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ABSTRACT

Association rule mining is one of the techniques of data
mining by which valuable but hidden patterns
(knowledge) are discovered from large amount of data.
Mining of frequent item sets from which association rules
are made, is a most challenging task. No. of algorithrns
had been developed for frequent item set mining, all differ
in various aspects. In this paper a novel algorithm which
we are calling as frequent 2-base is presented to mine
frequent item sets in two database scans. The time taken
by frequent 2-base is also compared with respect to
various dimensions. Three dimensions are used to
compare the time : database size, no. of items and avérage

transaction size.

Keywords : Data Mining, Hidden Pattern, Minimum

Support, Frequent Item Sets.

1. INTRODUCTION

In competitive market, any organization wants some
interestiﬁg and hidden conclusions (results), trends,
patterns from data stored in database. Data Mining is
growing field which provides various methods by which
those trends or patterns can be discovered. There are
several methods available of data mining including
association rule mining, clgssiﬁcaﬁon, clustering efc. One

can choose any one of them or any combination according
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to the requirement. Association Rule Mining (ARM) is

one of the methods which generate closed associations
among data items of database. If ARM is applied on
market basket data, discovered associations among data
items indicates that during one visit of market if customer
purchases some items along with them which other items

he may purchase.

Mining association rules is a two step .processmlzl. (H
Generating all items which are frequently purchased by
customers in market basket problem. The item sets which
occur more than user defined threshold value called
min_sup are called frequent item sets. (2) Generating all
strong association among frequent item sets. The
association is called strong if association satisfies another
user defined threshold value called min_conf. The
problem of finding frequent item sets attracted the
attention of many researchers. As a result, at present there
exist several algorithms for the same including the ones
based on variations of apriori, based on depth first search

approach, tree based algorithms®I43,

When any algorithmn is finding the frequent item sets, the
database remains into secondary storage. Of courss, the
database is very large so, one of the parameter one should
take into consideration in any algorithm is how many ifo
access are performed i.e. how many times the database is
scanned™). The apriori algorithm scans the whole
database k+/ times, where k is the length of longest

frequent item set. Some other algorithms are able to find

same set of frequent patterns in two scans of database

only irrespective of database size and length of frequent

item sets.
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In this paper an algorithm called frequent 2-base is shown
which requires two scans of database and finds set
frequent patterns in less amount of time compared to otlgf
algorithms which also requires same no. of scans. In
frequent 2-base first all frequent 2-item sets are derived
by scanning the whole database once. From frequent 2-
itern sets all possible higher order candidate item sets are
found. Then from set of candidate item sets of all orders,
frequent item sets are taken out by scanning the database
second time. It had been verified that no frequent item
set of any order is missed out by the algorithm frequent
2-base,

The time taken by frequent 2-base algorithm is compared
by various patameters namely size of database (D), no.
of data items (N) and average length of transaction (AT).
All the statistical results are presented in tabular and

graphical form.

2. AssociatioNn RULE
Discovering association rules is at the heart of data

mining. It detects hidden linkages of otherwise seemingly

unrelated data. These linkages are rules. Those that exceed

a certain threshold are deemed interesting, Interesting
rules allow actions to be taken based upon data pattern,
They can also help making and Justifying decisions. In
assbciation ruier mining there are two measurements,
support and confidence, The support corresponds to the
frequency of the pattern while confidence indicates rule’s
strength. A typical example of an association rule created
by data mining often termed to as “market basket data”
is!171. 80% of customers who purchase bread also

purchase buiter.” An association rule is defined ast*l7,

Let D is set of all distinct data items available in database,
T is set of all transactions z, I, t,....t, Bvery transactions
ti , where i may be 7,2,3,....n contains some data iterns
from D.
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The association rule is of form X->Y where X and Yis
subset of D and XY = ¢. It is said that association rule
X—Y holds in database if and only if support of X—Y is

above min_sup and confidence is above min_conf.

Support of X—Y is percentage of transactions out of total
transactions, which contain all the data itezﬁs available
in item-sets X and Y. Confidence of X—Y is percentage
of transactions which contain all the items in Y out of the
transactions which contain all the items in X. Suppose
bread—»milk holds in some market basket database with
total 100 transactions with support 60% and confidence
75%. It is interpreted that 60% of transactions out of 100
contain both bread and milk and if bread is purcﬁased

than in 75% of those cases milk is also purchased.

Given a user defined minimum support and minimum
confidence, the problem of mining association rules is to
find all the associations rules whose support and
confidence are larger than the minimum support
(min_sup) and minimum confidence (min_conf). Thus,
the approach can be broken into two sub-problems as

follows:

(1) Finding the frequent item sets which have

support above the predetermined minimum support.

(2) Deriving strong association rules, based on each
frequent item set, which have confidence more than

the minimum confidence.

