JCS Vol. 1 No. 3 Nov - Dec 2005

Targeted Association Querying for Dynamic and Distributed databases

T. Hamsapriya’, Dr.S.Sumathi®

ABSTRACT

Advances in computing and communication over wired
and wireless networks have resulted in many pervasive
distributed computing environments. Many of these
environments deal with different distributed sources of
volurninous data, multiple compute nodes, and distributed
user community. Implementation of data mining ideas in
high-performance parallel and distributed cormputing
environments is thus becoming crucial for ensuring
system scalability and interactivity as data continues to
grow inexorably in size and complexity. Recent business
trends favor targeted association querying to constrain
the search to specific items. This paper discusses a unified
approach for distributed datamining and targeted querying
that reduces the communication overhead by constructing
a distributed itemset tree. The tree also provides the ability
for incremental mining and transaction tracing.
Construction of the itemset tree has O(N) space and time
requirements. Experiments were conducted fo observe
the behavior of the itemset tree in distributed and

incremental mining,

Keywords: Distributed mining, Incremental mining,

dynamic datasets, targeted querying, market baskets.
1. INTRODUCTION

An important problem in datamining is discovering

association rules from databases of transactions {1] {2]

:Assistant Professor, Department of Computer Science and
Engineering

2A ssistant Professor, Department of Elecirical and Electronics
Engineering
PSG College of Technology, Coimbatore — 641 004, India

E-mail: prish_67@yahoo.co.in

249

[3]{4] [5), where each transaction contains a set of items.
Association mining technique searches for a group of
frequently co-occurring items in a market basket type of
data, and turns these groups into business-oriented rules.
Previous research has focused predominantly on how to
obtain exhaustive lists of such associations. However, in
most of the applications, users wish to examine a
transaction database by giving specialized queries [6].
These queries are called Targeted queries. For instance,
one user may want to learn about the buying habits of
customers, who frequently purchase milk and fruits. The
user may not be interested in a complete list of items, but
prefers to restrict the search to specific items. A query of
this kind may seek all frequent itemsets containing milk
and fruits. Another user may seek ali the rules of the form
[bread, milk] => s (where s is an itemset), with a
confidence of at least 20 percent. In both the cases,
repeated search for all itemsets would waste precious

computational resources.

Most of the existing mining methods concentrate on
determining the frequent sets [2] [3] [4] [5]. So the task
of answering targeted association querying requires the
generation of exhaustive list ofall frequent itemsets. The
task of generating the frequent itemsets is quite
challenging. The search space is exponential in the
number of items occurring in the database. The support
threshold limits the output to a hopefully reasonable
subspace. In oeder to reduce the response times, a compact
data structure called an itemset tree can be constructed
to answer targeted queries, determine frequent itemset

and other queries.

JCS Vol. 1 No. 3 Nov - Dec 2005

Most of the databases could be massive, coniaining
millions of transactions, making support counting a tough
problem. Also, a user may be interested in generating a
global model of the database, thus the sites must exchange
some information about their local models. In a
distributed scenario the user may be interested in not only
knowing the giobal model of the database, but also the
differences between the local models [9]. To expedite
the processing of such querics the proposed work converts
the market baskets into itemset trees on each siie. The
advantage of this approach is that it requires only one

database scan to construct the tree.

In this article, an efficient parallel and distributed
incremental approach is proposed for answering targeted
queries on dynamic and distributed datasets. This work
here is an extension of that presented in {6]. The main

contributions of this paper are:

1. A distributed mining algorithm that minimizes .

the comrmunication costs for mining over a wide
area network, which is used to update a global

model.

Experimentation and validation on synthetic

databases.

The rest of the paper is organized as follows. Section 2
gives a brief review of the related work. Itemset tree

construction is discussed in Section 3,

Section 4 discusses the proposed meodel, Section §
presents the analysis of the resuits and finaily the paper

is concluded in Section 6.
2, RELATED WORK
2.1 Distributed Mining

In recent years, progress in computer technology and data
acquisition has led to large distributed databases in fields

ranging from banking through biology and astronomy.

