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An Analysis Of Bayesian And Nonbayesian
Functions For Motif Detection Using Genetic Algorithm
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ABSTRACT

A motif, in the context of biological sequence analysis,

is'a consensus pattern of DNA bases or amino acids which
accurately captures a conserved feature common-to a
group of DNA or protein sequences. Finding motif-
p_atfems of conserved residues-within nucleotide and
protein sequence is a key part of understanding function
and regulation within biological system. Computational
motif discovery has been used with some success in
Vsirriple organisms like yeast. However, when moves to
higher organisms with more complex genomes, more
sensitive methods are needed. Genetic Algorithm is an
efficient method for detecting motifs, since it has greater
freedom of movement between different configurations
than simpler algorithms. This paper analyse_é the genetic
algorithm method for the detection of motifs by using
Bayesian and NonBayesian functions as fitness function

and compares it with the other existing tools.
Keywords : DNA sequence, motif, genetic algorithm,

1. InTRODUCTION

‘The complete informatioh that defines the characteristics
of living cells within an organism is encoded in the form
of a moderately simple molecule, deoxyribonucleic acid,
or DNA. The building blocks of DNA consists of four
nucleotides, abbreviated by their attached organic bases

asA, C, Gand T. A-T and C-G are complementary bases
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between which hydrogen bonds can form. A D.NA
molecule consi'sts of two long chains of nucleotides that
are complementary to each other and joined by hydrogen
bonds twisted into a double helix. This structure gives
rise to the term "base pair" when describing a DNA
sequence. The specific ordering of these nucleotides, the
"genetic code," is the means by which information is
stored that completely defines all functions within a cell.
With the recent development of high-throughput

sequencing technology, the National Institutes of Health

genetic sequence database, Gen-Bauk, has sustained an

exponential growth rate since 1982.[14 ] ] _

ek

The central dogma of moleculeu" b;)iogy dictates that
certain segments of the DNA (i.e, genes) are transcribed
into another molecule, RNA, which serves as a transient
ternplate to make the basic bﬁilding blocks of cellular
life, proteins, Although all the cells in the same organism
possess exactly the same DNA sequences (i.e., genefic
information), they display different physidlogical
characteristics in different tissues, developmental stages
and environmental conditions. This "differentiation” is
caused by the differences among the collections of
proteins that are synthesized in different cells or at
different cell siates. If a protein is being synthesized at 2

certain state, its coding DNA (called a gene) is termed as

"active" or "expressed." Thus, a cell in a particular -

physiologicél state can be roughly viewed as a mechanical
system where each different gene is switched either on

{active) or off (inactive).
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In many organisms, the DNA that codes for proteins
- (genes) is only a small portion of the total genomic DNA.
For example, genes make up only about 1.5% of the
human genome (International Human Genome
Sequencing Consortium, 2001). The noncoding
corhponents of DNA, which were initially considered
as"Junk" sequences; actually contain the control
" mechanisms for activating and deactivating the genes,
and thus the synthesis and nonsynthesis of proteins, Most
of the conirol sequences for a gene lie in the upstream
regulatory region, which is the region of a few thousand
base pairs directly before the gene [also called the
transcription regulatory regior{ {TRR} or the promoter.
Transcribing or activating a gene requires not only the
DNA sequence in the TRR, but also many proteins called
transcription factors (TFs). When these TFs are present,
. they bind to specific DNA patterns in the TRR of genes
and either induce or repress the transcription of these

genes by recruiting other necessary proteins.[7]

One transcription factor can bind to many different
upstream regions, thus regulating the transcription of
many genes. The binding sites of the same transcription
factor show a significant sequence conservation, which
is often summarized as a short (5-20 bases long} common
pattern called a transcription factor binding motif (TFBM)
or binding consensus, although some variability is

tolerated.

In prokaryotes (lower organisms without nuclei), there
are fewer TFs, their motifs tend to be relatively long and
the strength of regulation for a particular gene often
- depends on how closely a particular site matches the
consensus for the motif. The more mismatches to the
consensus in a binding site, the less often the TF will
bind and therefore the less control it will exert on the

target gene. The variability between sites is sometimes
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crucial to the regulatory process, since TF binding sites
that are perfect matches to the optimal pa&em would bind
the TF too tightly, preventing the subsequent steps of

transcription.

