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Association Rule Based Closed Frequent Item Set Algorithm
(CFIA) For Chess Dataset

E.Ramaraj', R.Gokulakrishnan?, K.Rameshkumar?

ABSTRACT

Taxonomy over the items in databaser can be more
initiative and informative in the area of knowledge
discovery. Association Rule Mining (ARM) focuses on
finding = set of all subsets of items cafled item sets. This
paper proposes a new approach for closed item sets x;sing
association rules. A smaller set of closed item sets can be
a substitute of a Jarger item set. A new algorithm to mine
a set of closed frequent item set called CFIA is presented
as a part of this paper. The CFIA algorithm outperforms
the traditional approaches of mining frequent item sets
especially when the item sets intensity is dense in the
database or when there are complicated permutations,

probability of occuerences like Chess datasets

Keywords : Association Rule Mining, Frequent Items,

Machine Learning, Chess Dataset.

1. INTRODUCTION

Item sets frequently occur in database records or
transactions. Extracting a subset of items influences the
presence of another subset. The task of Association Rule
Mining (ARM) is one important topic in the area of
knowledge discovery in databases (KDD). However, the
rules may not provide informative knowledge about the

database with limitations due to granularity of the items.
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Association rule mining (ARM) is evolved using the
information of pre-defined taxonomy over the items. The
taxonomy may classify products or items by brands,
groups, categories, and so forth. Given a taxonomy where
only leaf ftetns are present in the database, more initiative
and informative details can be mined from the database
using association rules. Each rule contains 2 set of items
picked up fromany level in the taxonomy. Most previous
works focus in finding all frequent item sets in an efficient
way. Srikant pioneered five algorithmé that apply to item
sets horizontally in a database. The algorithms spend a
lot of time in multiple scanning of a database. A known
limitation of this work is the cost of checking ancestor
item sets frequently using a hash tree, gives us a direction
to reducing search time during mining processes, The
basic bottom lne of these approaches would focus to find
small sets of closed frequent item sets instead of a larger
set reducing computational time. This paper proposes and
presents an efficient algorithm; named CFIA testified on
Chess datasets keeping in mind the traditional concept
of dealing with the item sets using Association Rule

Mining.

2. PRoOBLEM DEFINITIONS

An association rule can be formally stated as follows,

LetI={A, B, C,D,E, U, V, W} be a set of distinct
itemns,

T=1{1,2,3,4,5,6} be a set of transaction identifiers
(t.'s). '

The database can be viewed into two formats, i.e.

horizontal format and vertical format. An edge in
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taxonomy connects a relationship with other taxonomy.
V is called an ancestor item of U, C, A and B. A is called
a d¢scendgnt itemn of U and V. Leaf items of a taxonomy
are presented in the original database. Intuitively, the
database can be extended to contain the ancestor items
by adding the record of ancestor items of which tidsets

are given by the union of their children.

A set I, < 1is called a item set (I) when IG is a set of
items where no any items in the set is an ancestor item of
the others. The support of I, denoted by © (IG), is
defined as a percentage of the number of transactions in
which I occurs as a subset to the total number of
transactions. Only the "[" that has its support greater than
or equal to a user-specified minimum support (minsup) is

" calleda frcquént item set (FI).
A rule is an implication of the form
R:I— Iz, where I, 1, c L

I NL=0,1 01, is GFL and no item in I, is an ancestor
of any items in 1. The confidence of a rule, defined as
o ({ O1)/a (1), is the conditional probability that a
transaction contains I, given that it contains I,. The rule
is called a Association Rule (AR) if its confidence is
greater than or equal to é user-specified minimum

confidence (minconf).
The task of ARM can be divided into two steps,
1) Finding all FIs and 2) generating the ARs.

2) The second step is straightforward. While the first
step takes intensive computational time, it is
'imp'roved by exploiting the concept of closed item
sets to ARM, and finds onl)} a small set of closed

" “item séts to reduce the computational time.
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3. Closed Item set (CT)

The concept of CI is defined by adapting the traditional
concept of closed item sets in ARM, set of closed
frequent item sets is sufficient to be the representative of
a large set of Fls. Let the binary relation ScI=Tisthe
extension  database. For an  arbitrary
a(0Tand yOT, a 8b can be denoted when “a” is related

to its “b™ in database.

LetitAc (Dand (B) c (T

Then the mapping functions,
tI>THA)={0T|y allX,a8b}
tTSLiB)={al 1/ y bOB,adb)

Chess Piece connection between the power set of I (P
(D)) and the power set of T (P (T)). The following
properties hold for all (A,A ,A)) < (I)and (B,B,,B,)
< (T

1.4, cXi4) U 4B
2.8,cB,0iB)0iB)
3. A cit(4)and B ct(i(B)

The support of a concept A x B is the size of CT (..
[B]). "I" is frequent when its support is greater than or
equal to minsup. For any item set A, its support is equal

to the support of its closure
(6(A) =o(c;, (A)).

