Karpagam JCS Vol. 3 Issue 1 Nov. - Dec. 2008

Component Conﬁgura‘*}ion in Component-Based Systems

Parminder Kaur', Hardeep Singh?

ABSTRACT

The world of software development has rapidly changed
in the last few years due to the adoption of component-
based technologies. The classical software configuration
managément, which deals with source code versioning,
becomes insufficient in the world where most components
are distributed in a binary form. The task of configuration
management is not well supported by conventional files,
directories and ad-hoc persistence mechanisms. Typed,
immutable objects combined with ubiquitous versioning
provide a much more sound base. In this paper, an effort
has been made to analyze the application of configuration
management in component-based systems. This paper
also summarizes that some level of configuration control
can be achieved if components are identified with their

version and dependencies to other components.

Key Words : Component, Component Configuration
Management, Software Configuration Management,

Configuration Model, Component-Based Systems
1. INTRODUCTION

A practical software system consists of hundreds or
thousands of separate but related components. A software
development environment (SDE) helps in managing this

collection by providing configuration management

'Lecturer, Dept, of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar email:
parminderkaur@yahoo.com

*Professor, Dept. of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar email:
hardeep gndu@rediffmail.com

services. Version management is associated with tracking
the evolution of individual components. However,
configurations naturally exist as versions, and effective
management of such configurations distinguishes a truly

useful SDE for large, multi-user projects.

An SDE typically relies on the persistent storage facility
in the form of files and directories. The weak functionality
of this storage facility is that it does not permit adequate
modeling of configurations. The development in object-
oriented database (OODB) technology provides persistent
programming languages, which prove helpful in adequate
modeling of configurations [1]. Object-Oriented Analysis
and Design {(OQAD) can be applied in thé construction
of Software Configuration Management (SCM) software.

Example of such system can be found in [2].

In recent years, the focus of SCM research is on software
process support in SCM systems, distributed
configuration management systems and unified version
models [3,4]. Component-based software development
(CBSD) is an emerging paradigm in software
development, which has changed the way we develop
software greatly [5]. The aim of CBSD is to develop new
software by widely reusing pre- fabricated software
components. Component-based software development
can be seen as an extension of object-orientation, but takes
one step further. Object-Oriented Prograrnming (OOP)

binds the implementation to a particular class library and

language. Components, on the other hand, are generally

not bound to a particular language and they communicate

through independent interfaces. This paper explores the

916

Component Configuration in
Component-Based Systems

applications of software configuration management -
(SCM) in object-oriented (O0) systems and compone 2

based systemns.
2. SoFTWARE CONFIGURATION MANAGEMENT

Software Configuration Management (SCM) is the
control of the evolution of complex systems. More
pragmatically, it is the discipline that enables us to keep
evolving software products under control, and thus

contributes to satisfying quality and delay constraints.

SCM emerged as a discipline soon after the so called
software crisis was identified, i.e. when it was understood
that programming does not cover everything in Software
Engineering (SE), and that other issues were hampering

SE development, like architecture, building and evolution.

The importance of SCM has been widely recognized, as
reflected in particular in the Capability Maturity Model
(CMM) developed by the Software Engineering Institute
(SEI) [6,7]. CMM defines levels of maturity in order to
assess software development processes in organizations.

SCM serves different needs [8] like:

¢ As a management support discipline, it is
concerned with controlling changes to software
products [8-11], It covers functionalities such
as identification of product components and their
versions, change control (by establishing strict
procedures to be followed when performing a
change), status accounting (recording and
reporting the status of components and change
requests), and audit and review {quality
assurance functions to préserve product

consistency).

* Asadevelopment support discipline, it provides

 functions that assist developers in performing

917

coordinated changes to software products [12].
To support developers, SCM is in charge of
accurately recording the composition of
versioned software products evolving into many
revisions and variants, maintaining consistency
between interdependent components,
reconstructing previously recorded software
configurations, building derived objects
(compiled code and executables) from their
sources (program text), and constructing new
configurations based on descriptions of their

properties.

SCM refers to configuration management
processes and systems for managing the software
development cycle. These processes further deal
with dependencies between project components
that are created and those that are generated
between source files and executables. The

features provided by SCM include:

Planning, controlling and generating different

product configurations.

Communicating and controlling engineering

changes and tracking their implementations.
Synchronizing product development.

Tracking problems backward to discover their
origins and forward to locate which components

have been cormupted.

