Karpagam Jes Vol. 4 Issue § July - August 2010

Implementation of FPGA Based

Incremental PID Controller Using

Conventional Method and Distributed Arithmetic Algorithm

Mariamma Johw',

ABSTRACT

‘In this paper, two efficient design schemes for
implementation of the Incremental Proportional-Integral-
Derivative (PID) controller using Field Programmable
Gate Array (FPGA) technology are presented.
Conventional implementation and also Distributed
arithmetic based implementation of Incremental PID
controller is done. Conventional implementation contains
a large number of multipliers and adders. It’s not focused
on optimal use of hard ware resourc.es and do not
efficiently utilize the memory-rich characteristics of
FPGAs. An FPGA chip consists of a lot of memory
blocks, referred to as Look-Up Tables (LUT), which can

be utilized to implement efficient designs. In the

Distributed Arithmetic (DA) scheme is an efficient LUT -

design method, and is very promising in the FPGA
implementation of PID controller. Distributed arithmetic
replaces multiplication by addition and shifting. The
values are precomputed and placed in LUT. Based on
the LUT scheme, the proposed PID controlier reduces
the cost of the FPGA design by enabling the chip to

'PG Scholar, Embedded Systems, Dept. of Electronics
and Instrumentation Engineering, Karunya University,

Coimbatore. Email: mariammajohn@karunya.edu.in

*Lecturer, Dept. of Electronics and Instrumentation
Engineering, Karunya University, Coimbatore.
Email:deepanasri@rediffmail.com

*Assistant Professor, Dept. of Electronics and
Instrumentation Engineering, Karunya University,

Coimbatore. Email:anithajohnson2003@gmail.com

1776

B. Thilagavath?,

Anitha Mary. X°

accommodate more logic and arithmetic functions while

requiring less power consumption,

Keywords : PID Controller, Incremental Form,
Conventional Method, Distributed Arithmetic, FPGA,

1. InTrRODUCTION

Proportional Integral Derivative (PID) controller is the
most common type of controller used in dynamic systems.
An important feature of this controller is that it does not
need a precise analytical model of the system that is béing
conirolled. For this reason, PID controllers have been
widely used in process control, manufacturing, robotics,
automation, transportation, and interestingly in real-time
scheduling of concurrent tasks in multi-tasking

applications.

PID controllers are often combined with logic, seqﬁen’tial
functions, and other blocks to implement complicated
systems. Implementation of PID controllers has ‘gone
through several stages of evolution, from the eafly
mechanical and prneumatic designs to the microprocessor-
based systems. Recently, Field Programmable Gate
Arrays (FPGA) have become an alternative solution for
the realization of digital control systems, previously
dominated by the general purpose microprocessor and
application specific integrated circuits (ASIC). The
FPGA-based controllers offer advantages such as high-
speed computation, complex functionality, real — time
processing capabilities, and low power consumption

.These are attractive features from the embedded systeimns

" design point of view.

implementation of FPGA Based Incremental PID Controller Using Conventional

Method and Distributed Arithmetic Algorithm

Conventional implementation of FPGA based confrollers
have not focused on optimal use of hardware resources.
These designs usually require a large number of
multipliers and adders and do nof efficiently utilize the
rﬁemory—rich characteristics of FPGAs. An FPGA chip
consists of a lot of memory blocks, referred to as Look-
Up Tables (LUT), which can be utilized to implement
efficient designs. In this work, we utilize the Distributed
Arithmetic (DA) scheme , which is an efficient LUT
design method, and is very promising in the FPGA
implementation of PID controller. Incremental form of
PID controller is obtained from the basic controller

equation.

The organization of this paper is as follows. In section 2,
PID controller is discussed. In Section 3, incremental form
of PID is discussed. Section 4 throw some light on
ﬁlultiplier based conventional method. Section 5 and 6
tells about DA and its fusion on incremental equation.