In eukaryotes (higher organisms with nuclei), mé.ny more
transcription factors are involved in the regulation of a
gene, and their binding motifs tend to be shorter.
Eukaryotic upstream regions usually contain regulatory
modules, a collection of adjacent binding sites (sometimes
mualtiple binding sites) of several transcription factors.
Transcription regulation not only relies on the
éombination of the TFs involved, but also on the number

of site copies in the upstream regions[17].

Tissue
- Specific Core
Promoter Promoter
Enhancers ATGCCAAAT ‘TATA Exon

Figure 1: Organization of Eukaryotic DNA
Sequence.

Understanding the regulatory networks of highér
organisms is one of the main chailenges of functional
genomiics. Gene expression is regulated by transcription
factors (TF) binding to specific franscription factor
binding sites (TFBS) in regulatory region;s agsociated with
genes or gene clusters. Identification of regulatory regions
and binding sites is a prerequisite for understanding gene
regulation, and as experimental identification and

verification of such elements is challenging, much effort
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has been put into the development of computational
approaches. Good conmutationél methods can potentially
provide high-quality prediction of binding sites and
reduce the time needed for experimental verification.
However, the computational approach has turned out to
be at least as challenging as the experimental one, and a
very large number of different methods have been

developed.

Computational discovery of motifs is mainly possible
because they occur several times in the same genome,
and because they may be evolutionary conserved.
However, this apparently simple approach is complicated
By the fact that most binding site motifs are short, and
thejr may also show some sequence variation without loss
of function. Therefore most motifs are found as random
hits throughout the genome, and it is a challenging
problem to distinguish between these false positive hits

and true binding sites.

Genetic algorithms are mainly used for its ability to .

_ perform adaptive, powerful and robust searches. As an
evolutionary computation techmique, they operate in
paralle} over a population of candidate solutions, allowing
a simultaneous explération of different regions of the

search space in the solution domain.

The paper is organized as follows. Section 1 gives an
introduction to motif and the need for motif predietion
using GA. Section 2 literature review of motif discovery
algérithms are discussed. Section 3 describes the
‘methodology for motif prediction using genetic algorithm.
Section 4 analyses the experimental results of the resultant
motif using Genetic Algorithm and with other existing
methods. In Section 5 the conclusion of the work is

inferred.
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1.1 Why Motifs ?

A motif, in the context of biological sequence analysis,
is a consensus paftern of DNA bases or amino acids which
accurately captures a conserved feature common to.a
group of DNA or protein sequences. DNA motifs are
sometimes termed signals: examples are regulatory
sequences, scaffold attachment sites, and messenger RNA
splice sites. Examples of protein motifs, which are also
known as fingerprints, include enzyme active sites,
structural domains, and cellular localization tags. Motif
discovery is the act of identifying and characterizing
motifs, and underlies a number of important biomedical
activities. For example: the identification of regulatory
signals has applications for gene finding in sequenced
genomes, understanding of regulatory networks, and the
design of drugs for regulating specific genes; and protein
motifs are routinely used to identify the function of newly-
sequenced genes and to understand the basis of a protein's

cellular function.[9]

A nucleotide sequence is a string of letters (A,C,G and
T) representing the sequence of nucleotide
bases(Adenine, Cytosine, Guanine and Thymine) present
within DNA molecules. Fig 2 gives an example for motif

from three DNA sequences.

ACTCAAGTCTTATCACCC
GCGAAATTCGCAAGTCTT
CCAAGTCGTCGCTATATA

Figure 2 : CAAGTC is an Example for a Motif
2. RELATED Works ON MoTir DISCOVERY

One of the early origins of DNA motif discovery is the
computer program written by Korn et al. {(1977) {4] that
was able to discover sequence similarities in regions
immediately upstream of TSS. Both mismatches and

flexible gaps are accounted for, but using only pair wise
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comparisons. This approach was further developed by
Queen et al (1982)[12 ] by comparing multiple sequences
simultaneously. In this work , the exact requirements of a
motif was also defined clearly, with quorum constraints
on sequence support, max number of mismatches in
occurrences, and max distances between occurrence
positions in the different sequences. In the same year,
Stormo et al.(1982) {16] introduced a Perceptron
algorithm that calculated the sum of independent weighted
match scores for each position-of a motif aligned with a
sequence. Similar to this, Staden (1984) [15] introduced
a position weight matrix with weights corresponding to
log-frequencies of nucleotides in aligned motif

QCCUumnmences.