Often, the size of a dataset or the rate at which data is
inserted or removed is so large that existing sequential
algotithms are ineffective. In these cases, parallel or
distributed algorithms are necessary. In [10], Park and
Kargupta give an overview of a wide variety of distribured
data mining algorithms for association rule mining,
classifier learning, and collective data mining, and
clustering, among others. In particular, there has been
much research into parallel and distributed algorithms
for mining association rules [11] [12][13]. A common
approach for mining distributed databases is the
centralized one, in which all data is moved to a single
central location and then mined. Another common
approach is the local one, where models are built locally
in each site, and then moved to a conumon location where
they are combined. The latter approach is the quickest
but often the least accurate, while the former approach is
more accurate but generally quite expensive in ferms of
time required. In the search for accurate and efficient
solutions, some intermediate approaches have been
proposed [13] [14] [15].

These techniques are devised to scale up a given algorithm
{e.g., APRIORI, ECLAT, etc.).Data is distributed (or in
some cases, replicated) among different sites and a data-
mining algorithm is executed in parallel on each site.
These approaches do not take into account the possible
distributed nature of the data. Some assume a high-speed
network environment and perform excessive
communication operations. These approaches are not
efficient when the databases are distributed over a
geographically wide area. The FDM (Fast Distributed
Mining) algorithm presented in [14] atternpts to cut down

on communication between sites by first having each site

- mine its local frequent itemsets and then exchanging this

250

information to find the global frequent itemsets. In [15],
Schuster and Wolff proposed the DISTRIBUTED

Targeted Association Querying for Dynamic and Distributed databases

DECISION MINER algorithm and several variations,
which do not assume that each local frequent itemset is
potentially a global frequent itemset. In {16], three
strategies of distributed data mining are examined, based
on what information is exchanged between sites. The three
strategies are those that move results (MR), move models
(MM), and move data (MD). The MD strategy is generally
avoided, since it can be costly in terms of communication.
The authors propose the Papyrus system [16], which
makes use of all three strategies to different degrees, based
on the values of a cost function and an error function that
take into account the cost of transmitting data between

nodes and the distribution of data over the nodes.

2.2 Mining Dynamic Databases

Some recent effort has been devoted to the problem of
performing incremental data mining in dynamic
databases. Parthasarathy and Ramakrishnan propose a
parallel incremental method for performing two-
dimensional discretization on a dynamic dataset in [17].
A method for incremental sequence mining named ISM
is presented in [18]. It is based on the SPADE algorithm

[19] for discovering frequent sequences. The incremental

algorithm works by keeping track of the maximally
frequent and minimally infrequent sequences in the
original database. It combines this information with the
incremental data to minimize the amount of the original
database that need to be re-scanned. Incremental versions
of the GSP [21] and MFS [22] frequent sequence-mining
algorithms, respectively named G5P+ and MFS+ were
presented in [23]. Unlike the ISM algorithm, GSP+ and
MFS+ are able to handle both insertions and deletions,
and are not limited to a vertical database layout.

Some of these algorithms cope with the problem of
determining when to update the current model of frequent

itemsets, while others update the model after an arbitrary

251

number of updates. To decide when to update, Lee and
Cheung [23] propose the DELI algorithm, which uses
statistical sampling methods to determine when the

current model is outdated.

3. ItEmMSET TREE

In this section we describe the basic algorithm using an
itemset tree for frequent itemset mining and targeted
querying. This algorithm is extended to the parallel and
distributed mining to generate an accurate global model.
Itemset tree is a compact data structure that stores the
transactions. It tan answer specialized queries and
determine the frequent itemsets.