Given A, its support G(A) = |t(A) |/ [T], and the support

of its closure
o(c,(A)) = [, LANVITI.
To prove, it has to be

t{A) = t(c,(A)).
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Since ¢, is the closure operator, it satisfies the first

property that
HA) € ¢, ((A)) = t{i(t(A))) = t(c, (A)).
| Thus t(A) = t(c, (A)).

The ¢, (A) provides the "I" that is the maximal superset

of A and has the same support as X.

Then A cc, (A), and t(A) t(c, (A)) due to the property

concluding that
t(A) =t(c, (A)).

Implicitly, the lemma states that all FIs can be uniquely
determined by the CFIs since the support of any "I"s will
be equal to its closure. In the worst case, the number of
CFls is equal to the number of Fls, but typically it is

much smaller.
4 CFIA

All Fls can be enumerated by applying the constraints,
subset-supersét itern sets and parent-child item sets. The
proposed algorithm (CFIA) specifies the order of set
enumeration by using the aforesaid constraints. The
constraints specify a descendant and superset for
qualifying item sets and CFIs are generated afier the
conditional properties are checked. The bhild itemn sets

are generated by joining M, x M} with M,x t(M,).

- L ITHM,) = t(M,), then (1) replace X1 and children
under M, with M, [J M,, generate taxonomy- based child

itemsets of M, I M,, and remove Mz.

2. If (M) < t(M2), then replace M, with M, U M2 and
generate taxonomy-based child item sets of M, O M,

3. If M) < t(M,), then generate join-based child item
set of M| with M [J M., add hash table with M, M,

and remove M,

4. 1£t(M) # (M, ) and t(M, (0 M,) is not contain in hash,
then generate join-based child item set of M1 with
M, OM,.

The CFIA algorithm starts with an empty set. Then, adds
all frequent items in the second level of the taxonomy
that are item V and W, and form the second level of the
tree. Each item set has to generate two kinds of child

item sets, i.e.taxonomy based and join-based item sets,

respectively. The taxonomy-bésed item set is generated

by joining last items in item sets and its child,

One taxonomy-based item set of V is VU. The first
property holds for VU, which results in replacing V with
VU and then generating VUA and VUB. The second
taxonomy-based item set is joined with-the current item
set (VU), which produces VUC. Again, the first property
holds for VUC, which results in replacing VU and the
children in tree under VU with VUC. Next, the join-
based child item set of V, VW, is generated, The third
property holds for VW, which resuits in removing and
then generating VW under V. In the same approach, the
process recursively occurs until no new CFls are
generated. Finally, a complete item set tree is constructed

without excessive checking cost.
4.1 Chess Set Description

Positional knowledge can be worth as little as one
hundred set of a ﬁawn. Big score swings can become
incfficient in such programs while dynamically
increasing the step size. Iﬁstead of using the previous
bound, add extra points in the search direction. While
searching upward add the bonus and subtract the bonus
while searching downward at every second pass. When
the bound overshoots the minimax value, make a small
search in the opposite direction using Vthe last search
bound without an extra to achieve the final convergence

point.
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The size of the search tree is quite sensitive to the value
. of the search window. Alse, for the transposition table,
CFIA re-searches would cause a heavy overhead. Ensure
that the transposition table works properly: CFIA does
more of re-searches. The size of the search tree can differ
sighiﬁcantly from position to position. A large test set in
our experiments for different set-ups, such as, without
null-move pruning, without extensions, disregarding
couﬁting of guiescence nodes, different transpos‘ition
table sizes and storage schemes disable some parts of the
move ordering. As in all debugging, to understand the

search better, a clean, noise-less, algorithm is proposed.

During re-searches, each pass of CFIA would re-explore
most of the nodes. CFIA can be more efficient if the
searched nodes are stored. An ordinary transposition
table of reasonable size used in our experiments is
sufficient. CFIA is a minimax search algorithm, simpler
and more efficient. When tested with a number of
tournament playing programs of chess, it performed
strongly while testing against Negascout, Cilkchess,

Starscorates.