2.1 Frequent Item-Set Mining

The task of discovering all frequent item sets is quite
challenging. The search space is exponential in the
number of items occurring in the database®. The support
threshold limits the output to a hopefully reasonable
subspace. Also, such databases could be massive,
containing millions of transactions, making support

counting a tough problem.
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Apriori is basic algorithm for frequent item sets mining.
In first step it finds L, i.e. set of .frequent 1-item sets by
scanning the database first time. From L, it finds set of
candidate 2-item sets C,. Again by scanning the database
it finds L, from C,. This process is repeated until no more
C, is possib]e- fromL_, or no further L, is found from C,.
Apriori uses the prior knowledge by prut;ing out to
generate those candidatc. itern sets whose at least one
sﬁbset is not frequent. The main drawback of this
. algorithm is, it is scanning the database k+1 times where
k is the length of lﬁhgest frequent item sct. As a result of
if ﬂo cost is increased as the Iength- of longest frequent
itém set is increased. "I;he most outstanding improvement
over Apricri would be a method called PP-growth
{frequent pattern growth) that succeeded in eliminating
candidate generation®®), It adopts a divide and conquer
strategy by (1) compressing the database Tepresenting
frequent items into a structure called FP-tree (frequent
pattern tree) that retains all the essential information and
{(2) dividing the compressed database into a set of
conditional databases, each associated with one frequent
itemn set and mining each one separately. It scans the
database only twice. In the first scan, all the frequent items
and their support counts (frequencies) are derived and
. they are sorted in the order of descending support count
in cach transaction. In the second scan, items in each
transaction are merged into a prefix tree and items (nodes)
that appear in common in different fransactions are
counted. Each node is associated with an item and its
count, Nodes with the same label are linked by a pointer
called node-link. Since items ate sorted in the descending
order of frequency, nodes closer to the root of the prefix
free ‘are shared by more transactions, thus resulting in a
very compact representation that stores all the necessary
information, Pattern growth algorithm works on FP-tree

by choosing an item in the order of increasing frequency

and extracting frequent itemn sets that contain the chosen
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item by recursively calling itself on the conditional FPtree.
FP-growth is an order of magnitude faster than the criginal
Apriori algorithm.

3. FREQUENT 2-BASE ALGORITHM

This section représents the algorithm frequent 2- base.
The complete algorithm is decomposed into following
phases: (1) generation of candidate 2-item sets. (2) finding
frequent 2-item sets. (3) generating all possible higher
order candidate item sets. (4) generation of all higher
order frequent item sets. Out of these four phases, first
and third require database scan, The cutput generated by
each phase is given as input to next phase. Input of first
phase is original database and output of last phase is

frequent item sets.

3.1 Generation Of Candidate 2-item Sets
Section 3.1.1 shows pseudo code to generate candidate
2-item sets from given market basket database. That code

is explained in section 3.1.2.

3.1.1 Pseudo Code
1. temp = null.

2. Repeat fori=l ton

3. Repeat for each candidate 2-item set X,

4, If (X, is not in termp)
5. X, count=1
6. temp = temp U X, :
7. If (X, is in temp)

8. X,.count = X, .count + 1

9. end.

10. end.

11. copy all candidate 2-item sets from temp to C,.

12. temp = null.

3.1.2 Explanation

This step of algorithm is to generate candidate 2-item

" sets from whole database. In above psendo code, nis no.

of transactions; temp is temporary buffer which contains




Karpagam Jes Vol. 4 issue 5 July - August 2010

candidate 2- item sets before finally they will be put in
C,. Whole database is first time scanned to find candidate .
2-tem sets. Suppose some transaction contains the iterrds
{B,C,D,F}- then its candidate 2 .- item sets are {B,C},
{B.D}, {B,F}, {C)D}, {CF} and {D,F}. For each
candidate 2-item set a separate count is maintained which

contains the frequency of that item- set in database.

While implementing this phase, a linked list is maintained
which consists of a node for each candidate 2-item set.
Support count for each candidate 2-item set is calculated
and stored in 2 field in each node. When a new candidate
ttem-set is found a new node is inserted at the end of
linked list otherwise if a node for some item-set is already

there then its support count is incremented by ome.

3.2 Finding Frequent 2-ifem Sets
Section 3.2.1 shows pseudo code to find frequent 2-item
sets from candidate 2-item sets found from previous

phase. That code is explained in section 3.2.2.

3.2.1 Psendo Code

L. Repeat for each candidate 2-item set X,

2. If (X,.count < min _sup )
3. C,=C,-X,
4. end.

3.2.2 Explanation

The candidate 2-item sets whose frequency is less than
mininmm requirement are removed in this phase. The set
of remaining candidate 2-item sets are called frequent 2-

item sets.

3.3 Generating AHl Possible Higher Order Candidate
Item Sets

Section3.3.1 'shows pseudo code to generate higher order
candidate item sets from frequent 2- item sets., That code

is explained in section 3.3.2.
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3.3.1 Pseudo Code
1. Repeat while (C, is not empty and k>=2)

2. Cen = G *C..
3. increment k.
4, end.

3.3.2 Explanation

From previous section 3.2, no. of frequent 2- item sets is
found. If conventional method like apriori is used then
first frequent 2- item sets should be found from candidate
2-item sets, then from frequent 2- item sets, candidate 3-
item sets are found. In general from candidate kitern sets
first frequent k-item sets are found by date base scan and
from frequent k-item sets, candidate (k+1) item sets are
found. It is obvious that if maximum k frequent item set
is possible then (k+1) database scans are to be performed.

