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A Novel Delta-Rule Approach for the Design of PID Controllers to Stabilize
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ARBSTRACT

This paper presents a systematic delta-rule approach for
tuning the parameters of a PID coatroiler during design
phase. A suitable second order approximant of the given
higher order Linear Time Invariant Continuous system is
considered for determining a possible set of the
Proportional (K ) , Integral (K ;) and Derivative (K,)

factors of the required PID controller. For stabilization,
Overshoot, Settling Time and Steady state error are taken
as the design criterion in the Time domain to adjust the
values of K ,, K ;and K, . The controller designed for
the Second order approximant is cascaded with the given
higher order system to validate the stabilization process.
The proposed design methodology is illustrated with
transfer functions of selected plants taken from the

literature.

Kevworps: PID control, Process control, Linear systems,

Model Reduction, Second order systems

1. INTRODUCTION

PID-controllers play a dominant role in Process control,
“These are widely used in Industrial control systems
because of the reduced number of parameters to be tuned.
Industrial application of PID controllers demands simple
and transparent design procedures. The most employed

PID design technique used in the industry is the Ziegler—
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Nichols method [1], which avoids the need for a model
of the plant to be controlled and relies solely on the step
response of the plant. The main restriction of Ziegler-
Nichols method is that it is suitable only for systems with

monotonic step response (S-shape response). Hang et al

[2} have reexamined the Ziegler-Nichols method and
proposed new tuning formulae and introduced a setting-
point weight for systems with PID controilers. Zhuang
and Atherton [3] proposed an optimal design of PID con-
trollers based on the minimization of an integral crite-
rion [integral of the square of the product of time and
error (ISTE)]. Yeung et al., [4] presented graphical de-
sign method for common continuous-time and discrete-
time compensators. The method is based upon a set of
Bode design charts, which have been generated using
appropriately normalized compensator transfer functions.
Several methods for designing controllers have been de- -
veloped by employing frequency response matching tech-
nique. The method proposed by Rattan et al., [5} is based
on complex curve fitting technique and involves the
matching of frequency response of closed-loop system
with that of a reference model. The complex curve-fit-
ting method of Rattan does not guaranice a stable con-
troller. In the method proposed by Houpis [6], the
sampled-data system is approximated by a pseudo-con-
tinuous-time control system. The approach is applicable
to systems with sampling time much smaller than one
second. The digital controller design method proposed
by Inooka etal., (7] is based on series expansion of pulse
transfer function. Aguirre [8] proposed a method for the

design of continuous time controllers by matching a com-
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bination of time-moments and Markov parameters of the
closed-foop system. The main purpose of all the
approaches is to reduce the excessive overshoot of
systems to be compensated. Each method has their

applications and limitations.

The design of PID controllers can be carried out either in
the Time or Frequency domain [9]. The choice of the
design domain depends upon the preference of the de-
signer. In most cases, time domain specifications such as
Overshoot, Seftling time and Steady state error are used
to measure the overall system performance. Also, to an
inexperienced designer, it is difficult to comprehend the
physical connection between frequency domain specifi-
cations such as gain and phase margin to actual perfor-
mance. To ensure a broad acceptance for the controller
design, it should be usable by designers with moderate
theoretical background and should be applicable for a

variety of plants.

In this paper a systematic approach based on a set of
proposed delta-rule is presented for tuning the paran-
eters of a PID controller for design purpose. Designing a
PID controller for 2 given higher order systems is
compuiationally intensive and cumbersome. For reduc-
ing the computational burden and also to establish an
iterative procedure for updating the controfler parameter
values, a second order approximant of the given higher
order system or plant is considered for design purpose.
When the PID controller is found to be stabilizing the
second order system within the given design specifica-
tions, it is cascaded with the original higher order system
to validate the actual stabilization process. Unit step re-
sponse of the closed loop system with the controller and

the plant is considered to validate the design.
The rest of the paper is organized as follows. Section 2
defines the problem to be solved. Section 3 outlines the

proposed design methodology and also sketches the al-
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gorithm for tuning the controlier parameters. Numerical
illustrations are presented in Section 4, followed by a

short discussion.
2. PROBLEM DEFINITION

The purpose of designing a PID controller is to provide
control signals that are proportional to:
(i) the error between the reference signal and the actual

output (proportional action),
(ii) the integral of the error (integral action), and
(iii) the derivative of the error(derivative action)

This can be mathematically represented as [10],

u(t) =K | e(t) +%;[e(z')dr +7, g}-e(z‘)

(2.1)

where u(f)and e(r) denote the conirol and the error
signals, respectively, and , Kp, T.and T, are the
parameters to be tuned. The corresponding transfer

function is given as

GC(S)pr(I-I_%-FTdSJ (2.2)

I
Equation (2.2) can be rewritten as,

K.
GC(S)'»:KP+T’+KdS (2.3)

The main features of PID controllers are:
(i) the capacity to eliminate steady-state error of the
response to a step reference signal (because of

integral action), and

(ii) the ability to anticipate output changes {(when

derivative action is employed).

C(s)

-

R(s

Gels)

Fig 2.1 Block diagram of a PID controller
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The standard block diagram of PID controller is shown
in fig 2.1. The proportional control action multiplies the
error signal with a constant to improve the overall gain
of the system. In fig 2.1, G(s) is the open loop transfer
function of the higher order system or plant to be
stabilized. The closed loop transfer function of the unity

feedback system with can be represented as,

7(s) =2

1+ G(s) (2:4)

If the output response of T(s) is not stable within the
specified design specifications, then the PID controller
is cascaded to the forward path to adjust the response.
The corresponding transfer function of the unity feedback

system can be represented as,

G(s)G. ()

L) = 1 65)6.)