CHESS ALGORITHM-1

Function

CFIA (root : node_type; f: intege_r; d ; integer) : integer;
g=1
upperbound : = -+ o}
lowerbound ; = - w;
repeat
if g=lowerbound
thenP, 1 =g+1
else P,:= g'; g =( P, P,) Memory _(root, P,-1,P,d);
| if g <beta
then upperbound : = g
else lowerbound : = g;
until lowerbound > = upperbound;

return g;
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The algorithm works with Memory a number of times
with a search window of zero size. The ;search works by
zooming in on the minimax value. Each call returns a
bound on the minimax value. The bounds are stored in
upper bound and lower bound, forming an interval
around the true minimax value for that search depth.
When both the upper and the lower bound collide, the
minimax value is found. CFIA gets its efficiency from
doing only zero-window P1, P2 searches, and using a
"good" bound variable to do those zero-window
searches, called with a wide search window, as in
{root, -co, +oo, depth), making sure that the return value
lies between the value of P1, P2. In CFIA a window of
zero size is used, so that on each call (P,P,) will either
fail high or fail low, returning a lower bound or an upper
bound on the minimax value, respectively. Zero window
calls cause more cutoffs, but return less in.formation -
only a bound on the minimax value. To nevertheless find
it, CFIA has to call (P,P,) a number of times,

converging towards it.

In order to work, CFIA needs a "first guess” as to where
the minimax value will turn out to be. The better than
first guess is, the moré efficient the algorithm will be, on
average, since the better it is, the less passes the repeat-
until loop will have to do to converge on the minimax
value. If you feed CFIA the minimax value to start with,
it will only do two passes, the bare minimum; one to find
an upper bound of value x, and one to find 2 lower

bound of the same value.

Typically, one would call CFIA in an iterative deepening
framework. A natural choice for a first guess is to use the

value of the previous iteration, like this:

CHESS ALGORITHM-I

Function

iterative_deepening(root : node_type) : integer;
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firstguess == 0;
for d = 1 to Max_Search_Depth
do
firstguess := CFIA (root, firstguess, d);
if

times _up()
then

break;

retum

firstguess;

The algorithm CFIA (n, ), which stands for something
like Memory-enhanced Test Driver with node n and
value f. CFIA is the name of a group of driver-algorithms
that search minimax trees using zero window P1, P2 with
memory calls. CFIA is simple in that it only does zero
window P1, P2 calls, making reﬁsoning about the pérts
of the tree that get traversed easier than with algerithms
that use wide window calls, such as NegaScout and the
standard P1, P2. Actually, the difficulty in analyzing
ordinary P1, P2 was precisely the reason why Pearl
introduced his Test in the first place. Especially in a
parallel setting the simplicity of CFIA compared to
NegaScout is valuable. Designing and debugging a
parallel search routine is a complex affair. CFIA only
needs a zero window search, a Test. Instead of two
bounds, CFIA needs one. In NegaScout, when new
values for the search window become available they
have to be communicated asynchronously to the child
processes; in CFIA you simply abort an entire sub tree
when a cutoff happens. Furthermore, the recursive search
code does not spawn re-searches anymore. All re-
searching is done at the root, where things are simpler
than down in the parallel tree. The large body of research
on paralielizing is directly applicable to CFIA instances,
since they use zero-window (P1,P2) calls to do the tree

searching.

. CFIA framework is derived from the K. Coplan's C*
algorithm. In CFIA terms the idea of K. Coplan's C*
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algorithm is to bisect the interval formed by the upper
and lower bounds, reducing the number of (P1,P2) with
memory calls. On the down side, bisection yields a value
for the search window, }’2, that turns out to be noft as
efficient as CFIA's choice. But still, Weill's work
indicates that it is worthwhile to experiment with variants
on CFIA’s choice of pivot value; leaving plenty span for

more research.

The transposition table access code is the same as what

is used in most tournament chess programs.
CHESS ALGORITHM
Function

Memory(nt : node_type; P, P,, s : integer) : integer;
if retrieve(nt) ==0K

then /* Transposition table lookup */

if

nt.lowerbound >= P2

then returmn '

nt.lowerbound;

if nt.upperbound <= P1

then retum

nt.upperbound;

P,: = max(P,, ntlowerbound);

P,: = min(P,, nt.upperbound);

if

d=0

then

g : = evaluate(nt); /* leaf node */

else if

nt = = Maxnode

then

g:=-0c;a:=P; /*save P value ¥/

¢ : = firstchild(nt);

while (g <P,) and {c != nochild)

do .

g : =max(g, P,, P,)Memory(c, a, P,, d - 1));
a:=max(a, g) .
¢ : = next(c);

else
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/* nt is a minnode */
g:=+wo;b:=P; /*save P2 value */
c : = firstchild(nt);
while (g > P))

- and

(¢ != nochild)

do

g : = min(g, P, P,)Memory (¢, P, b, s- 1))
b : = min(b, £);

¢ : = next{c);

/* Transposition table storing of bounds */
/* Fail low result implies an up'per bound */
ifg<=P,

then

nt.upperbound : = g; store nt.upperbound;

/* Found an accurate minimax value - will not oceur if
. called with zero window */

ifg> P andg<P,
then

nt.lowerbound : = g; nt.upperbound : = g; store
nt.lowerbound, nt.upperbound;

/* Fail high result implies a lower bound */
if

Cg>=P2

Then

‘nt.Jlowerbound : = g; store nt.lowerbound;

return g; ‘

Transposition table access takes place in the retrieve and
store calls. The lines around retrieve make sure that if a

value is present in the table, it is used, instead of

continuing the search.