Jason D. Hughes, Preston W. Estep, Saced Tavazoie and
George M. Church {2000) [3], proposed AlignACE, a
stochastic motif discovery algorithm based on the widely
adopted Gibbs Sampling method . Compared with the
original Gibbs Sampling method, it adds the following
major features: both strands of sequences are searched,;
" near-optimutn sampling is improved; an iterative masking

approach is used to search multiple motifs.

X Lui, D. L. Brutlag and J. 8. Lui (2001) [6], proposed
BioProspector, a Gibbs Sampling algorithm. Compared
with the Lawrence version, it added a Markov model
estimated from all promoter sequences in the genome to
model adjacent nucleotide dependency. It has 15
par.ameters. The background frequency model is
generated using the whole E.coli genome, and the third-

order Markov model is used unless otherwise specified.

Giulio Pavesi, Paclo Mereghetti, Giancario Mauri and
Graziano Pesole (2004) [11], proposed Weeder, a
consensus based method that enumerates exhaustively all

the motifs upto a maximum length and collects their
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occurrences (with substitution) from input sequences.
Each motif is evaluated according to the number of
sequences in which it appears and how well conserved it
in each sequence, with respect to expected values derived
from the oligo frequency analysis of all the availabrle

upsiream sequences of the same organism.

Shane T. Jensen, X. Shirley Lui, Qing Zhou and Jun S,
Lui (2004) [14], proposed a set of Bayesian models useful
for developing motif finding tools and generalization of
these models that allow for unknown motif width w and
unknown motif abundance ratio PO. Bayesian models
provided insight to the similarities between the full
Bayesian model based approaches and some

NonBayesian methods such as CONSENSUS.

Shane T. Jensen and Jun S. Liu (2004} [13], proposed
BioOptimizer which works based on a full Bayesian
model that can handle unknown site abundance, unknown

motif width and two block motifs with variable length

gaps.

Zhi Wei and Shane T. Jensen (2006){18] introduced
GAME, which utilizes a genetic algorithm to find optimal
motifs in DNA sequences. GAME evolves motifs with
high fitness froma population of randomly generated
starting motifs, which eliminate the reliance on additional
motif-finding programs. In addition to using standard
genetic operations, GAME also incorporates two
additional operators that are specific to the motif

discovery problem.

Leping Li, Yu Liang and Robert L. Bass (2007) [5]
proposed GAPWM which derives high quality PWMs
for genome wide identification of transcription factor
binding sites. Starting from an existing PWM, a set of
ChIP sequences, and a set of background sequencés,

GAPWM derives an improved PWM through genetic
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algorithm that maximizes the area under the receiver

operating characteristic (ROC) curve.

More than a hundred methods have been proposed for
motif discovery in recent years, representing a large
variation with respect to both algorithmic approaches as

well as the underlying models of regulatory regions.

3. GENETIC ALGORITHM

_ Genetic algorithms are a part of evolutionary computing,
which is a rapidly growing area of artificial intelligence.
It was inspired by Darwin's theory of evolution. Genetic
Algorithms (GAs) are computer programs which create
an environment where populations of possible solutions

can compete and only the fittest survive.[2]

Genetic Algorithms works based on the assumption that
simulating an evolutionary process in a pepulation of
potential solutions evolves better solutions. Biological

terms are conveniently used to describe this process:

¢ The chromosomes represent the potential solutions.
Every chromosorme is typically composed of several

genes, the solution parameters.

A set of chromosomes forms a population.

Successive populations are referred to as generations.

To create new chromosomes (offsprings), two kinds
of operators are typically used: Crossov:ers are used
to exchange genes between two chromosomes, while
mutations change one or more genes in a single

chromosome.

