JCS Vol. 1 No. 3 Nov - Dec 2005

Pre-Syntactic Analysis of NL Sentences for Auto Generation of
Programming Interface

Gopinath Ganapathy'

ARBSTRACT

Auto Generation of Programming Interface is a
framework that leverages the NLP and Auto Programming
concepts and suggests a probable generation of a
syntactically valid piece of code transformed from NL
descriptiott.

This paper addresses the initial phases of the framework
that include lexical and morphological analysis. A size
conscious lexicon has been constructed for the framework
that is compiled from the data collection survey. A
powerful yet simple strategy called projection
mathematics is employed to map a lexical component to

all possible derivations from its stem.

Kevworps : NLP, Auto Programming, Lexicon,

Morphological Analysis, Projection Mathematics

1. INTRODUCTION

The self generation of Program froma given information
by analyzing it through the computational approach or
by means of straight forward application of techniques is
one of the methodologies of Auto programming. Auto
Generation of Programming Interface is theoretical
framework (AGOPI) that is conceived of to generate a
target program in artificial language from the given
description of the problem in Natural Language that needs

to go through various phases in analyzing NL descriptions.

"Professor and Head,

Department of Computer Science,
Bharathidasan University, Trichirapalii,
Tamil Nadu - 620 023. India.

More precisely, a framework is to be built, whereby the
user can specify the procedures that should be translated

into a target program.

NL Representation ~3=4GOPI-35TP in Artificial
Language.

This paper deals with the analysis of the words, extracted
from the NL deseription of the problem, collected in data-
collection sheets (Appendix) from around 750 persons,
envisaging that a model lexicon must be constructed for
AGOPL Each word is processed so that it can fit into
the lexiconas an entity whichis further subject to the
morphological analysis. This will enable the framework

to carry out the parsing of the NL description.

This paper talks about the initial phase of the intended
framework which involves collection of terminology
(words both technical and general) that could possibly
be used in the description which should be independent
of special machine features. A data collection survey has
been conducted with 750 people mostly of computer user
group including novices at different places (mostly
educational Institutions) in order to fetch the words usable
while representing the problem. The collection is carried
out in three full years among different Institutions (to get
a large no. of candidates) in order to get the matured
vocabulary and terminology in the programming domain.
The candidates were so chosen that they had fully or partly
working experience with computers in general and
programs in particular. Thus collected words are manually
processed initiatly so that they can be deposited into a
loosely structured word base which is to be fed as lookup

table for the module that forms a part of the project.

JCS Vol. 1 No. 3 Nov - Dec 2005

Presently, to give the word base the lexicon status
syntactic categories are introduced to a smaller extent

along with the entries.

2. RELATED SURVEY

From a domain-based text, the analysis towards
recognizing NL in a few applications and information
retrieval systems based on dictionaries. is positive
approach in AP designs to encounter the input tokens.
Using special purpose dictionary for automatic text
processing would show better performance in any
information retrieval systems. For the work {5] of
technical abstract analysis, the data were gathered from
a CS library for terms from a domain of technical abstracts
to form a dictionary for language processing system,
Though more recent theories treat lexicons as
afterthought, yet the essence of these theories is in lexicon
[10] since every element of the semantic representation
of the sentence ultimately derives from the lexicon.
Several projects are going on aiming the creation of
lexical knowledge base [4]. A rich lexical structure makes
it possible to express rules capturing linguistic
generalization based on the semantic content of lexical
items, rather than relying on general-purpose inference
over an encyclopedic KB [1]. So, the task of constructing
a lexicon for a natural language is formidable, not only
because of the absence of a well articulated theory of
what it should contain, but also the enormous number of
the words to be dealt with. This works assumes that theze
could be no MT without a system having adequate words
that must have been understood for the translation task.
While these kinds of applications are built with sernantic
features, there are other few applications Hke syntax
parser may need syntactic category (e.g. verb) and the
features like infinite, transitive, etc. in their lexical base.

A NL generator needs the words to map the internal

270

concepts of the word to the external world. The content
and the orgzanization of the lexicon, however, directly

depend upon the application to which it is to be attached.