The main procedure is CFIA -MAIN and a function,
called CFIA -EXTEND, creates a sub treé followed by a
proposed set enumeration. CFIA-EXTEND are executed
recursively to create all item scts under the root itemn sets.
The New Child function creates a child item set. For
instance, NewChild(V,U) creates a child item set VU ofa
parent item set V, and adds the new child in a hash table.
" The TaxChild function returns thé taxonomy-based child
itemsets of that GI. CFIA generates the join-based child
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itemsets. The function called CFIA-PROPERTY, checks
for conditional properties of CIs and makes the
operations with the generated itemset. Following the

CFIA algorithm, it will result in a tree of all CFis.

CFiA—MAIN (Database, Taxononty,minsup)

1. Root=Null Tree //Rootnode of set enum

2. NewChild (Root, FIs from second level of
taxonomy)

3. CFIA -EXTEND(Root) CFIA -
EXTEND(Father)

4. foreachF in Father.Child

5. C =TaxChild(Fi) // taxonomy-based child itemset

6.  if supp(C), Z minsup then

7. CFIA -PROPERTY(Nodes,C)

8, forj = i+1 to |[Father.Child| // join-based child
itemset ‘

9. C=FUF _

10. if supp(C) , minsup then

11. CFIA -PROPERTY(Nodes,C)

12. if Fs Child # NULL then CFIA -EXTEND(Fi}
CFIA -PROPERTY(Node,C)

13, ift(F)=t(F)) and Child(Fi)= 6; then

14. Remove(F); Replace(F) with C

15. elseift(F). t(Fj) and Child(F)= ; then

16. Replace(Fi) with C

17. elseif t(F).t(F) then

18. Remove(Fj); if Hash(t{C)) then NewChild(F,C)

19 . else if Hash(t(C)) then NewChild(F,C)

5, ExperIMENTAL RESULTS

In our experiment, the CFIA algorithm is coded inJ AVA
language and the experiment was done on a Pentium IV
with 640Mb of main memory running Windows XP
operating system. The real datasets are used in our
experiment. Real dataset from the Machine Learning
Database Repository, i.e. chess, are used with our own
generated taxonomies. The original items contain in the
leaf-level of taxonomy. In real datasets, the nufnber of

CFls is much smaller than that of FIs. With the same
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datasets, the ratio of the number of FIs to that of CFls
typically increases when minsup lowers. The higher the
ratio is, the more time reduction is gained. The ratio can
grow up to around more times, which results in reduction
of running time takes minimal times. Note that in
datasets, the number of FIs is slightly different from the
number of CFls. This indicates that the real datasefs are
dense but the syntactic datasets are sparse, This result
makes us possible to reduce more computational time by

using CFIA in real situations.

Using the data generator, generate chess datasets as -

described below,

¢ Independent datasets.
¢ Correlated datasets.

® Anti-correlated datasets.

Moreover, in the index, each axis is divided into a

number of equal intervals that is fixed by t.

First compare the query performance of the algorithm
CFIA and path tree, pruning. Then, focus on evaluating

the efficiency of the pruning technique.

Implement the first set of experiments in the following

experimental setting:
1) The cardinality of datasets is set to 1 x 10" and & x 10m,
2) k=8 square and v varies from 1 to 64 square.

For independent datasets and correlated and anti-
correlated datasets, respectively,
Correlated datasets

{a) . Cardinality =1 x 10,
(b) Cardinality=28 % 10"

Anti-correlated datasets

(a) Cardinality =1 x 10".
(b) Cardinality = 8 x 10~
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The results of experiments observed in this case where
the datasets are independent; each algorithm needs to
spend more query time, It is mainly becaunse there is

more space set in anti-correlated datasets,

In the series of experiments, the impact of the pruning
technique on the query performance of CFIA. The
pruning technique can optimize the CFIA algorithm in
most cases and the pruning effect becomes more evident

as the cardinality of datasets increases.

The superiority of CFIA over the naive solutions is more
marked for anti-correlated datasets than for independent
ones. The main reason being naive solutions directly run
CFIA on datasets and requires more query time for anti-
correlated datasets. The efficiency of Query Time
Reduction Ratio (QTRR) in CFIA can further be

investigated against naive solutions.
6. ConcLusions ANp FurTHeER RESEARCH

CFIA can mine only a small set of closed frequent item
sets and results in reducing computational time, The
advantage of CFIA becomes more central when
minimumn support is low and the dataset is dense and
complicated. This approach makes it possible to mine
the data in real situations. Further research intends to
propose a method to extract only a set of important rules
from these closed frequent item sets. The results at pilot
level also need much more experiments with new

methodologies.
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