An Empirical Validation of Code and Design Metrics for Object-Oriented
Software at Run-time based on Execution Trace Events

An Empirical Validation of Code a
Software at Run-time b

d Design Metrics for Object-Orlented
sed on Execution Trace Events

A.Kavitha' A. Shanmugam?

ABSTRACT

Object-oriented design and development has become
popular in today’s software development environment.
The benefits of object-oriented software development
are -now widely recognized. Object-oriented
development requires not only different approaches to
design and implementation; it also requires different
approaches to software metrics. Many metrics have been
proposed related to various constructs like class,
coupling, cohesion, inheritance, information hiding and
polymorphism. The metrics for object-oriented systems
are different due to the differeﬁt approach in program
paradigm and in object-oriented language itself. Metric
data provides quick feedbaéi.cl for software designers and
managers. Analyzing and collecting the data can predict
design quality, The current réséarch on modeling and
measuring the software components through cutrently
available metrics at compile time is insufficient.
Traditional coupling measures take into account only
“static” measures. They do not account for “dynamic”
measures due to polymorphism and may significantly
underestimate the complexity of software and misjudge
the need for code inspection, testing and debugging. The
studies show that dynamic measures also.plays vital role
in quality measurement. And also, there are quite a few
sets of proposed metrics of object-oriented metrics for

object-oriented software in the literature and research

'Lecturer(SS) in Computer Science , Kongunadu Arts &
Science College, Coimbatore - 641 029,
e-mail : kavithaathi@yahoo.co.in

*Principal, Bannari Amman. Institute of Technology,
Sathyamangalam — 638 401,

909

papers at compile time (static measurement). For dynamic
measurement such metrics are not available. This paper’
addresses the validation of the available metrics which
can be used to measure the quality of the software based
‘on the information collected from the execution trace
events. The definition of such five different metrics is
presented in this paper. The presented metrics are also
validated by couple of real projects that use object-

oriented language in their projects.

Keywords: OO software metrics, Software quality,
Dynamic Metrics, Object, Polymorphism, Coupling,

Information-Hiding, Quality measurements
1. InTRODUCTION

Object-oriented design and development has become
popular in today’s software development environment.
The benefits of object-oriented software development are
now widely recognized [1]. Object-oriented development
requires not only different approaches to design and
implementation; it also requires different approaches to

software metrics. Metrics for object-oriented system are

still a relatively new field of study. The traditional metrics

such as lines of code and Cyclomatic complexity have

become standard for traditional procedural programs

[8,1].

The metrics for object-oriented systerns are different due
to the different approach in program paradigm and in
object-oriented language itself. An object-oriented
progfam paradigm uses localization, encapsulation,

information hiding, inheritance, object abstraction and




Karpagam JCS Vol. 3 issue 1 Nowv. - Dec. 2008

polymorphism, and has different program structuze'than

in procedural languages. [8]

Software metrics are often categorized into product
metrics and design metrics [9]. Project metrics are used
to predict project needs, such as staffing levels and total
effort. They measure the dynamic changes that have taken
place in the state of the project, such as how much has
been done and how much is left to do. Project metrics
are more global and less specific than the design metrics.
Unlike the design metrics, project metrics do not measure

the quality of the software being developed.

Design metrics are measurements of the static state of
the project design at a particular point in time. These
metrics are more localized and prescriptive in nature.
They look &t the quality of the way the system is being
built. [9].

Design metrics can be divided into static metrics and
dynamic metrics [11]. Dynamic metrics have a time
dimension and the values tend to change over time. Thus
dynamic metrics can only be calculated on the software
as it is executing. Static metrics remain invariant and are
usually calculated from the source code, design, or

specification.

There are quite a few sets of proposed metrics of object-
oriented metrics for object-oriented software in the
literature and research papers. Only few of them can be
presented in this document. The presented metric suite
in this document is selected from ‘A Metrics Suite for
Object Oriented Design’ article [6] because it describes
a basic suite of object—oriented.metrics 1] and its metrics

has also tested in practice [6,3]. The basic set of metrics

contains total of six different metrics that are presented

in the Chapter 3. More metrics has been presented for

example in the Lorenz’s and Kidd’s book ‘Object-
Oriented Software metrics’ [9].