Wilks [12] described a working analysis and generation
algorithm which handles paragraph length input. It maps
utterances in ong NL to a form unambiguously to the other.
Simmons describes about the derivation and manipulation
of representation of verbal meanings for a subset of
English sentence [9]. Similarly [6] specifies semantic
network which defines the meaning of the lexical entry.
In interactive NL application like SHRDLU [13] the
lexicon is injected with world knowledge of a model. The
SHRDLU was designed to answer queries conceming the
domain of toy blocks which, with a help of lexicon, made
deductions about the state of the blocks. Carroll and
Grover [3] have described a lexicon development
environment with an aim to develop a morphological and
syntactic analyzer in English grammar. [8] has given the
multilingual semantic lexicon based on Conceptual
Dependency (CD) and Discrimination networks (Dnet)
in an objected oriented platform providing an efficient
retrieval mechanism using hash table. Hence any NL
application will have its own conventions regarding the
content, organization, and structure of its texicon to which
the approach of the system differs as per its application.

So the lexicon is a mandatory for the frameworks like

AGOPI for its analysis.

3. LExico_MoRPHOLOGICAL VIEW

Building customized lexicons will have duplication of
efforts until a rich and powerful lexical database is
developed with different linguistic theories [2]. For a
chosen application, say AF system, a word data base
would need to have all information about a word that is
supposed to be relevant to that application, though it is

unlikely to be constructed. A lexicon may be expected to

Pre-Syntactic Analysis of NL Sentences for Auto Generafion of Programming Interface

provide information about the style of the word,
phonemes, synonyms, and even diagrams; however
AGOPI does not need such a elaborate and full fledged
dictionaries. This work believes that the irrelevant items,
not needed by the system though itis associated to a word,
may be isolated. This leads to keeping words and their

forms organized well and application friendly.

Like any other Iexicon, our word base (See Chapter
Appendix A.3) is also loosely structured with no uniform
patterns or records. The morphological analysis may
assume that all dictionary users are assumed to possess
knowledge about morphology, both inflectional and
derivative [2]. But the computing system application like
AGOPI is not expected to do so. How to represent the
various forms of the entry in computationally viable
format is the question that makes the morphological
analysis a significant component in our lexicon. AGOPI
uses the lexicon where the internal representation is to
be explicitly transferred to the memory in order to be
accessible and suitable to computer program. This
approach is supported by the program which employs
certain decomposition and manipulation on the entries
having the stream of word with the head word at the first
and the derivation factors or affixes af the rest. However
all the irregular and independent words are stored as it
is.

The computer word forms are constructed in a way by
concatenation of segments. The set of all segments can
be broken down into disjoint subsets [14]. So, a word
(W) is more than a sequence of characters; itis considered
as a group of components (C) like root, prefix, and suffix.

W=Cl+C2+..Cn(n>0

The word model exhibiting this linguistic principle is
capable of determining the size of the dictionary. Hence,
AGOPI builds the lexicon with size consciousness where

the terminologies are stored in a manner that they are

based on keywords and their morphological affixes, in
order to reduce the high degree of redundancy. The
underlying concept of organization of the simple word
base used in the system is realized through the following
figure.

Word
i
! [
syntactic category derived words

! [

i Word

|

|
| | |]]
verhb noun adj adv others
| [|
tenses humber degree derived derived

forms forms

Figure 1: Word Organization

4. LExicar CONSTRUCTION

Since KA is the bottleneck in development of any system,
a comprehensive lexicon is very much needed in any
automated KA system that involves NL. For example a
rule based model for medical expert system deals with
lexicon to understand the knowledge contained in English
text[7]. As this framework uses a compact and convincing
word base to handle English text, grammatical

components are easily processed.

The knowledge of words has a dominant role in NLP
applications as many lexicons are designed for specific
applications like medical DSS {11]. In the envisaged
AGOPI mode), the words from the survey are collected
and manually deposited based on the categories viz verbs,
nouns, advetbs, adjectives, pronouns, conjunction, and
preposition. The words are to be synthesized based on
their morphological features and stored accordingly with
the intention that the word has to occur preferably only

once in the word base.

In the first category the word types are prepositions,

conjunctions and most of the pronouns, which are taken

as a full form. The second category is filled up by the
271

JC5Vol. 1 No. 3 Nov-Dec 2005

word types like adjectives, adverbs, nouns and verbs
which require morphological analysis. (see diagram in
Chapter Appendix A-1). Though every enftry in the word
base of this category follows no uniform pattern, it
projects a fixed number of fields depends upon the

inflection or the derivation of that entry.
A pattern, for example,

JVERB TENSE FORMS NOMINAL DERIVATIONS
PLURAL FORMS ADJECTIVE ADVERBIAL FORMS
PREFIXED FORMS:

will take values like
rapproximate -+ -ion *s Iy mis~=:
(See next section for rules of projection.)
Simularly another pattern keeping noun as head word, as
in
NOUN PLURAL FORM ADJECTIVE ADVERB.
In another ;-:nattem, the adjective forms the key stem as in

CADJECTIVE
NOMINAL_FORMS
PREFIXED FORMS:

ADVERBIAL DERIVATION
& PLURAL _FORMS

which will assume words like
:common ly ness ality un~=:

For the sake of management, the words that are same for
verb and noun (for eg. call, attempt, input etc.) are treated
as verb only though they are semantically different. This
work is not concentrating on lexical semantics and on
cornplete syntactic analysis, as right now the work restricts
itself to pre-syntactic stape and partial syntax analysis
only.