This is time consuming task.

In order to save the execution time of an algorithm, the
number of database scans should be reduced with out
any harmful effect on results. This can be done with scan

reduction technique, From frequent 2-item sets, first

 candidate 3-item sets are found based on property of prior

knowledge. It means for any item set to be frequent, all
of its subsets must be frequent. It follows that if for some
3-item set to be frequent, all of its 2-item set subsets must
be frequent. By this way all the candidate 3-item sets are
found. They can not be called as frequent 3-item sets
because they may not satisfy required support threshold.
It will be checked with second database scan. Then from
candidate 3-item sets, candidate 4-item sets are found
and s0 on. At any time an item set X, is put in candidate
k-item set only if all its subsets are there in candidate
(k-1) item sets, This process is repeated for all higher
order item sets until no higher order item set is possible

to generate.
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In our implementation of this phase, first all candidate 3-
item sets are found from frequent 2-item sets. For each
one of them a new node is inserted in existing Iié(ed list
of frequent 2-item sets at the end. Then candidate 4-item
sets, S-item sets etc. are found and inserted in same linked

list.

3.4 Finding All Higher Order Frequent [tem Sets
Section 3.4.1 shows pseudo code to find all order frequent
item sets from respective candidate item sets found from

previous phase. That code is explained in section 3.4.2.

3.4.1 Pseudo Code

1. Repeat fori=1 ton

2. Find all subsets having length at least 3 of
item-set present in transaction i,

For each subset X, in C_

X,.count = X .count + 1

end.

3

4

5

6. end.
7 . Repeat for k=3 tom

8 Repeat for cach candidate item set X,
9. [f (X, .count < min_sup )

10. C.=C X,

il. end.

12. end.

3.4.2 Explanation

This step of algorithm is to prune out infrequent iterm
sets from any order. In this code, n is no. of transactions,
m is no. of nodes in linked list. Lines 1 to 6 finds all
subsets of length at least 3 for itém set available in each
transaction. Then support count for each subset in
incremented by one in reépective node. Lines 7 to 12
compare the support count for each node with minimum
support required and delete the nodes whose support is
less. So, after this phase, frequent item sets of all orders

are present with support count in linked list.
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4. STATISTICAL ANALYSIS

The frequent 2-base algorithm is implemented in
Microsoft visual C++ 6.0. The code is executed for
different size of database, different no. of items and
different average transaction length. Each time min_sup
is kept constant of 20. The required database is generated
with pure randomness by synthetic database generator
available in ARTool. Al testing is done on single system
which has intel core 2 duo 2.53 GHz processor, 1GB
RAM and 80GB SATA HDD. In section 4.1, a
comparative table is shown and briefly explained. Section
4,2 shows graphical presentation of execution time by
compating two dimensions each time and keeping value

of third dimension constant.

4.1 Experimental Resulis

The execution time of fréquent 2-base algorithm is
calculated for different dimensions (parameters) like size
of database (D), no. of data items (N) ané average length
of transaction (AT). Table (1) shows the overall resulis.
Three different values are used for each dimension in
testing, For database size D values are 100, 1000 and
10000. D+=1000 means in database there are 1000
transactions available. For no. of items N values are 10,
15 and 20. N=15 means in database there are 15 different
items. For average length of transaction AT values are 3,
5 and 7. All execution times are in millisecond. The values
in brackets show the tofal no. of frequent item sets. For
example, when D=10000 and N=15, if AT=3 then 27
frequent item sets are mined in 606ms, if AT=5 then 192
frequent item sets are mined in 5167ms and if AT=7 then

265 frequent item sets are mined in 23359ms.

4.2 Graphial Comparision
The execution time of frequent 2-base is compared
graphically for three different values of two dimensions

at a time by keeping value of third dimension constant.
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Fig.1 shows the comparison of database size and no. of
items. In (a), (b) and (c) of Fig. 1 average length of
transaction is kept constant of 3, 5 and 7 respectiveé.
Fig.2 shows the comparison of database size and average
length of transaction. In (a), (b) and (c) of Fig. 2 no. of
items is kept constant of 10, 15 and 20 respectively. Fig.3
- shows the comparison of no. of items and average length
of transaction. In (a}, (b) and (c) of Fig. 3 database size is
kept constant of 100, 1000 and 10000 respectively.

-

5. Concrusion

An algorithm frequent 2-base finds all frequent item sets
in two database scans, Here linked list is used as 2 data
structure for maintaining frequent item sets. The main
attraction of this algorithm is, it can be effectively used
for mining frequent item sets from seasonal market basket
database where some transactions or part of them are
repeated over time, The general trend is that when size
of database and no. of items increases, the execution time
naturally increases. But it may not be the case all time. It

also depends on third and most interesting parameter

called average length of transaction. One can casily -

analyze the code of the algorithm by varying the values

of all these parameters.
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