In this paper the focus is on static product metrics that
are described in Chidamber’s and Kemerer’s article ‘A -
Metrics Suite for Object Oriented Design’ [6]. The
relationship between different object-oriented metric
values is out-of scope in this paper as well as automated
tools for collecting object-oriented metric data. This

paper doesn’t cover measuring design pattern metrics.
2. RationaLE ForR MEASUREMENT

The intent of the metrics proposed is to provide help for
object-oriented developers and managers to foster better
designs, more reusable code, and better estimates. The
metrics should be used to identify anomalies as well as
to measure progress. The numbers are not meant to drive
the design of the project’s classes or methods, but rather
to help us focus our efforts on potential areas of
improvement. The metrics can help each of us improve
the way we develop the software. The metrics, as
supported by tools, makes us think about how we
subclass, write methods, use collaboration, and so on.
[9]. They help the engineer to recognize parts of the
software that might need modifications and re-
implementation. The decision of changes to be made

should not rely only on the metric values [11].

The metrics are guidelines and not rules and they should
be used to support the desired motivations. The intent is
to encourage more reuse through better use of
abstractions and division of responsibilities, better
designs through detection and correction of anomalies.

Positive incentives, improvement training and mentoring,

_and effective design reviews support probability of achieving

better resulis of using object-oriented metrics, [9]

910




An Empirical Validation of Code and Design Metiics for Object-Oriented

Software at Run-time based on Execution Trace Events

If we are going to improve the object-oriented software-
we develop, we must measure our designs by well-defin®d
standards. Thresholds are affected by many factors,
including the state of the software (prototype, first release,
third reuse and so on) and your local project experiences,
The language used and different coding styles affect some
of the metrics. This is primarily handled with different
threshold values for the metrics, which indicate heuristic
ranges of better and worse values. For example, C++ tends
to have larger method sizes than Smalltalk. Threshelds
are not absolute laws of nature. They are heuristics and
should be freated as such. Possible problems in our system

designs can be detected during the development process. [9]

Software should be designed for maintenance [1]. The
design evaluation step is an integral part of achieving a
high Ciuality design. The metrics should help in improving
the total quality of the end product, which means that
quality problems could be resolved as early as possible
in the development process, It is a well-known fact that
the earlier the problems can be resolved the les_s it costs
to the project in terms of time-to-market, quality and

maintenance.
- 3. Cope AND Desicn METRICS SUITE
Metric 1: Weighted Methods per Class (WMC)

WMC is a sum of complexities of methods of a class.
Consider a Class C, with Methods M,...M| that is defined
in the class. Let ¢, ¢, be the complexity of the methods
[6]. Then: '

n
WMC = 3 C
=1
WMC measures size as well as the logical structure of

the software. The number of methods and the complexity

of the involved methods are predictors of how much time

911

and effort is required to develop and maintain the class
[11, 6]. The larger the number of methods in a class, the
gfeater the potential impact on inheriting classes.
Consequently, more effort and time are needed for
maintenance and testing. Furthermore, classes with large
number of complex methods are likely to be more
application specific, limiting the possibility of reuse. Thus
WMC can also be used to estimate the usability and
reusability of the class [SyY99]. If all method
complexities are considered to be unity, then WMC equals

to Number of Methods (NMC) metric.
Metric 2: Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance hierarchy is
the maximum length from the class node to the root of
the tree, measured by the number of ancestor classes. The
deeper a class is in the hierarchy, the greater the number
of metheds it is likely to inherit, making it more complex
to predict its behavior. Deeper trees constitute greater
design complexity, since more methods and classes are
involved. The deeper a particular class is in the hierarchy,

the greater potential reuse of inherited methods. [6].
Metric 3: Number of Children (NOC)