It is somewhat clear in our application that the lexicon s
not expected to give the synonyms, antonyms and other
such features. It is not a pure MRD or a full fledged
lexicon for machine translation. Nevertheless it is more

than a mere lookup table for pattern matching. It should

possess the syntactic features and to some extent the

lexical semantics.

This section hints about the implementation phase along
with a front end for accessing the word base. Generally,
to compromise the speed of the program which
exhaustively does the morphological analysis is another
weak strategy in MRD usage since the developers are
convinced with the reduction of size of the lexicon and
the size of the memory, giving less attention to the process
optimization. Since the morphological features are
introduced in our word base itself, the computation is
minimized to a greater extent. At the same time the size
of the word base is taken care of so as to occupy less
space in the computer storage. The transferring of the
word base to the memory based on the projection rules is
carefully performed by the program. AGOPI is working
with a confined domain of English words and its word
base perfectly fits into RAM, Another feature of the
algorithm is that when the memory to be filled up by the
word base entries, the projection rules are employed only
to the needed portion of the word base due to indexing
mechanisiz so that the search and match operations are
simplified and the searching time is expected to be
reduced to some extent.. The general concept of the logic
of the pre-syntax module includes the following core idea.
1) Interfacing screen: It is a GUI for accepting the textual
information, (either on-line or off-line).

2) Tokenizing the text: (void tokenizer()) in order fo
enable the morphological Analysis. (Tokens are stored
in a buffer which dies when the program quits).

3) Two-level Lexical iatch: The token matching is carried
out with the following straight forward logic.

a) Direct Token Match (DTM).: i.e. the word from the
user’s representation is matched directly with the lexical

root item.

Pre-Syntactic Analysis of NL Sertences for Auto Generation of Programming Interface

1) Synthesized Token Match (STM):This is applicable
when DTM fails.

i_e. the word read is compared with the expanded lexical
array. The lexical root item and its morphelogically
associated tokens are collectively named lexical array or
lexical row. At STM level the lexical array corresponding
to the scanned vslford from the input text should be
expanded so that the matching is carried out. Obviously,
if both levels fail, the logic reveals the non availability of
the item of interest. The logic so designed that the user is
permitted to append the new word to the existing word
base. This may be simply done thru an interface when
the token not found in the projected word base. This is
done to append a legal word to the word base according
to the lexical category, say if verb, verb template is used
for storing the item. However the user has to give
explicitly the root and its morphemes manuaily as the

lexicon demands the knowledge about the lexical array.

For e.g. the word ‘divide’ is to be appended , the user
has to pick up the verb option so that the verb template
is displayed in order to enable the user to fill up the lexical

array.

-VERB ENSE_FORMS NOMINAL_DERIVA TIONS
PLURAL FORMS ADJECTIVE AD VERBIAL FORMS
PREFIXED_FORMS:

As per this template the lexical array comresponding to
the verb pattern, the word may be entered as follows.

divide s d ing -sion

The notions for entry are very simple as substitute if the
projection calculus is understood. The lexical semantics
or fixation of syntactic markers is not discussed in the
projection arithmetic. However the analysis phase
claborates the modified lexicon with the decimal markers
along with the lexical fields to indicate the type syntactic

category of the word.

5, ProOJECTION MATHEMATICS

The *Head’ word is to be affixed with its successive tokens
to get its full forms as described earlier. The array
containing all the tokens is projected as the full forms of
the Head Word (HW) to enhance the searching operation.
For this purpose the following rules are adapted. There
are 483 words are tabled and around 3000 words are
associated with them. The projection rules table gives
the complete manipulation of entries in the lexical array
of the word base in order to expand the lexicon for the
above said analysis. The following is the table.