3.1 Construction

Let L denote a set of itemsets and let N be the number of
distinct items encountered in L. Each item is identifted
with an integer from [1, N], so that the items inan itemset,
p=la,;a, .

and a, are integers identifying i" and j* items, respectively.
If the symbols p, r, and s denote itemsets, then

.a], can be ordered: a, < a, for i < j, where a,

e pisanancestor of rand canbe writtenaspcr, iff p

e — "
=[a,a, ... alr= {al_ 2, ... a}, and m d” a.

s is the largest common ancestor of p and 1, and write
scpmr,iflfs o p, sor, and there is no s’ such that

(YT

s’p,s'crandsgs’, sy,

ris a child of p iff pc 1 (p is ancestor of r) and there
is no s, different from p and r, such that p csc 7.
Let p and r be itemsets. Then, one and only one out of the

following conditions hold:

i. pnr=g

2. p=r

3. (pdand(pcy)

4. (p*“rand(rcp)

5. (p*“r)and (p nr=s)suchthats ™ p,s™r

Proof. Condition 1 represents the case when two itemsets

have only the empty set as the common ancestor. If they

JCS Vol. 1 No. 3 Nov-Dec 2005

have some other common ancestor, then they are either
equal to each other (condition 2) or different from each
other, If they are different from each other, then one can
be an ancestor of the other (conditions 3 and 4) or they
have a common ancestor different from either of them

(condition 5).

An iemset tree, T, consists of a root and a (possibly
empty} set, {T,, T,. T,}, each element of which is an
itemset tree. The root is a pair [s, f{s)], where s is an
itemset and {(s) is a frequency. If s, denotes the itemset
associated with the root of the #* subtree, then s ¢ 5,8

5, must be satisfied for all /.

Any itemset tree is a partially ordered set of the pairs
[itemset, frequency]. This means that the concrete layout
of a root’s children is irrelevant as long as they all occupy
the same level in the tree. A tree with an empty set of
subtrees is called a leaf node. All nodes that are not leaf
nodes are internal nodes. The itemset associated with the
root may be empty, while the itemsets associated with alt

other internal and [eaf nodes are nonempty.
3.2 Item Set Tree Generation Algorithm

Hemset tree is built incrementally through a series of

market basket insertions as shown in Table 1.

Table 1 Algorithm 1 for Incorporating a Market

Basket, s, in an Itemset Tree, T

Construct {s,T}

Let R=[sg.f{sz)] denote the root of T
and let [c,,f{c))] be R's children

If s=3p then set f{sg)=f{sg)+1
else if's is an ancestor of sy then

a. Create a new root,{L{D={(sg)+1];
b. Append to Ltwao children:[s, f(s)=1] and {sg,f(sg)].

clse
a. set f(sg)=f(sg)+1
b. select an action from the following list:

1} if 55 is the only common ancestor of s with

any child of R,or if the set of R's children is empty,
then create a new lkeaf, [s,f(s)=1], and make it a child of R.

2) if ¢;=s, then f(c)=f{c;) +1.

3} if's is an ancestor of ¢;,then
insert {s,{{s)=f(c;)+1] between R and c;

4) if c; is an ancestor of s,then
let T(c;) be the sub-tree rooted at [¢;,f(e))} ;
call construct {s,T(cy}

5) if | is the Iargest common ancestor of ¢; and s
{ such that I#s,J# ¢; } and the itemsel associated
with R is an ancestor of §then:

i. Disconnect [c;,f(c;)] from R;
il. Create a new node, [LE)=f(c)+1]as achildof R;
ili Append to 1 two children: [s,f(s)=1 and [c;.{{cy)]

That is, the itemset tree is constructed during a single
pass through the given set of market baskets. The principle
of the algorithm can be summarized by the following

procedure:

Let R = [s, fls,)] denote the root, let s denote the next
market basket to be inserted, and let ¢, denote the children
of R. Without loss of generality, assume that 5, is an