Number of children metric equals to number of immediate
subclasses subordinated to a class in the class hierarchy.
Greater the number of children, greater the reuse, since
inheritance is a form of reuse. Greater the number of
children, the greater the likelihood of improper
abstraction of the parent class. If a class has a large
number of children, it may be a case of misuse of sub
classing. The number of children gives an idea of the
potential influence a class has on the design, If a class
has a large number of children, it may require more testing

of the methods in that class. {6]. In addition, a class with




Karpagam JCS Vol. 3 Issue 1 Nov, - Dec, 2008

a large number of children must be flexible in order to

provide services in a large number of contexts. ]
Metric 4: Coupling Between Object Classes (CBO)

CBO for a class is a count of the number of other classes
to which is coupled. CBO relates to the notion that an
object is coupled to another object if one of them acts on
the_ other, i.e., methods of one uses methods or instance
variables of another. Excessive coupling between object
classes is detrimental to modular design and prevents
reuse. The more independent a class is, the easier it is to
reuse it in another application, In order to improve
modularity and promote encapsulation, inter-object class
couples should be kept to a minimum [6]. Direct access
to foreign instance variable has generally been identified

as the worst type of coupliﬁg'{l 1.

The larger the number qf couples, the higher the
sensitivity to changes in other pérts of the design, and
therefore maintenance is more difficult. A measure of
coupling is useful to determine how complex the testing
of variou§ parts of é deéign is likely to be. The higher the
inter-object class coupling, the more rigorous the testing

needs to be. [6,1].
Metric 5: Response For a Class (RFC)

The response set of a class is a set of methods that can
potentially be executed in response 10 a message received
by and object of that class?. RFC measures both external
and internal communication, but specifically it includes
methods called from outside the class, so it is also a
measure of the potential communication between the class
and other classes. [6,1] RFC is more sensitive measure
of coupling than CBO since it cofisiders metho_ds instead

of classes.

If a large number of methods can be invoked in response
to a message, the testing and debugging of the class
becomes more complicated since it requires a greater level
of understanding required on the part of the tester. The
larger the number of methods that can be invoked from a

class, the greater the complexity of the class.
4. EvaLuation OF METRICS

The discussion in this section is mainly based on
Chidamber’s and K emerer’s document A Metrics Suite
for Object Oriented Design’ [6]. This section presents
only part of the testing details and results that is described
in the original document. This section describes also
briefly results of the suite of object-oriented design
metrics introduced in Chidamber’s and Kemerer’s
document ‘A Metrics Suite for Object Oriented Design’
{6] which can be used to measure the quality based on
the information collected from the execution trace events

at run time,

Chidamber and Kemerer who introduced the basic suite
for collecting object-oriented code and design metrics
tested the metrics suite with two projects. The metrics
proposed in their paper were collected using automated
tools developed for this research at two different
organizations which will be referred to here as Site A and

Site B [6] .

Site A is a software vendor that uses objeci-oriented

design in their development work and has a collection of

different C++ class Iibraries. Metrics data from 634

classes ﬁ:om two C-++ class libraries that are used in the-
design of graphical user interfaces (GUI) were collected.
Both these libraries were used in different product
applications for rapid prototyping and development of

windows, icons and mouse based interfaces. Reuse across

- 912




An Empirical Validation of Code and Design Metrics for Object-Oriented
Software at Run-time based on Execution Trace Events

objectives of these libraries., {{

Site B is a semiconductor manufacturer and uses the
Smalltalk programming language for developing flexible
machine contrel and manufacturing systems. Metrics were
collected on the class libraries used in the implementation
of a computer aided manufacturing system for the
production of VLSI (Very Large Scale Integration)
circuits. Over 30 engineers worked on this application,
after extensive training and experience with object
orientation and the Smalltalk environment. Metrics data

from 1459 classes from Site B were collected.