Based on the principle of survival-of-the-fittest,
chromosomes with a good performance {(according to
an applied fitness function) are more likely to be
selected to produce offsprings for the next

generation,
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To solve some problem, the solution should be the best
among others. The space of all feasible solutions is
called search space (also s;tate space). Each point in the
search space Tepresents one feasible solution. Each
feasible solution can be "marked” by -its value or fitness
for the problem. The solution is one point (or more) '

among feasible solutions - that is one point in the search |

space.

3.1 Eelements of Genetic Algorithm

3.1.1 Eancoding Chromosome

The chromosome should contain information about the
solution it represents. Binary encoding, Permutation
encoding, Value encoding, Tree Encoding are the

different methods used for encoding chromosomes[8].
3.1.2 Reproduction

Reproduction is a process in which individual strings
(chromosomes) are copied according to their fitness.
There are many methods for selecting the best
chromosomes: roulette wheel selection, Boltzman -
selection, tournament selection, rank selection, and

steady state selection.
3.1.3 Crossover Operators

Crossover operators are responsible for creating one or
more new chromosomes (offsprings) by combining the
attributes of existing chromosomes (parents). Single
Point crossover, Two Point crossover, Uniform
crossover, Specific crossover, Arithmetic crossover are

the different methods used.
3.1.4 Mutation Operators

Mutation operators are used to maintain genetic diversity
from one generation of a population of chromosomes to
the next. The purpose of mutation in GAs is to allow the

algorithm to avoid local minima by preventing the




Karpagam JCS Vol 2 Issue & September. - Oclober. 2008

population of chromosomes from becoming too similar
to each other, thus slowing or even stopping evolution.
This reasoning also explains the fact that most GA
systems avoid only taking the fittest of the population in
generating the next but rather a random (or semi-
random) selection with a weighting toward those that are
fitter[8].

3.2 Methodology for Motif Prediction using GA

Genetic algorithms have greater freedom of movement
between different configurations than simpler algorithms.

It makes them a valuable tool for the discovery of

optimal motifs.
. \ yes
Generate Terminaticn Return
initial P Evaluation [P condition | we—-—fpi  best
population fulfitled solution
-3
no
v
Crossover
and/ or Selection
mutation  [&
Generate niew generation

Figure 3. System Architecturé
3.2.1 Search Space

Search space consists of m upstream sequences, cach of
length 1, where Sij is the nucleotide in position j of
sequence i. A motif is a consensus sequence repeating

more fimes in search space and having high fitness value.
3.2.2 Fitness Function

The genetic algorithm uses Ba'yesiau and NonBayesian

as scoring functions to calculate fitness.
Bayesian scoring function

The Bayesian scoring function is as follows:[18]

Veu(A)-1A] (log (B/(1-B)-1+D; Tog(B! 0,))
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where [A] is the number of predicted sites and = |AJ/L
is the estimated motif abundance out of L =¥ I;- w + 1

. Ia
possible site locations in A. The term aik log(8s/ Bok) is

the relative entropy between the-estimated motif matrix
frequencies fg\jk and background frequencies g,

NonBayesian scoring function

The NonBayesian scoring function is as follows:[14]
Y ~
Yma(A)=(loglAl) / w 3.5 05 log(6y / 8
ik
where |A| is the number of predicted sites, w is the width
of motif gik jk is the frequency of nucleotide k in
column j of the motif and g, is the frequency of

nucleotide k in the background

¢ In this work the alignment matrix is found as the first
step to find scoring function. Each element N, is
the occurrence of base k at position j of all the

aligned subsequences in a chromosome.

¢ From alignment matrix, frequency matrix is found
using formula f, =N_/N, where N is the number of

individual subsequences in a chromosome.