Gik

ancestor of 5. If s ** 5, then the following possibilities
are considered. In the simplest case, 5, is the only common
ancestor of s with any ¢, or the set of R’s children is empty
(case 1).In this event, anew child, [s fs)] = 1, is appended
to R. If'sis identical to some ¢, (case 2), then the frequency
of ¢, is incremented by 1. A more instructive situation
occurs when s does have a common ancestor with some
¢, Then, one and only one of the conditions 3-5 of Lemma
3.1 are satisfied. If 5 is an ancestor of some ¢, such that s
" ¢, (case 3), then s is inserted between the root and ¢,
its frequency being set to f{s) = f{5) + fic). If some c,
such that § *** ¢, is an ancestor of s (case 4), then the
algorithm 1s recursively called for the subtree rooted at
¢. Finally (case 5), if [is the largest common ancestor of
sand ¢;suchthat!**sand/ ¢, thenanode [§ fil)=f{c)+
1] is inserted as a new child of R, and s and ¢, become the

children of . Whatever be the action, the root’s frequency

f(s,), is always incremented by 1.

Targeted Asscciation Querying for Dynamic and Distributed databases

The algorithm inserting a market basket in an itermset tree
is finite. The only time when the recursion is called is
when the conditions of case 4 are satisfied. The last time
this can happen Is when c¢(in the commuand Construct [s,
T(c)]isina leaf node. Since a leaf node does not have
any children, the only choice Algorithm 1 has is case 1.

This prevents the recursion from going any deeper.
Hlustration-I.

Fig.1 shows the sequence of Algorithm 1 processing the
market baskets from database, D = {{1, 4], [2, 5], [1, 2,
3,4, 5], [1,2,4], [2, 5], [2, 4]}

=i - ,.\ :
-

f=d =5
L o
=3 . =1 /’z.‘ f=2
B 2,5 25
f”"\'\
A= =2 Sr=1s =2
K
AR ~.
e e f=1 ful e 21

Fr T f=3
9
N SN
= =1 S i= =2

Fig 1 Itemset-tree construction for the database D

The “size” of an itemset tree is given by the nurmber of
nodes (including the root) and by the number of layers
(root being the first layer). Simple analysis of Algorithm
1 reveals that no new node is created in case 2; in the
event of case 1 or case 3, one new node is created; case 5

creates two new nodes. In case 4, the decision 15

253

postponed, but still processing a single basket will never
give rise to more than two new nodes and, thus, cannot
increase the depth of the tree by more than one layer.

This proves the following lemma.

Lemma I(itemset-tree size). Let T denote the itemset
tree generated from a database of N distinct market

baskets using Algorithm 1.
1. The number of nodes in T is upper bounded by 2N+1.
2. The number of layers in T is upper bounded by N+1.

This concludes that the memory requirements of the
resulting itemset tree are comparable with the size of the
original database and, thus, do not represent a major
obstacle to employing the technique in real-world
domains. Depending on the contents of the database D,
three extreme cases, depicted in Fig. 2, are possible. The
first case happens when D contains N identical market
baskets. In this event, the generated itemset tree consists
of a single node, [s, f(s} = N]. The second extreme case
happens when no two baskets in D have a common
ancestor. Then, the tree consists of the root and a single
layer with N children. Finally, if the baskets can be
ordered in a sequence §,. . . ,, such that 5, is an ancestor
of s, foranyie [1, n-1], then each layer will contain a

single node.

(2) (b) {(©)
Fig 2 Itemset trees: (a) single-child tree (b) single-

layer tree {c) linear tree

Lemma 2 (frequency). The frequency of a node in an
itemset tree equals the number of market baskets that have
passed through this node during the construction of the
itemnset tree. The frequency of a child is smaller than the

frequency of the parent.

JCS Vol, T No. 3 Nov - Dec 2005

Proof. The proof tollows immediately from Algorithm
1. Each time a market basket is inserted in the itemset
tree, the frequency of each node such that the itemset
associated with it is an ancestor of the incoming basket is
incremented by 1. The parent’s frequency is incremented

before a child’s frequency is incremented.
3.3 Use of Itemset Trees
ltemset trees can be used to

s Calculate the support of an itemsei

Find all frequent itemsets that contain a user-specified

list of items

Generate all rules that exceed a user-specified
minimum confidence and have a user-specified
itemset as antecedent.