Simulation results are discussed in section 7.
2. Pip CONTROLLER

The PID control algorithm is one of the most commonly
used control algorithms in industry. A proportional-
integral—derivative controller (PID controller) is a generic
control loop feedback mechanism (controiler) widely used
in industrial control systems. A PID controller attempts
to correct the error between a measured process variable
and a desired set point by calculating and then outputting
a corrective action that can adjust the process accordingly

and rapidly, to keep the error minimal as shown in Figl,

Figure 1 : Block Diagram of a Control System

1777

In Fig.1 variable (e(t)) represents the tracking error, the
difference between the desired input value (set pbint) and
the actual output (output). This error signal (e(t)) will be
sent to the PID controller, and the controller computes
both the derivative and the integral of this erTor signal.
The signal (u(t)) just past the controlfer is now equal to
the proportional gain (kp)times the magnitude of the error
plus the integral gain (k)times the integral of the error
plus the derivative gain (k Jtimes the derivative of the

error. T, is the reset time and T, is the derivative time.

delt}

ule) = kp[g(t) + 'IE‘_J- o(t)ae + Td_g't“‘)
o L

The PID controtler calculation (algorithim) mvolves three
separate parameters; the proportional, the integral and
derivative values. The proportional value determines the
reaction to the current error, the integral value determines
the reaction based on the sum of recent errors, and the
derivative value determines the reaction based on the rate at
which the error has been changing. The weighted sum of
these three actions is used to adfust the process via a control
element such as the position of a control valve or the power

supply of a heating element.

3. IncrEMENTAL FORM

Analog Control refers to the design and implementation
of controllers in the continuous domain. There are a
number of ways by which this common and versatile
controller can be implemented in discretised form. The
two forms used are incremental (velocity) form and
positional (full valve) form. The equation (1) is discretised

and the following equation is obtained :

uln} =ky elnl + K Z elf] + k; lelnl — oln —~ 11] 2)

=t

r
Where k; = k& T is the integral coefficient and

T :
ky=ly ?d is the derivative coefficient. This formis called

Karpagam Jes Vol. 4 Issue 5 July - August 2010

the position forn of the PID aigorithm. An alternative wouldy
be to compute ufn] based on past output u[n-1and correction
term Au(n). This approach is ofien called as the velocity
form ofthe PID algorithm. The first step in this regard would
be to calculate ufn-1] based on equation(2).

-1

uln- 1=k, eln-11+ § Ze[j] + kg [edn-1) - eln-2]] 3)

i=9
Then calculate correction term as ;

dulnl = uln] — uln - 1]
= eln] + k; eln ~ 11 4 &, oln — 2] “)

ky = kp ks kd
—kp = 2k

ks = Iy

.JE:-L =

The current control output is calculated as:
ulnl = uln =~ 1] + Auln] (5)
= uln—1]+kyelnl + &, eln — 1] + &, ein— 2] (6)

The above equation (6) represents the incremental form

of PID controller,
4. CONVENTIONAL METHGD

Incremental form of PID is decomposed into its basic
operations. Here p and p . Tefers to the controlled variable
and its desired value (setpoint) respectively. p0,p2,p2,s1,52

are temporary variabies.

e[n] =P + (- Pd)

PO = k_ * efn]
P1=k *e[n-1]
P2 = Akz * e{ﬁ-z}
S1=P0+PI

§2=P2 +ufn-1]

ufn]=S1+ 82

1778

Input represents the current position P, The negation of P, P
neg, is generated by bit-wise complementing and adding 1.
At the rising edge of control, signal e[n] of the last cycle is
latched at register REG1, thus becomes efn—1] of this cycle.
In the same manner, e[n-2] and ufn — 1] are recorded at
REG3 and REGH4 by latching e[n— 1] and u[n] respectiveiy.
The registers can be set to initial values of Q by asserting the
Teset signal, reset. As long as the desired position Pd is also
initialized to 0 when the system is reset, the control output is
0, which can keep the controlled device (i.c. the motor, in
this system) static. The computed control output u[n] may
exceed the range that the controlled device can bear, Bounder
is a value limitation logic that keeps the output in the user

defined range of UpBound and LowBound.

The VHDL coding for conventional method were written

and simulation result was obtained.

5. DISTRIBUTED ARITHMETIC

Distributed Arithmetic (DA), alon_g with Modulo

Arithmetic, are computation algorithms that perform

multiplication with look-up table based schemes. Both
stirred some interest over two decades ago but have
languished ever since. Indeed, DA specifically targets the
sum of products (sometimes referred to as the vector dot
product) computation that covers many of the important
DSP filtering and frequency transforming functions.
Ironically, many DSP designers have never heard of this
algorithm. Inspired by the potential of the Xilinx FPGA
look-up table architecture, the DA algorithm was
resurrected in the early 90°s and shown to produce very

efficient filter designs.

The derivation of the DA algorithm is extremely simple
but its applications are extremely broad. The mathematics
includes a mix of Boolean and ordinary algebra and

Tequires no prior preparation - even for the logic designer.