The data from two different commercial projects and
subsequent discussions with the designers at those sites
lead to several interesting observations that may be useful
for managers of object-oriented projects. Designers may
tend to keep the inheritance hierarchies shallow, forsaking
reusability through inheritance for simplicity of
undersianding. This potentially reduces the extent of
method reuse within an application. However, even in
shallow class hierarchies it is possible to extract reuse
benefits, as evidenced by the class with 87 methods at
Site A that had a total of 43 descendants. This suggests
that managers need to proactively manage reuse
opportunities and that this metrics suite can aid this

process.

Another demonstrable use of these metrics is in
uncovering possible design flaws or violaﬁons of design
~ philosophy. As the example of the command class with
42 childrén at Site A demonstrates, the metrics help to
point out instances where sub classinf.f,r has been misused.
This is borne out by the experience of the designers
interviewed at one of the data sites where excessive
declaration of sub classes was common among engineers

new to the object-oriented paradigm. These metrics can

913

different applications was one of the primary design.

be used to allocate testing resources. As the example of
the interface classes at Site B {with high CBO and RFC
values) demonstrates, concentrating test efforts on these
classes may have been a more efficient utilization of

resources.

Another application of these metrics is in studying
differences between different object-oriented languages
and environments. As the RFC and DIT data suggest, there

are differences across the two sites that may be due to

- the features of the two target languages. However, despite

the large number of classes examined (634 at Site A and
1459 at Site B), only two sites were used in this study,
and therefore no claims are offered as to any systematic

differences between C++ and Smalltalk environments [6]. -

Chidamber’s and Kemerer’s object-oriented metrics
showed to be better predictors than the best set of
“traditional’ code metrics, which can only be collected

during later phases of the software processes. [3].

This empirical validation provides the practitioner with
some empirical evidence demonstrating that most of
Chidamber’s and Kemerer’s object-oriented metrics can
be useful guality indicators for measuring quality of a
software based on run time execution trace events also.
Furthermore, most of these metrics appear to be
complementary indicators, which are relatively

independent from each other.
5, CONCLUSIONS

This paper introduces the basic metric suite for object-
oriented design. The need for such metrics is particularly
acute when an organization is adopting anew technology
for which established practices have yet to be developed.
The metric suite is not adopté.ble as such and according
to some other researches it is still premature to begin

applying such metrics while there remains uncertainty




Karpagam JCS Vol. 3 Issue 1 Nov. - Dec. 2008

about the precise definitions of many of the quantities to
be observed and their impact upen subsequenéndirect
metrics. For example the usefulness of the proposed
metrics, and others, would be greatly enhanced if clearer
guidance concerning their application to specific

languages were to be provided. {ChS95]

Metric data provides quick feedback for software
designers and managers. Analyzing and collecting the data
can predict design quality. If appropriately used, it can
lead to a significant reduction in costs of the overall
implementation and improvements in quality of the final
product. The improved quality, in tum reduces future
maintenance efforts. According to my opinion it’s
motivating for the develo};er to get Vearly,
contipuoﬁs(dynamic) feedback aboﬁt the quality in design
and implementation of the product they develop and thus
get a possibility to improve the quality of the product as
early as possible. It could be a pleasant challenge to

improve own design practices based on measurable data.

It should be also kept in mind that metrics are dnly
guidelines and not rules. They are guidelines that give an
indication of the progress that a project has made and the

quality of design .
REFERENCES

{11 Alkadi Ghassan, Carver Doris .L, “Application of

Metrics to Object-Oriented Designs ", Proceedings

of IEEE Aerospace Conference, Vol. 4,
PP. 159 -163, March 1998. '

(2] Ascher Clark, Stinsen Michéel, “Object-Oriented
Software Measures”, TechnicalReport CMU/SEIL-
95-TR-002, ESC-TR-95-002, Software Engineering
Institute, Carnegie Mellon University, Aprit 1995,

[3] Victor R Basili, Fellow; IEEE, Lionel C Briand,
Walcélio L, Melo, Member [EEE Computer Society,

“A Validation of Object-Oriented Design Metrics
as Quality Indicators”, IEEE Transactions on
Séftware Engineering, Vol. 22, No. 10,
PP. 751 - 761, October 1996.