Table 2 Algorithm 2 that Uses Itemset Tree T to find the
Support of {temsets

Let R denote the root of T and
let {¢;.f(c;)] be R’s children

Let Ti denote the subtree whose root is {¢;,f(c;)]
To invoke Count use {{s)y=Count(s,T,0)

Count{s, T f(s))
For each c;, such that first_item(c;) firsi_itemn(s):

L. If s< ¢; then return {f (s)*+f(ci))
2. If s ©c; and fast_item(c;) < last_item(s),
then return (f(s)+ Count{s,T;,f(s))).

Algorithm 2 sums up the frequencies of all nodes that
subsume s (¢, subsumes s, and write s C ¢, if any item
contained in s is also contained in ¢). At the beginning,
the procedure sets fs), and then examines the itemsets,
¢, associated with the root’s children. If the first item of
some ¢, is greater than the first item in 5, then the itemset-
tree building algorithm guarantees that none of the nodes
of the subtree rooted at ¢, subsumes s. This means that
the subiree does not affect the support f{s) and can be

ignored.

254

Three different situations can occur in the event of
first_item(¢,) d” first_item(s): The first situation is
marked by 5 ¢ ¢, which means that each basket that has
passed through this node contained the itemset s,
Therefore, it is enough to update the support, fs) = fs)
+flc,), where flc) is the frequency of the child containing
c .

Second, if ¢, € s, the algorithm s applied recursively to
the subtree rooted at ¢. Third, if neither condifion is
satisfied, then none of the nodes in the subtree rooted at
¢, can subsume s. In this case, fls) is not updated. The
itemsets are organized in such a way that, fo answer an
average query, the system will have to visit only a subset
of the nodes.

Many nodes will be excluded from further consideration
by the conditions first_item(e;) d” fixst_item(s) and ¢, c
5.

Table 3 Algorithm 3 for targeted queries

Let R denote the root of T
and let [e;,f{c;}] be R's children

Let T; denate the subtree whose root is [c;,{{c;)]

To invoke Selective_mining
use: L=Selective_mining(s,T,{}}

Selective_mining(s,T,L}

For each ¢; such that first_item{ci) ¢ first_item(s):
1. If s Cc; then
i. Let L' be the set of alt #em sets, |
such that s€ [

i return (LUL}

2. Hsg c;and last_item(c;)<last_item(s),
then return { L\VSelective_mining(s, T:,L))

Algorithm 3 returns the list of all itemsets that subsume
the user-specified itemset 5 and have the support of at
least some 0. This algorithm is similar to the one described
inTable 2. Both of them constrain their searches by com-
parisons of the first items in s and ¢, Further on, they

both test the subsurption and ancestor relations between

Targefed Association Querying for Dynamic and Distributed databases

s and c. However, there exists some differences. In the
event of s C ¢, all itemsets that are subsumed by ¢, and
themselves subsume s, have to be appended to the List, L,
of itemsets subsuming the user-specified items. More-
over, once the search has been compieted, two additional
steps have to be accomplished. First, some itemsets might
appear in L more than once and the duplicates have to be
merged into a single occurrence (recalculating the sup-
port from the tree). Then, itemsets with supports below 6
are removed. These steps are listed in the algorithm in
Table 4. To answer a query of this kind, the system does
not have to search through the entire database. This means
that the complexity of this algorithm is upper bounded
by O (N) where N is the number of market baskets.
"Table 4 Algorithm 4 to find the frequent itemset

Let L denote the set of fiemsets returned by algorithm 4.
To invoke All_frequent_sets use All_frequent_sets(L, &)
All_frequent_sets(L,8)
1. Merge all duplicates found n L{and recalculate the
respective supporis)

2. Remove from L all itemsets whose supports are
less than @

Itemsets discovered by association mining algorithms are
often used to generate rules of the form s => J, where s
and [are itemsets, An interpretation of a rule like this can
be: “60 percent of the customers buying milk and butter
will also buy cheese.” The percentage {in this case, 60
percent) is sometimes called a confidence in the rule. The
technique of itemset trees is being able to support this

type of query also.