Implementation of FPGA Based Incremenial PID Confroller Using Conventional

The arithmetic sum of products that defines the ;;sponse
of linear, time-invariant networks can be expressed as:

X

yin)= Z Ay %{n) (7
k=1

where :
y(n) = response of network at time n.
x(n) = kth input variable at time n.

A= weighting factor of kth input variable that is constant

for all n, and so it remains time-invariant,

In filtering applications the constants, A, are the filter
coefficients and the variables, x, , are the prior samples
of a single data source (for example, an analog to digital
converter). In frequency transforming whether the discrete
Fourier or the fast Fourier transform - the constants are
the sine/cosine basis functions and the variables are a
block of samples from a single data source. Examples of
multiple data sources maybe found in image processing.
The multiply-intensive nature of equ 7 can be appreciated
by observing that a single output response requires the
accumulation of X product terms. In DA the task of
summing product terms is replaced by table look-up
procedures that are easily implemented inl the Xilinx
configurable logic block (CLB) look-up table
architecture.

We start by defining the number format of the variable to
be 2’s complement, fractional - a standard practice for
fixed-point microprocessors in order to bound number
growth under multiplication. The constant factors, A,,
need not be so restricted, nor are they required to match
the data word length, as is the case for the microprocessor.
The constants may have a mixed integer and fractional
format; they may be written in the fractional format as

shown in equ. 8

1779

Method and Distributed Arithmetic Algorithm

Rei

— N e
Xy = X T z My &

=1
where x, is a binary variable and can assume only values
of 0 and 1. A sign bit of value -1 is indicated by x, .. Note
that the time index, n, has been dropped since it is not
needed to continue the derivation. The final result is

obtained by first substiiuting equ.8 into equ.7

LA)

R
= 2oxasAt D D XeeA 20

Cd} Xl =

X

4
y= 2& [%ot Zxki1 2¢]

T

and then explicitly expressing all the product terms under

the summation symbols equation 9:

Y= {xp tA; TRy fA TN sAxT. . T Xu "AR
Fixy sA T X RAFRG SATT. . LF g e Ag)2)
- E,‘Cu % :"\; = N e A+ Xz 0“\3+ v oe T Xy 4;’\3}2‘3
E-]
L]
L]
+ [Xypo® Ay T XypaoeAsT _\23[;,;3"."\3 o .7 KK‘:n.g:,DAK‘EZ"n':)
+ [XA T Kyp®ATE Xxna @A T L L T XA

Each term within the brackets denotes a binary AND
operation involving a bit of the input variable and all the
bits of the constant. The plus signs denote arithmetic sum
operations. The exponential factors denote the scaled
contributions of the bracketed pairs to the total sum. You
can now construct a look-up table that can be addressed
by the same scaled bit of all the input variables and can

access the sum of the terms within each pair of brackets.

The arithmetic operations have now been reduced to
addition, subtraction, and binary scaling. With scaling
by negative powers of 2, the actual implementation entails
the shifting of binary coded data words toward the least
significant bit and the wse of sign extension bits to
maintain the sign at its normal bit position. The hardware

implementation of a binary full adder {as is done in the

. CLBs) entails two operands, the addend and the augend

to produce sum and carry cutput bits. The ultimate in

Karpagam Jes Vol. 4 [ssue 5 July - August 2010

gate efficiency would be a single DALUT, a single paralle}

adder, and, of course, fower tlip-flops for the input daé

source. Agaim with our B=16 examples, a rephrasing of

equation 9 yields the desired result :

y= {1 {IsumlZizt = fsum1a) 2+ lsumi 3324+ [umi 2] 2 fauml 1) 27
= [suml0]32" ~{sum9 1} 2 & {sum8]} 2 + fsumT3 T - {surm6] 2

Houm3 |12+ fsumd 2 faum3] 12 ¢ sum2]} 20+ (sumi)2
» {sumd}

Starting from the least significant end, i.e. addressing the
DALUT with the least significant bit of all K-1 and then
added to the DALUT input variables the DALUT
contents, [suml5], are stored, scaled by 27 contents,
[suml4] when the address cilaﬁges to the next-to-the-
least-significant bits. The process repeats until the most
significant bit addresses the DALUT, [sumO]. If this is a
sign bit a subtraction occurs. Now a vision of the hardware
emerges. A serial shift registez, B bits long, for each of
the K variables addresses the DALUT least significant
bit {irst. At each shift the output is applied to 2 parallel
adder whose output is stored in an accumutator register,
The accumulator output scaled by 2-' henceforth, the
adder, register and scalar shall be referred to as a scaling
accumulator, The functional blocks are shown in fig. 2.
All can be readily mapped into the Xilinx 4000 CLBs.
There is a performance price to be paid for this gate

efficiency - the computation takes at least B clocks.

