledge Discovery, (June 2004).

I.Han, 1.Pei, Y.Yin. Mining frequent patterns without can-didate
generation. In Proceedings of ACM SiIGMOD In-ternational
Conference on Management of Data, (Fuly 2000), 1-12.

J.Han, M.Kamber. Data Mining: Concepts and Tech-nigues,
Morgan Kaufmann /Elsevier Science india, (2002), 225-278.

I.Han, J.Pei, Y.Yin, R Mao. Mining frequent paiterns with-out
candidate generation: A Frequent Pattern Tree ap-proach. Data
Mining and Knowledge Discovery, 8, (2004), 53-87.

B.Lent, A.Swamy, J.Widom. Clustering Association rules. In
Proceedings of Intemnational Conference on Data Engineering
ICDM, (April 1997), 220-231,