4. ProroseED WORK

Let / be a set of distinct attributes called items. Let D be
a database of transactions, where each transaction has a
unique identifier {tid) and contains a set of items. A set
of exactly k items is called a k-itemset. The tidset of an
itemset C corresponds to the set of all transaction

identifiers (tids) where the itemset C occurs as a subset.

255

The support count of C, is the number of fransactions of
D in which it eccurs as a subset. Similarly, the support of
C, dencted by ¢ (C), is the percentage of transactions of
D in which it occurs as a subset. The itemsets that meeta
user specified minimum support are referred to as frequent
itemsets. A frequent itemset is maximal if it is not subset
of any other frequent itemset. The set of all maximal
frequent itemsets is denoted as MFI. Targeted querying
retrieves the support count of the given itemset § in the
transaction set [

4.1 Itemset mining in distributed datasets

An itemset tree is constructed for the database in each
site of the distributed system. The itemset tree is then
used to determine the local and the global frequent itemset

as well as the targeted queries.
4.1.1Targeted querying in distributed datasets

In a distributed database system, a global frequent jtemset

must be local frequent in all partitions.

Proof: Let Cbe an itemset. If Csup,e” 5, fori=1,2,..n
, then Cis a global frequent itemset. Only if it is local
frequent in all sites, it can be a global frequent itemset.
The focal frequent itemsets MFIs are determined in all
sites and are aggregated to form the global frequent

itemset.

mrr= Y MFI;

i=l

4.1.2 Frequent itemset mining in distributed datasets

The global support count of a targeted itemset C can be
obtained by collecting the local support counts and
aggregating them. The global support count C.sup of an

itemset C is the sum of their local support counts C.sup,.
4.2 Itemset Mining in Dynamic Datasets

In the existing database D, 2 set of new transactions d* is
added and a set of old transactions d is removed, forming

the dynamic dataset D, (ie. D,=(D Y d")-d).

JCS Vol. 1 No. 3 Nov-Dec 2005

Let §, be the support of the targeted itemset when mining
D. Let €% be the information kept from the current mining
that will be used in the next incremental mining operation.
Here it consists of itemset trees with partially ordered set
of pairs [itemset, frequency] (i.e., all frequent itemsets,
along with their support counts, in). An itemset C is
frequent in D, if 6(C) e” S, Note that an itemset C not
frequent in D, may become a frequent itemset in D, .In
this case, C is called an emerged itemset. If a frequent
itemset in D remains frequent in D, it is called a retained

itemset.

- In this incremental approach, each node consists of a pair
l(ﬁ-equency, database number) to identify the frequency
and the database number. Suppose a node has a frequency
J1 in the database DB/ and the new frequency for the
increment database DB2 is f2, the frequency of the node

for the incremented database is /7 +/2.

5. ResuLts anp Discussion

Experiments were conducted with synthetic dataset of
varying complexity from IBM Generator on five Pentium
4 nodes with 512MB RAM. The program was written in
C.

The database is distributed to all the nodes. The
interprocessor communication is implemented using
sockets. The average time taken to construct the itemset

tree for number of transactions ranging from 10000

through 30000 in 4 sites is shown in Table 5 and Fig 3.

Table 5 Tree construction time in a site

S.No No. of Tree Construction
transactions time (s)
I 10000 1.181
2 20000 2.207
3 30000 442

256

Tree Construction time in a site
5
R __ Z,’,ii
.
0 |
2o 1 |
Fez |
e -
Q
© 1l i
10000 20300 30000
No. of transactions

Fig 3 Average Tree Construction time

Time taken for finding the support count of a targeted
itemset with 80 items per transaction from an itemset tree
constructed with 10000-30000 transactions per node is

shown in Table 6 and Fig 4.

Table 6 Response time for targeted querying in

distributed datasets

No. of Response time for targeted querying (s)

fransactions 1 2 3 4
10000 0.563 0.657 0.721 0.812
200060 0.583 0.682 0.743 0.859
30000 0.653 | 0.702 0.758 0.892

Response time for the Targeted query is the time
difference between the time of submission to the time at
which the support count is obtained after the construction

of the itemset tree.