[4] Beck Kent, “Extreme Programming Explained:
Embrace Change,” Addison-Wesley, PP. 190, 2001.

[5] Lionel C. Briand, Sandro Mbrasca, Member, IEEE
Computer Society, Victor R. Basili, Fellow, IEEE,
“Defining and Validating Measures for Object-
Based High-Level Design”, Vol. 25; No. 5, PP.
722 - 743, September/October 1999,

[6] Chidamber Shyam R, Kemerer Chris F, “4 Metrics
Suite for Object Oriented Design”, 1EEE
Transactions on Software Engineering, Vol. 20,

No. 6, PP. 476 - 493, June 1994.

[7] Gamma Erich, Helm Richard, Johnson Ralph,
Vlissides John® “Design Patterns CD, Elemenis of
Reusable Object-Oriented Software”, Addison
Wesley Longman, Inc.1998.

[8] Shugin Li-Kokko, “Cede and Design Metrics for
Object-Oriented Systems ", Helsinki University of
Technology, PP. 9, 2000.

[9] LorenzMark, Kidd Jeff, “Object-Oriented Software
Metrics: A Practical Guide”, PT R Prentice Hall,

Prentice-Hall, Inc. A Pearson Education Company,
PP. 146, 1994,

[10] Metrics for Analysis and Improvement of Software
Architectures (MAISA), Research and Development
Project at the University of Helsinki in Department
of Computer Science, Paakki Jukka, Verkamo Inkeri,
Gustafsson Juha, Nenonen Lilli, 1999 - 2001.

[11] Tarja Systd, Ping Yu, “Using OO Metrics and Rigi
to Evaluate Java software”, University of Tampere,
Department of Computer Science, Series of

Publications A A-1999-9, PP. 24, July 1999,

914




An Empirical Validation of Code and Design Metrics for Object-Oriented

Software at Run-time based on Execution Trace Events

Author’s Biography 4‘{

: Dr. A. Shanmugam, received the
: Bachelor of Engineering Degree in
Electronics and Comrnunication

Engineering from PSG College of

Technology, Coimbatore, Madras

University, India in the year 1972

and Master of Engineering Degree
in Applied Electronics from College of Engineering,
Guindy, Chennai, Madras University, India in the year
1978. He was awarded Doctor of Philosophy {(Ph.D.}in
Computer Networks from PSG College of Technology,
Coimbatore, Bharathiyar University, India in the year
1994. Currently he working as Principal, Barmari Amman
Institute of Technology (BIT), Sathyamangalam, Erode
District, Tamilnadu, in May 2004 and ever since a lotof
changes have been introduced in which made BIT one
among the top ranking institutions of Anna University.
He awarded “Bharatiya Vidya Bhavan National
Award for Best Engineering College Principai” for
the year 2005 by the Indian Society for Technical
Education, New Delhi. His specialization is computer
networks. He has guided Bight Ph.D.,Scholars. Now also,
he is guiding several Ph.DD., Scholars, He has presented
and published papers in various national / international

conferences and journals.

915

Mrs. A. Kavitha, obtained her
B.Sc., (Maths) degree in the year
1993 and M.C.A. degree in the
year 1996 from Vellalar College
for Women (Autonomoﬁs), Erode
District, Tarnilnadu. She awarded
Master of Philosophy (M.Phil.,)

in Computer Science from Erode Arts College
{Autonomous), Erode in the year 2004. She is working
asa Lecturer in Computer Science Kongunadu Arts and
Science College (Autonomous), Coimbatore - 29, At
presently she is doing her Ph.D., researéh work in
Vinayaka Missiqns University, Salem, India under the
Guidance of Dr. A. Shanmugam. She has presented
various papers in National and International Conferences,
One of her research article is published in IEEE explore
in January 2008 issue. Another paper is also accepted for
International Conference, IMECS 2008, held on March

-2008 in Hong Kong. Her interested research fields are:

Software engineering, Distributed Data Bases.