A C ]G | T Fos | A G| T
000 § 0.33 | 0.58 | 0.08 1 lo{4)7 i
0.17 [ 0.08 | 0.67 | 0.08 2 l211]8}1
0.00 | 0.00 | .00 | 0.00 3 lojof1z]| o
1.00 | 0.00 | 0.00 | 0.00 4 (12lafof o
0.00 | 0.00 | 000 | 1.00 5100|012
0.00 | 0.00 | 0.00 | 1.00 6 100|012
1.00 | 0.00 | 0.00 | 0.00 7 i12lolo] 0
050 [ 0.08 [0.17 | 025 8 161112 3

Alignment Matrix Frequency Matrix

3.2.3 Genetic Operators
Each individual motif configuration was represented by a

vectorAa, ..., a }where 05 a < (I_w+1)

{where w is the width of motif).
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_This algorithm applies a bit inversion mutation to
convert A, ....& .., a ) into Alal, ..,8,..,38)
with a certain mutation prohability r. The mﬁtation
probability used is 0.001. The effect of mutation move is

given below.

Aa, 2, 2,8, 2,) A(a,,3,,3,,3,,3,)

GATTACA GATTACA
GATTAGG GATTACA
GATTACA Mutation Move ~ GATTACA
GATTACA GATTACA

GATTACA

GATTACA
Figure 4: Examples of Mutation Operations

A standard one-point crossover move is also used that
allows individual configurations to share and exchange
alignment information with each other. Our population
of N individual configurations is randomly grouped into
N/2 pairs of con- figurations. For each pair of individual

configurations Aa, . .

two children configurations A(al, agb ., b, )and
., b,a

B, .

given below.

Afa
GATTACA
GATTAGA
GATTACA
GAGGACA
GAGGACA

GATTACA
GATTAGA
GATTACA
GATTAGA
GATTACA

A(a,a,a,b,b,)

e &)

.,a)and B(b, . .

. .,a_). The effects of crossover are

B(b,,...,b,)
GAGGACA
GAGGACA
GAGGAGA
GATTAGA
GATTACA

Crossover Move

GAGGACA
GAGGACA
GAGGAGA
GAGGACA
GAGGACA
B(b, b, b, a, a,

1 22 s G

Figure 5 . Examples of Crossover Operations

.»b.) a
crossover pointc is randomly generated that gives rise to

Table 1 : GA Parameters

[Population Size | 100

tMax.Generation | 2000

Selection Rank Selection
Crossover One Point Crossover
|Mutation Bit inversion

IMutation Rate | 0.001

Bayesian Scoring Function

Fitnoss Functon] y(A) = |Al. (log (PA(1) ~1 + TIIT uTogcl
) )

NenBayesian Scoring Function

¥(A) = (logla) /w T T 8 log(éyBec)

4. EXPERIMENTAL RESULTS
4.1 Dataset

In order to evaluate the performance of the Genetic
Algorithm, it is tested using nucleotide sequence dataset.
This training dataset consists of two types of nucleotide
sequences, short dataset and long dataset. The short
dataset consists of 18 ecoli sequences that contain cyclic
AMP receptor protein (CRP) binding sites. Each sequence
is 105 base pairs long and each contains at least one motif
that has been experimentally determined via foot printing
method. The cyclic AMP receptor protein (CRP) functions'
as a transcription factor in Escherichia coli. This dataset

has been previously analyzed by Lawrence and Reilly

- using an EM algorithm and by Lui using a Gibbs Sampler.

The long dataset consists of 4 Homo sapiens sequences.
It includes Homo sapiens oct6, homo sapiens elf3, homo
sapiens oct4, homo sapiens dusp3. Each sequence is 1020
base pairs long and contains transcription binding site

motifs.

4.2 Comparison of Bayesian and Nonbayesian

functions

Genetic Algorithm depends on encoding of chromosomes,

fitness function evaluation, mutation rate and crossover.
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In this work, the encoding used is value encoding, fitness
function is Bayesian or NonBayesian scoring functions

and crossover operation is one point crossover.

The genetic algorithm was executed for 2000 generation
using Bayesian fimction. The genération Vs fitness graph

shows convergence after 50 generations.

The graph oBtaihcd by genetic éiédrithm using Bayesian

scoring function is given in figure 4 below.

Figure 4. Generation Vs Fitness Graph ( Bayesian)

Also the genetic algorithm was executed for 2000
generation using NonBayesian function. The generation
Vs fitness graph shows convergence after 300

generations.