*

m Wy, KiXg e Xy

DALUT
Xz

Xp X Hg o X
i Scaling Accamutatar
Bt htiinu

: Ty

H

© G i

2K wume [TTTF | fddar A A 1
by A bils P Sublract b ¢

| .
: :
‘

.....................................

X3

m ¥p XqKg-ae Xp

Xcnhnr

Ril

X

Ko, K1Kz - X,
PSR L T n

Figure 2 : DA Representation

1780

6. DA O~ IncREMENTAL Form

Fig 3 shows PID based control systemy; here the output from
ADC will be 8 bit if we are using an 8 bit ADC, This should
be multiplied with step size and then only we get P. The
difference between P and P 4, Bives error e[n] which. forms

the input to controller and it produces a desired controller

outputu[n].
C_'mri Controller
signa
set point ey "EEE‘]“
Pd + : output
s PID Controlh?r g System :
P .
AD b Sensor |

Figure 3 : PID Based Control System

We need to create 2 LUT for implementing PID with
distributed arithmetic. A LUT can be of 2%x | size, where

k is the number of inputs to LUT.

LUT, for the ADC Side

Here we have to find P by the following equation
P=aln] *s (10

Where, a[n] is the n bit output from ADC s is the step
size
so for the LUT we have | input a[n], so we form 2! x 1
LUT. The conteats of LUT, table are as shown in Table
I.

Table 1 : Contents of LUT,

a[n] input P
0 0
1 s

Fig 4 shows the block diagram of ADC side to implement.
The afn] output from ADC acts as the input to LUT, It
will be placed in a parallel serial register and will be
giving out ! Ish at I clock this become the input to LUT.
In LUT value corresponding to tl;e input bits ‘0’ and 1’

implementation of FPGA Based Incremental PID Controller Using Conventional

Method and Dishibuted Arithmetic Algorithm

is pre- computed and stored so as the input bjt come
corresponding output will be given out from Llf{f which
will be given to adder and then to accumulator and shifted
by 21, After shifting its fed back to adder/subtractor and
gets added with next output of LUT. Thus after n clock
cycles the result of multiplication (actually done by
shifting and addition) is obtained in P.

LUT1
1] a0alad_an [fpan}] P P after
ain 2| nelock
I PSR 0 ¢ adder z
1 5 -
2
s= step size

Figure 4 : Block Diagram of ADC Side

LUT, for error containg part of incremental form
Equation (6) can be written as shown below

ufn] =uln—1]+ E (4.14)

Where, ufn] is the controller output
u[n-1] is the past controller output
E=rkyeln] +k, efn — 1} + kefn—2] (4.15)

Here e[n), e[n-1], e[n-2] are the inputs to LUT, Size of
LUT will be 2* x 1. The contents of LUT, table are as
shown in Table 2. As in Fig 5 the input P (which comes
as the output of LUT, after n clock cycles) is subtracted
from P, and it form the error e[n] which will put in parallel

serial register and will output 1 1sb at I clock.

Table 2 : Contents of LUT,

i}

e[n-1] | e[n-2] E
0 0 0

1 &

0 K

1 K + K,
0 . ko
1

0

1

ko + ko
ko + k
ot kot kg

— e | | O i | e]

1781

wi

| W saasesel T o g

o efe2eialey on

il = o
11 eexdos o

a Y
e —_ﬂm
i ks ’[Ll kat i ‘
1| bl) 1
o ey (L [j—
' - - {

ol

TR

5

— e e o ook &

H

Figure 5 : Block Daigram of Incremental Equation
Side
At the rising edge of conirol, signal e(n) of the last cycle
is latched at register regl, thus becomes e(n-1) of this
cycle, In the same manner, e{n-2) and u(n -1) are recorded
atreg2 and reg3 by latching e(n - 1) and u(n) respectively.
At firstinstant e[n-1] and e[n-2] are zero. e[n],e[n-1].e[n-
2] forms the input of LUT, and as said before the output
gets added and shifted by 2. And after n cycles we get
the u[n] which is added with previous u[n-1] to give the

output of controller.