Response time for Targeted Querying

40000 20000 3000R0.0f Transactions

Fig 4 Response time for targeted queries

To study the performance of the itemset tree in dynamic
environmernt, a dataset comprising 10000 transactions was

added with the already existing database.

Table 7 Tree construction time for dynamic datasets

Targeted Association Querying for Dynamic and Distributed dajabases

Database No. of Tree modifiaction
transactions time (s)
Di 10000 1..61
D2 20600 2.32
D3 30000 2.85

The new datasets were added to the old database with
30000 transactions. The existing itemset tree was
modified to accommodate the new set of transactions.
The time taken to modify the existing itemset tree is less
than the time taken to construct the entire tree again as

shown in Table 7.

Experiments were conducted to determine the response
time for targeted querying of an itemset containing 120
unique items in local sites as well as global sites. Table 8
shows the results of targeted querying for an itemset

consisting of 120 items in an incremented database.

Table 8 Response time for targeted querying in

dynamic datasets

No. of Respense time for targeted querying {s)

transactions 1 2 3 4
40000 0.923 1.122 1.321 1.426
50000 1.101 1.234 1,421 1.568
60000 1.221 1.342 1.524 1.687

It was interesting to obtain the identity of the targeted
query along with the support count. This is due to the
fact that each node of the itemset tree stores the frequency
and the identity of the dataset to which the itemset belong
to. The performance of the itemset tree was evaluated

both for addition and deletion of the datasets.

6. CoxcLusion

In large dynamic and distributed databases, finding the
exhaustive list of all the frequent itemsets to answer the
user queries is time consuming. This is not suitable for
online querying. This project proposes a distributed
mining method using itemset tree, which is both space
and time efficient compared to existing algorithms. This

scheme focuses on ntining frequent itemsets and targeted

257

itemsets in distributed dynamic environment.
Experimental results show that this scheme also provides
the ability for incremental mining and transaction tracing.
The itemset tree is order independent and hence it is not
dependent on the order in which the market baskets are
presented thus making it an ideal candidate for dynamic
data mining. This scheme also identifies the database to
which the targeted itermnset belongs to. Further this
approach is applicable to addition as well as deletion of

transactions.

7. REFERENCES

[1] R.Agarwal, C.Agarwal, and V.V.V.Prasad, “Depth-
First Generation of Large Itemsets of Association
Rules “, IBM Technical Report RC 21538, July
1998.

(2] R.Agarwal, C.Agarwal, and V.V.V.Prasad, “ATree

projection Algorithm for Generation of Frequent

Itemsets ©, Journal of Parallel and distributed

computing,2000.

{3] R. Srikant and R. Agrawal, “Mining Generalized

Association Rules,” Proc. 21th Int’l Conf. Very

Large Databases, pp. 407-419, 1995.

R.J. Bayardo and R. Agrawal, “Mining the Most

Interesting Rules,” Proc. Fifth ACM SIGKDD Int’l

Conf. Knowledge Discovery and Data Mining, pp.

145-154, 1999.

[5] D. Cheung, J. Han, V. Ng, and C. Y. Wong.,

“Maintenance of discovered association rules in

large databases™ An incremental updating

technique,” in Proc. of the 12th Int’l. Conf. on Data

Engineering, February 1996.

{61 Miroslav Kubat, Alaaeldin Hafez etal, “Tternset trees

for Targeted Association Querying”, IEEE

Transactions on Knowledge and Data Engineering,

Vol 15, No.6,November/December 2003,pp 1522-
1534.

JCS Vol.

1 No. 3 Nov - Dec 2005

(7]

(10}

[12]

(13]

[14]

[13]

J. Han and J. Pei, and Y.Yin, “Mining Frequent
Patterns without Candidate Generation”, proc

SIGMOD’00, 2000.