The most common tools use a check out / check
in procedure to solve the change management,

synchronization, and error tracking aspects of

- CM. Under this scheme, a project is divided up

into units of Togical functionality called modules.

Most SCMs, commercial or free, use the host

Karpagam JCS Vol. 3 1ssue 1 Nov. - Dec. 2008

file system for storing and comparing versions
and define a module as a collection offiles in a
project subdirectory [3]. The goal of the
configuration management is to support the
precise specification of a software system that

may OCCUr in many versions and variants.
3. CompoNeENT-BASED SYSTEMS

Component - Based Software Development (CBSD) is
one recent trend in tﬁe domain of Software Engineering
(SE). One major reason why this paradigm has emerged
is the need to build software by assembling reusable units,
or components, zs opposed to building whole application
from scratch, The styfe and architecture of the applications
being developed has significantly changed over the years.
Software systems are also becoming increasingly complex
and are providing ever increasing functionality. A set of
infrastructure standards and supporting technologies like
COM, COM+, .NET, CORBA, JavaBeans [13-15] has
emerged during the last few years. In order to produce
such systems cost-effectively, suppliers often use
component-based technologies instead of developing all
the parts of the system from scratch. The motivation
behind the use of components was initially to reduce the
cost of development, but it later became more important
to reduce the time to market. By using components, it
has become possible to produce more functionality with

the same investment of time and money [16].
3.1. Component Configuration Management

In component-based systems, it is difficult to manage
components during the lifetime of a system. A-system of
components is usually configured only during the build-
time when known and tested versions of components are
used. Later, when the system evolves with new versions

of components, the system itself has no mechanism to

detect if new components have been installed. There:
might be a check that the version of replacement
component is at least the same as or newer than the
original version, This approach prevents the system from
using old components, but it does not guarantee its
functionality when new components are installed. Using
component configuration management, it can be possible

to answer questions, such as:

e« Which components have been added/removed

after are configuration? -

¢ Which dependencies have been added, removed

or affected by a reconfiguration?

¢ If a component is updated, which other

components in the system are affected?

e What is the effect on a system if a new system

of component is installed?

e ' What is the difference between two

. configurations?

These are some of the difficult questions which, when
answered correctly can give a better understanding of a
system and permit a certain level of predictabilit}; when

upgrading systems {17-19].
3.1.1. Identification Of Components In Use

In a component-based system, generally, there is a lack
of information for identification of components used, their
versions and history. There is no standard interface that
can be used to gather sufficient information about the .
components to permit the creation of a dependency graph.
Such a dependency graph is necessary to predict the”

effects of updating the system with new components.

While using configuration management, a component is

identified by various parameters like name, creation time,

918

Component Configuration in
Component-Based Systems

size, a version identifier and a unique number set by the -
compiler. The identification data is used to calculate?a
unique key to be used to compare components. The key
is divided into two parts, one for identification, and the
other for version. If no version information can be
obtained from the component itself, it can be added

mamually using the embedding pattern {18]j20}.
3.1.2. Configuration Model for Components

A configuration model defines how components are
treated and put under version control. A system of
components can be treated as a baseline and be placed
under version control. The components themselves are
not put under version management but the unique key,
which identifies them, is used as a representative. This
means that if § is a set:of keys, then for improved
performance S is to be sorted to permit the easy location
of components. This is to be considered as a prerequisite -
for comparing configurations by means of deductions

from the dependency graph. .

Grouping many different components with same functions
can extend configuration model. In that case, it is possible
to change components, if one of the components is non

functional or is unavailable for any reason [21].
3.1.3. Change Management

The reasons for changes in components are multiple and
complex. Changes can originate from many different
sources. Change ﬁiénagement handles all changes in a
system. The reason for a change can be an error,
improvernent of the compenent or added functionality.
Change management includes tools anﬂ pr;;ncesses which
support the organization and track the changes from the
origin to the actual source code. In configuration
management, change management can be applied to both -

internal and external components. In the case of internal

919

components, it is possible to use the same tools for change
management as for the development of the component
itself. External componenté can be placed under change
management to permit the monitoring of changes and
bugs, which ocour. Instead of attaching source code files
to change requests, the name of the component can be

used to track changes [22, 23].
3.1.4. Managing Dependencies

Dependencies between components canbe compufed and
stored for further management. The benefits of this are
multiple. It is possible to analyze what has been affected
in the system and to create determinism when updatingr
the systern with new components. Dependencies between

components can be represented with a directed graph.