7. SimuLaTION RESULTS

In the conventional method’s coding output from 8 bit
ADC is nultiplied with the step size. This output of this
raultiplication forms P input which will be stored as ‘Pf”

containing fractional part and ‘Pi’ containing integer part.

Its twos compliment is taken an added with the desired
output ‘Pd’ the fractional part of ‘P and “Pd’ is first added
and if it produces a carry it will be added with their infeger
portions. When reset zero initial values of e[n], e[n-1],
¢[n-2], u[n-1] are made zero. The output value will be

obtained only when clock is given,

The error obtained is stored as separate integer and
fraction portion. The value of e[n] will be latched to
e [n-1] and e[n-2] as explained previously. Calculations
are done taking fractional and integer portion separately.
The fraction part of oﬁtput is obtained in ‘outputf” and

the integer portion in ‘outputi’.

Karpagam Jos Vol. 4 Issue 5 July - August 2010

The RTL schematic of code is as shown-in Fig 6, the.
multipliers and adders are clearly seen on the diagraih,
The simulation wave form is shown in Fig.7. Conventional
implementation of FPGA based controllers have mot
focused on optimal use of hardware resources. These
designs usually require a large number of multipliers and
adders and do not efficiently utilize the memory-rich
characteristics of FPGAs. So we now go for Distributed
.Arithmctic scheme which uses LUTs of FPGA.

Figure 6 : RTL Schematic

U

Figure 7 ; Simulation Waveform

8. ConcLusion

In this paper conventional method of incremental pid

controller has been simulated in model sim, now going

1782

. to fuse distributed arithmetic algorithm onto this

incremental equation. By proposed DA-based LUT
scheme, the memory inside FPGA has been utilized to

provide efficient design for PID controllers.

Future works include writing code for a DA scheme based
on the block diagram designed. Implementation of
algorithms on FPGA SPARTAN 2E and hardware interface

like a temperature control system.
REFERENCES

[1] Yuen Fong Chan, M. Moallem, Meriber IEEE and
Wel Wang, MemberlEEE, “"Design and
Implementation of Modular FPGA-Based PID
Controllers”, IEEE Transactions on Industrial

Electronics, Vol.54, No .4, August 2007,

[2] Yuen Fong Chan, M. Moallem and Wei Wang,
“Efficient Implementation of PID Control
Algorithm using FPGA Technology”, 43rd IEEE
Conference on Decision and Control , PP.14-17,

December 2004.

[3] Wei Zhao, Byung Hwa Kim, Amy.C. Larson and
Richard M. Voyles, “FPGA Implementation of
Closed-Loop Control System for Small-Scale
Robot”, Seagate Technology, Shakopee, MN,
advanced robotics, 2005, ICAR ’05, Proceedings,
12* international conference Publication Date: 18-

20 July 2005.

{41 A White, "Application of distributed arithmetic to
digital signal processing: A tutorial review”, IEEE
Trans. Acoust Speech Signal Process, Mag,
Vol.6,No.3.PP. 4 t0 19, Jul 1989.

[5] " Therole of distributed arithmetic in FPGA based

signal processing™

e o S it T it Do e o s, 0L e 2 am s e e ARt e B P el it e e e e A e r e

lmplemeniuhon of FPGA Based Incrementcl PID Contrcller Using Conventional

" Method and Distributed Arithmetic Algorithm

Author’s Biography

Mr. K. Rajsekaran, received B.E. ECE in
PSG tech, Coimbatore in the year 1976
{ and M.E (Instrumentation) from IIT

Kharagphur in 1978. Currently pursuing

Ph D in Anna University Coun’oatore He is working as
HOD for the past 7 years.

Mariamma John, P.G. scholar from

Karmnya university, Coimbatore.

Anitha Mary. X, received Bachelor of
Engineering (electronics and
instrumentation engineering) from

Karunya Institute of Technology inthe

; " year 2001 and Master of Engineering

(VLSI Design) from Anna University, Coimbatore inthe
year 2009. Currently pursuing Ph.D in Control System
area. She attended 3 National and 4 International
Conference. She guided many U.G. and P.G projects.

Currently working as Assistant Professor in the EIE

department.

Thilagavathi completed U.G. from
SACS MAVMM Engineering
college Madurai in the year 2002

and P.G from Arulmigu

Kalasalingam college of
engineering in the year 2008. She attended 2 national and

4 international conferences.

1783