Table 1; Projection Rules

1. The Head Word, Head Word + affix, if no special
symbols are attached to the affix.

2. The Head Word only, if no affixes.

3. The Head Word. if affixes with special symbols,

triggering second level process.

if affix is preceded by a - symbol of the form -

{affix}, the last character of the H W is to be

a)

truncated during projection.
b) if the affix is preceded by a number and -
symbol of the form n-{affix}, then "n " number
of characters are to be truncated.
if the affix field has ~ symbol, the symbol is to
be replaced by the HW.
if the affix is followed by the ~ symbol like
{affix}~, the symbol is replaced by the HW
along with the affix (prefix).
if the affix is followed by ~ and = as {affix}~=,
the field will replace the HW (as this is a
derived form of HW). All the rules are again
applicable 1o the new HW during projection.
f) *replaces the previous field of the affix array.
g) #in the affix field indicates that the present

field is a derived form of the HW and need

JC§ Vol. 1 No. 3 Nov - Dec 2005

not be gffixed to HW and it is independent
(1o be projected as it is).
h) 3 represents the new HW and is to be replaced
by the same during projection. This occurs
Jfor special case only.
If HW carries ~ symbol ({HW}"{alphabet}), it
implies that the last characier of HW is to be

replaced by its following character before

projection.

f} ifthe affix happens to be +, it represents tenses
of the verb;

The projection will follow the following
pattern.
s, ing, and ed will be suffixed 10 the FHW.

&) if the affix is -+, the rule will project by
suffixing the tense endings viz s, -ing, and d
to the HW,
if the affix is e+, the substitution will be ed
ing and ed.

) ! tells the routine that the following fields are

not to be affixed to the HW.

mj \in the affix denotes that the particular word

Is to be profected as if is without affixing.

The notion for the derivational features is given in the
form of few suffices which is exclusive for this word base
only. For example the following suffices would substitute
the corresponding notions in the lexicon during
projection, The notions are in upper case for distinction
as the fexical projection is made case sensitive. However
other analyses take the sentences as lower case words for

uniform processing.

274

Table 2 : Projection Management for Suffices

Sample

Notion | Suffix Lexical Projection
Field

A4 - age Break A Breakage
AL - al logic AL logical
AY- ability | Match AY | match ability
Al - ability common Al | Commonality
B - Able Manage B | Manageable
ES - Ness Large ES | Largeness
F- Ification | justify -F Justification
FL - Jul hope FL hopeful
G- ing gather G Gathering
I - ity act ! Activity
L - Iy final L Finally
M - ment manage M| management
N - ion Calewlate N | Caleulation
R- ier rectify -ier Rectifier
TN - ation Jorm TN Formation
V- ive Act ¥V Active

The prefix attachment to the head word is very easily
handied as per the rule (e) like mis~ will expand to
miscalculate if the head word is calenlate and mis~=
would result in projection by making all the derivational
patterns applicable to miscalculate also. This is same for

other prefixes like un, in, pre, trans, re, be, etc.

6. ConCLUsION

It is not claimed here that this model word base is the
universal lexicon for AP or NL systems. It is a quick and
reliable model for our application which deals with NL
statements for describing computer program in arithmetic
operations and input and output commands only. This
work, however, envisages the possibility of enhancing
the model for wider application as it is very easy to do
$0. As every computational lexicon is suppased to be
concise angd spacé conscious, the designing of our word
base is taken care of with terminology and corresponding
morphology with the same conscioﬁsness. Another merit
of the lexicon is the whole collection of words is pooled
and concisely reduced very carefully to 91 headwords,

and 483 solid words which could generate around 2000+

Pre-Syntactic Analysis of NL Sentences for Auto Generation of Programming interface

words during projection. The easy on-line appending of
new lexical entries through the lexical template is another
merit. For further research, updating lexicon or learning
of new lexical items and solution to lexical ambiguity
may be done by applying Neural or Cognitive computing
methodologies. The semantic information and the
incorporation of complete syntax categories and lexical

semantics are being under research that is not in the paper.

APPENDICES

Al : Data Collection

TOWARDS AUTO PROGRAMMING THROUGH
NATURAL LANGUAGE

SAMPLE DATA COLLECTION SHEET -
(QUESTIONNAIRE)

0. Name

1. Age

2. Address

3. Knowledge in Computers (in years}

4. Experience in Programming (n years)

5. Qualification

6. The following is the wa}; of representing our
requirements/specifications of the program through
Natural Language.

“The input variables are BREADTH and HEIGHT whose
values are 50.25 and 67.90 respectively. Multiply those
variables and assign the result to variable. Finally

display the result”.