r"—'\
a— ub

c d
(A graph with nodesa, b, ¢,d)
Figure shows an example of graph G= {V, E), in which
V={a,b,c,d}andE= {(a, b), (b, a}, (b, d}, (¢, a), (¢, b),
(d, &)}

Paths are introduced to be able to define dependencies
between components. An example of a path from a to d
in above figure is <a, b, d> since each pair (a, b) and (b,
d) is a part of the set of edges E. Knowing that there is a
path from a to d indicates that a is dependent on d, since
a is affected if d changes. A directed graph can be
represented through matrices, lists and nodes with
pointers to their children and parents. The transitive

closure can be calculated to gather all the possible edges

_ of a graph as shown in following figure. It is possible to

gather all the dependencies for each of the different

representations.

Nov. - Dec, 2008

Karpagam JCS Vol 2 Issue 1

The graph in figure with the transitive closure calculated.
The dashed lines are edges, which have been inserted in

the graph.

Different algorithms can be used to calculate the transitive
closure to obtain all paths in a graph, Warshall’s is a simple

well-known algorithm, which works on matrices [23].
3.1.5. Dependencies Between Components

As we know that components are the nodes in a graph
and the dependencies are the edges, If dependencies are
defined and described, it is possible to define the set of

all dependencies as a set of dependency pairs.

Once dependencies have been calculated, it is possible
to create a system structure, with different levels of
components [24]. On the lowest level of compeonents are
components without dependencies to other component.
This type of system structure is used as a2 model to
calculate quality properties such as complexity and
localization factors. The complexity is proportional to
the number of dependencies between the components.
The localization factor denotes the number of levels

between components.

A configuration is a set of components and their
dependencies to other components. The configuration is
a baseline since it represents a version of a system at a
particular time. Configurations are stored under version
control for later retrieval. New installed components can
be compared with a configuration to permit recognition

of the affected components in the system. When new

compenents are installed, new nodes in the dependency
graph can be added. In the same way, nodes can be-

removed if components are removed.

Broken dependencies can be detected when the old
configuration is compared with the new. New versions
of an existing component can be identified by the version
part of the unique key which identifies all components.
New versions simply replace the older in the graph. When
comparing graphs, new versions can be detected with the
help different keys. For proper dependency analysis, it is
required that a component and its version should be

identified,
3.1.6. Differences Between Configurations

Differences between configurations can be computed and
used to obtain a deeper understanding of what has been
changed in the system. The dependency graph, which is
represented by a matrix or by lists, can easily be used to
determine what has been affected when a new version of
a component has been installed. It is possible to obtain
version history from different configurations by
comparing different versions of the dependency graph

[21]127].
4. CoONCLUSION

In this paper, it is summarized that the objective of the
configuration management is to support the precise
specification of a software system that may occur in many
versions and variants. It is possible to construct arbitrarily
complex collections of components, connected in an
OO0DB, much more easily as compared to file system.
This paper also analyzes the requirements of

configuration management in CBSD. By applying

‘configuration management techniques to component

based systems together with dependency analysis, it is

possible to predict the effects of 2 compoenent update.

920

Component Configuration in
Componeni-Based Systems

Future directions of research include the need to find more -

effective techniques for integrity maintenance, constituent
merging at syntax level and for logical versioning of

constituents in component-based systems.
REFERENCES

[1} Malcom P. Atkinson and O. Peter Buneman, “Tvpes
and Persistence in Database Programming
Languages”, ACM Computing Surveys 19,2
105-190, June 1987,

{2] Mick Jordan and Michael .L. Van De Vanter,
“Software Configuration Management in an Object
Oriented Database ", In proceedings of the USENIX
Conf. on Object-Oriented Technologies (COOTS),
Monterey, CA, PP. 26-29, June 1995.

[3] R. Conradi and B. Westfechtel, “Version Models
Jor Software Configuration Management”, Software
Configuration Management Symposium, SCM-7,
1977, Springer, ISBN 3-540-63014-7, ACM
Computing Surveys, Vol. 30, No, 2 .

A. Zeller and G. Snelting, “Unified Versioning
lthraugh Feature Logic”, ACM Transactions on
Software Engineering and Methodology, 6(4):398-
441, October 1997.