K. Gouda and M. Zaki, “Efficiently mining maximal
frequent itemsets,” in Proc. of the Ist IEEE Int'l
Conference on Data Mining, San Jose, USA,
November 2001

M. E. Otey, A. Veloso, C. Wang, S. Parthasarathy,
and W. Meira Jr., “Mining frequent itemsets in
distributed and dynamic databases,” in /EEE

International Conference on Dara Mining, 2003.

B.-H. Park and H. Kargupta, “Distributed data
mining: Algorithms, systems, and applications,” in
Data Mining Handbook, N. Ye, Ed., 2002,

R. Agrawal and J.C. Shafer, “Parallel Mining of
Association Rules,” IEEE Trans. Knowledge and
Data Eng., vol. 8, no. 6, pp. 962- 969, Dec. 1996.
D.W. Cheung, V.T. Ng, AW, Fu, and W. Fu,
“Efficient Mining of Association Rules in
Distributed Databases,” IEEE Trans. Knowledge
and Data Eng., vol. §, pp. 911-822, 1996,

A. Veloso, M. E. Otey, S. Parthasarathy, and W.
Meira Jr., “Parallel and distributed frequent itemset

L1

mining on dynamic datasets,” in International
Conference On High Performance Computing,
2003.

D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu, “A fast
distributed algorithm for mining association rules,”
in 4ih Intl.Conf. Parallel and Distributed Info.
Systems, 1996a.

A, Schuster and R. Wolff, “Communication-
efficient distributed mining of association rules” in
Proceedings of the 2001 ACM SIGMOD
international conference on Management of data,

ACM Press, 2001, pp. 473-484,

258

[16]

(17}

(18]

[19]

[20]

(21)

(22}

(23]

R. L. Grossman, S. M. Bailey, H. Sivakumar, and
A. L. Turinsky, “Papyrus: A system for data mining
over local and wide-area clusters and super-

clusters™, 1999,

S. Parthasarathy and A. Ramakrishnan, “Parallel
incremental 2d discretization,” [FEE International
Conference on Parallel and Distributed Processing,

2002.
S. Parthasarathy, M. J. Zaki, M. Ogihara, and S.

Dwarkadas, “Incremental and interactive sequence

mining,” in CIKM, 1999, pp. 251-258.

Zaki, “Efficient enumeration of frequent
sequences,” in CIKM: ACM CIKM International
Conference on Information and Knowledge

Management. ACM, SIGIR, and SIGMIS, 1998.

R. Srikant and R. Agrawal, “Mining sequential
patterns: Generalizations and performance
improvements,” in Proc. 5* fnt. Conf. Extending
Database Technology, EDBT, P. M. G. Apers, M.
Bouzeghoub, and G. Gardarin, Eds., vol.1057,
Springer-Verlag, 25-29 1996, pp. 3-17.

M. Zhang, B. Kao, C. Yip, and D. Cheung, “A GSP-
based efficient algorithm for mining freguent
sequences,” in Proc.of IC-A7’001, Las Vegas,
Nevada, US4, June 2001,

M. Zhang, B. Kao, D. W.-L. Cheung, and C. L. Yip,
“Efficient algorithms for incremental update of
frequent sequences,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2002, pp.
186-197.

D. Cheung, S. Lee, and B. Kao, “A general
incremental technique for maintaining discovered
association rules,” in Proc. of the 5th Int’l. Conf.
on Database Systems for Advanced Applications,
April 1997, pp. 1-4.

Targeted Association Querying for Dynamic and Distributed databases

Authors’ Biography :

Ms. T. Hamsapriya is an Assistant Professor, Dept. of
CSE, PSG College of Technology. She has 10 years of
teaching experience and 4 years of industrial experience.
She is currently pursuing her research in Parallel and
Distributed Computing, $he has published many papers
in the area of parallel data mining, Evolutionary
Computing and Distributed Computing in International

and National Journals and Conferences.

259

% Dy, S, Sumathi is an Assistant Professor,
Dept. of EEE, PSG Coliege of
Technology. She has published many
papers in the area of data mining, and Soft
Computing in International and National
Journals and Conferences. She has authored three books

in the area of Data mining and Neural Networks.