7. The foltowing is the complete program (in BASIC)
which suits to the above described specifications:

10 rem

20 input BREADTH, HEIGHT

30 a = breadth * width

40 print a

50 stop : end

8. The following is another BASIC program.

Now Imagine that you, Describe the working of the
program to the compuier or Specify how the Program
should work or Explain the steps of the Program in

order to solve the problem.

10 rem sample program

20 input a,b

30sum =a+b

40 diff=a-b

30nwml =a*b

60div =a/b

70 print sum, diff ,mul, div

80 stop : end

9. The description: { not more than 25 lines)

A2 : The Sample Lexicon array (partial)
calculate «+ -N *s -B -V : mis~=
call+ ~sB.re~—=

cancel s led led ITN *s

carry -yies -yied -yiG -yier *s
certain ty L un~

collect + N #s V *L:un~=
come s -+ came come : be=
command + *s M *s ing *L
common L ES Al : un~=
communicate -+ -N *s -V *L
declare -+ -TN *s

deficient -cy *L

define -+ -ition *s -B

equate -+ -N *s 2-]

equip s ped ped M *s

" erase-+ r*s B

fit s ted ted ting *s B
form + TN ~ *s B : trans~= : 1&~=
firee singd d ES

function + ~ *s B

JC5 Vol. 1 No. 3 Nov - Dec 2005

fuzzy -1 *L -iness

imitate -+ -N *s -V * %[,

important -ce *L

increase s -+ d -ing *L -B

interrogate -+ -N *s -V * *L

Jjustify*i es ~ing ed R *s B ¢TN

keep s ing kept
know s knew n ledge *ful ¥ *L ing * *L ledgeB

large r st . ness
link + G *s ~ *s
load + ~*s B

make s ing \made \made ~ *s B

manage + M *s1*s B

manifest s eing ed TN *s B

mask + ~ *s B AY : un~=

References

(1]

[3]

(4]

(3]

Anick, Peter; Bergler, Sabine, Lexical Structures
for linguistic inference; In Pustejorsky, J.; Bergler,
S., (Eds), Proceedings on Lexical Semantics &
Knowledge Representation, Lecture Notes in Al
Springer Verlog, p 121-135, 1992

Bran Boguraev and Ted Briscoe, Computational
Lexicography for NLP, Longman UK Limited,
UK,1989.

John Caroll and Claire Grover, The Derivation of a
large Computational Lexicon for English from
LDOCE, In Bran Bogurav and Ted Briscoe,
Computational Lexicography for Natural Language
Processing, Lonman, 1989,

Filgeuiras, J; Damas, L; Moreira,N.; Tomas, AP,
Natural Language Processing, Lecture Notes in Al
Springer Verlog, 1991.

Haas, Stephanie,W., Covering the vocabulary of
technical abstracts using standard and specialized
dictionary, Jrl. of Information Science, V1. 8, 5,

1992, p 363-373.

[6] Igor Mel’cukand Alain Polguere, A formal lexicon
in the Meaning Text Theory, J1. Computational
Linguistics, 13, pp 261-275, 1987,

[7]1 Rinaldo, Frank, F.; Strutz, Robert, E.; Evens,
Martin, W., Developing a Lexicon for Automatic
KA; In Proceedings of the Conference on Expert
System for Development, IEEE Press, p 74-78,
1994.

[8] Shalini Agrawal and Deepak Khemani(Supervisor),
A multilingual Semantic Lexicon, M.S. Thesis, IIT,
Madras, April, 1995.

[9] R.F Simmons, Semantic Networks : Computation
and Use for Understanding English Sentences, In
Roger C. Schank and Kenneth M.Colby, (Ed),
Computer Models of thought and Language,
W.H.Freeman and Co., 1989.

f10] Sowa, John, F., Logical Structures in the lexicon,
In Pustejorsky, J.; Bergler, S., (Eds), Proceedings

on Lexical Semantics & Knowledge
Auther’s Biography :
Dr. Gopinath Ganapathy is the

Professor and Head of the Dept of

Computer Science, Bharathidasan

University, India. He did his under
graduation and post graduation in Computer Science and
Applications in 1986 and 1988 respectively from
Bharathidasan University, India. He obtained his PhD
degree, in Computer Science in 1996, from Madurai
Kamaraj University, India. Received Young Scientist
Fellow Award for the year 1994 and eventually did the
research work at IIT Madras. He published around 17
papers. He is the Life member of CSI, ISTE and member
of ACM. He was a Consultant for a 8.5 years in the firms
in the US and UK, including IBM, Lucent Technologies
(Bell Labs) and Toyota. His research interests include
Security, Patterns, NLP, Web Engg, and KDD.