The graph obtained by genétic algorithm using

NonBayesian scoring function is given in figure5 below,

Figure 5. Generation Vs FitnessGraph -NonBayesian
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The genetic algorithm moves around the space of possible
motifs and finds best among them. The proposed
algorithm was executed in short dataset for various motif
lengths by using Bayesian and NonBayesian scoring
functions. The table 2 & 3 given below shows the
resultants motif using GA. The results are also compared
with the existing methods like Gibbs Sampling and
Enumeration method.

Table 2: Resultant Motif for E.Coli Sequence

- Gibbs Enumeratien Genetic Genetic
Leagih Sampling (Weeder) Algorithm f\lgorlthm
(AligeACE) Bayesian
NonBayesian
8 nil ccgatg cogalg cegatg
8 il lgcaagty tgcaagly igcangly
10 il cgeeeagelg cgceeagelg nit
i geggeigggce nil gegyelpgee nit
c
2 il goalcaacglgg | gpatcaacgt nil
9
20 geagaearceee nik ni nil
-taccgega

Table 3: Resultant Motif for Homosapien Sequence

Gibbs Enumeration Genetic Genetic
Motif Alporith Algarithi
Leagih | Sumpling {Weeder) gorithm gariim
(AlignACE) { Bayesian } NonBayesian
§ ni tigtga tigiga . tigtga
8 nif aatigtga aatigtyga aattglga
10 cacateacaa gteacactit ticacacttt glcacactit
cacatcanaa cacateacaa
1 aazalgagag nil aaaalgagacg nil
12 aaacttgtaagt | =adtiytaagt aaactigtaagt nil
15 agatcacaca- nit agatcacaca- nil
aageg aageg
4.3 Sequence Logo

Sequence Logo is used o visualize the appearance of the
motifs. The sequence logo for motifs of length 15 for
Ecoli and Homosapien sequence obtained using genetic
algorithm and AlignACE (Gibbs Sampling) tool is given

below.

a) Motifs in Ecoli sequences

b} Motifs in Homo sapiens sequences
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Figure 6: Sequence Logo of Ecoli Motif

i pry

@g«;!r—;fm:—qmg;{ég%

H
Les.

T = g T YT

b) Motif Obtained by Align ACE

Figure 7: Sequence Loge of Homo Sapiens Motif

5. Discussion

Motif discovery is an important problem in
computational biology since the binding of transcription
factors to upstream region motifs is crucial to the
mechanism of gene regulation, The proposed genetic
algorithm when executed both in Ecoli dataset and in
Homo sapiens dataset detected motif of various lengths
for Bayesian scoring function and NonBayesian scoring

functions, The results are concluded as follows.
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* The resultant motifs given in Fig.6(a) shows that both
Bayesian function and NonBayesian functions

detects the same motifs in Ecoli dataset.

Also in Ecoli dataset Fig 6(a), the genetic algorithm
using Bayesian scoring function detects motifs for all
motif lengths as that of AlignACE and Weeder. But
the genetic algorithm using NonByesian scoring

function detects only very short motifs,

¢ The resultant motifs given in Fig.6(b) shows that both
Bayesian function and NonBayesian functions

detects the same motifs in Homo sapiens dataset.

¢ In Homo sapiens dataset, the Bayesian scoring
function gave motifs till motif length 12, But
NonByesian scoring function detected only very

short motifs.

The comparison between Bayesian and NonBayesian
scoring functions shows that Bayesian scoring function is
good for motif detection, since NonBayesian scoring

function detects only very short motifs.

6. CONCLUSION

The field of motif discovery brings together researchers
from several disciplines; in particular from biology,
statistics and informatics. Additionally, research in the
field is fairly recent and moving at a fast pace. This has
resulted in a broad range of computational methods that
are described with different vocabulary and different
focus, making it difficult to spot similarities as well as

differences between methods.

This work using geneticic algorithm detected optimal
motifs by moving around the solution space by applying
an evolutionary process to an entire population for
possible solutions. As GA runs parallel the motifs are

detected in a single run than the other traditional
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methods, The future work is to compare the performance
of GA with some hybrid approach and testing the same

for protein datasets.
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