(5] M. Aoyama, “Component-Based Software
Engineering: Can it Change the Way of Software
Development?”, In Proceedings Vol. 2 of the 1998
International Conference on Software Engineering,
April 1§98.

{6] Paulk M.C, Weber C.V, Curtis .B, Chrissis M.B,
“The Capability Maturity Model— Guidelines Jor
Improving the Software Process ", Addison-Wesiey,
Reading, MA, 1997,

921

[7] Humphrey W.S, “Managing the Sofiware Process
SEI Series in Software Engineering, Addison-

Wesley, Reading; MA, 1989,

[8] Feiler .PH, ED. 1991b. Proceedings of the Third

International Workshop on Software Configuration

Management (Trondheim, Norway, June), ACM
Press, New York.

[9] Bersoff .E.H, Henderson .V.D and Siegel 5.G,
“Software Configuration Management: An
Investment in Product Integrity”, Prentice-Hall,

Englewood Cliffs, NJ, 1980.

[10] IEEE 1983. IEEE Standard for Software
Configuration Management Plans: ANSI/IEEE Std
828-1983. IEEE, New York.

[11] IEEE 1988. IEEE Guide to Software Configuration
Management: ANSI/IEEE Std 1042- 1987 1EEE,
New York.

[12] Babich .W.A, “Software Configuration

Management", Addison-Wesley, Reading, MA.

[13] OMG, CORBA, http://www.omg.org/corba

[14] Microsoft COM, http://www.microsoft.com/com ,
http://www.microsoft.com/net/
http://msdn.microsoft.com/library/

[15] Sun Microsystems, JAVA, hitp://java.sun.com,
http://java.sun.com/beans 7

[16] Workshop Proceedings Component — based Software
Engineering: building systems from components,
Technical report 2002-2005, Malardalen University,
Sweden, 2002

[17] Cook .J.E and Dage .J.A, “Highly Reliable

Upgrading of Components ™, In Proceedings of 21st

International Conference on Software Engineering,

ACM Press, 1999,

Karpagam JCS Vol. 3 issue 1 Nov. - Dec. 2008

18] Hoek .A.V.D, “Capturing Product, Line
Architectures . In Proceedings of 4™ International

Software Architecture Workshop, ACM Press, 2000.

[19] R. Bialek, “The architecture of a dynamically
updatable component-based system”, COMPSAC,

2002.

[20] Larsson .M and Crnkovic .1, “New Challenges for
Configuration Management”, In Proceedings of 9th
Symposium on System Configuration Management,
Lecture Notes in computer Science, nr 1675,
Springer Verlag, 1999.

[21] Larsson .M and Crnkovic .I, “Component
Configuration Management”, In Proceedings of Sth

Workshop on Component Oriented Programming,

2000.

[22] Garlan .D, Allen .R and Ockerbloom .J,
“Architectural Mismatch: Why Reuse is so Hard”,
IEEE Software, Vol. 12, Issue .6, 1995,

[23] Eve .J and Kurki-Suonio .R, “On computing the
transitive closure of a relation ”, Acta-Informatica,
Vol. 8, No. 4, 1977.

[24] Crnkovic I, “Large Scale Software System
Management”, Ph.D. Thesis, Department of
Electrical Engineering, University of Zagreb, 1991.

{25] Alexis Leon, “Software Configuration Management
Handbook”, Second Edition, Artech House,
London, 2005. '

[26] Mario .E. Moreira, “Software Configuration
Management Implementation Roadmap”. John
Wiley & Sons Ltd. 2004,

[27] Parminder Kaur, Kuljit Kaur, Hardeep Singh,
“Configuration Management in Object-oriented
Systems & Component-Based Systems”, accepted
in 16th Int’] conf. on Software Engineering & Data
Engineering SEDE-07, Las Vegas, U.S.A. July 2007.

Author’s Biography

Parminder Kaur, is working as

lecturer, Deptt. of Computer Science
& Engg., Guru Nanak Dev University,
Amvritsar. Her field of interest includes
Software Engineering and
Component-Based Development
Systems. She has published twelve national/international

papers in this area.

¢ Dr. Hardeep Singh, is working as
Professor, Deptt. of Computer Science
& Engg, Guru Nanak Dev University,
Anmritsar. His areas of specialization are
Software Engineering, Information
-H4 v Systems and Open Source Systems. He

has published more than fifty papers in National/

International journals and conferences.

922