(2.5)

The problem is to identify a set of (K,.K. K, )such
that the unit step time response of 7, (5) yields a stable
output within certain design specifications. The design
specifications considered are Overshoot, Settling time and
the Steady state error limits. The limiting values of these
parameters depend upon the type of the plant being
controlled. For illustration purpose, the following

specifications are used in this paper:

(i) Overshoot d" 1%
(ii) Seitling time d” 0.5 secs
(iti) Steady state error  d” 1%

3. PID ContrROLLER DESIGN
3.1 Proposed Methodelogy
1. Let G(s)be the general form of the transfer function

ofan ' order Linear Time Tnvariant Continuous system

represented as

as™ +a s FaSsta,

G(S): b 4 n—l1
8" +b s + .. +bs+b

n-1

G.1)

2. Let G,(s) be a Second order approximant of
G(s)in the form,

As+ B
s?+Cs+D

3. Let K,, K;and K respectively be the values of

G,(s)= (3.2)

the Proportional, Integral and Derivative factors of

the required PID controller. .

4. The tansfer function of the required PID controller

can be written as:

K.
G (s)=K, +—=+ K s
s
Kys* + K s+K; (3.3)

Ky

5. Applying Pole-zero cancellation technique [9], from
equations (3.2) and (3.3) we can have
2 2
K, +K,s+K;=s +Cs+D (3.4)
6. From (2.4), the initial value of canbe taken as . Also,

the following approximate relations canbe established

between , and .

K, .

K, - (3.3)

Kf

—=D @)
d

7. Taking partial derivatives of {3.5) and (3.6), we get
the following delta rules for updating the values of

Kp, K, and K-
/_\Kp =C(AK,) (37
AK;=D(AK,) (38
8 Let the initial values of (K,,K; K )be
(C,0,0) respectively.
9. Let the design specifications or figure of merits be

specified in terms of the %Overshoot (0,.)>
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Settling Time (7,)and the Steady state error
(SS
10. Form the transfer function of the closed loop system

of G (s)and (,(s)with unity feedback as:

7 (5) = _G8)Gr(s)
T 14696, ()

o ) values.

(3.9)

I1. From the unit step time response of 7, (), record

0,...T..5S.,. .

max ? " 5 ?
12, If the design specifications are met, then declare the
values of KP ,K;, K, and further tuning is not

required.

13.1f the design specifications are not met, then tune as

follows:
14. Till the is within the design specifications, do the

following:

(i) Increment K, by asmall value AK =05

(i1) Using the relation in equation (3.7) find the

P

C
(iii) Reformulate (7, ($)as in equation (3.3)

increment in K ,as AK,; =

(iv) Reformulate 7 (s) as in equation (3.9)
{v) From the unii step time response of , record .

15.Till 7, and S5, are within the design specifications,
do the following:
(i) Increment K by a small value AK =0.5
(ii) Using the relation in equation (3.8) find the

AK,

D
(ili) Reformulate G_(s) as in equation (3.3)

increment in K, as AK,

(iv) Reformulate 7 (s5)as in equation (3.9)
(v} From the unit step time response of , record and

16. Declare the values of K, K, K ;.

17. Form the transfer function of the closed loop system
of G_(5)and G () with unity feedback as:
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7'y = GG ©

T 1+G,(s)G (s) (.10)

18. Observe the unit step time response of 7(s) to verify
the expected stabilization effect of the PID controller

(. (s5)on the given system G{(s) represented by
equation (3.1).
The algorithm for tuning the values of K r K, K, is
given in the following section.

1.2
Input:

Algorithm for Tuning K, K, K

1. Transfer function of Second order system :

a. Vector of the coefficients of numerator:
nr <— [0 A B]
b. Vector of the coefficients s of denominator:
dr < [/ C D]
2. Figure of Merits / Design Specifications.
a. Overshoot : 7 spec_overshoot
b. Seitling time: spec_tseftling
c. Steady state error: spec_ss
Qutput:

1. Computed values of kp, i, kd, where kp, ki and kd
denotes the proportional, iniegral and derivative control
factors .
Tune Kp_ Ki Kd(nr, dr, spec_overshoot, spec_tsettling,
spec_ss)
1. [ initialization |

pe—c kd «— 0 ki « 0

2. [ Initialization for adjusting overshoot to be within

specified range |
overshoot < calc_overshoot (kp,ki,kd,nr,dr)
delta <« 0

3.
do:

while overshoot is not within (1 + spec_overshoot)
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delta « 0.5

kp < kp + delta

kd ¢ kd+delta/C

overshoot calc__overshoat(kp,ki,kd,nr,dr)

4. end of while

q

{ Initialization for adjusting setiling time and steady
state error to be withinrange |

delta < 0

senling time < cale_settlingtime(kp, ki kd,nr,dr)

steady _state_error

“— calc_steady_state_error(kp,ki,kd,nr,dr)

6. while (setrling time not < spec_tsettling) or
(steady state not < spec_ss) do:
defta <— 0.5
ki « ki + delta
kd « kd +delta/D
setiling_ time <— calc_settlingtime(kp ki, kd,nndr)
steady_state_error

= calc_steady_state_ermr(kp,ki,kd,nr,d:)

7. end of while
8. print values of kp, ki and kd.
9. End

calc_overshoot(kp, ki kd,nr,dr)

1. Form the transfer function of the PID controller

with kp ki kd

. Form the closed loop transfer function of the
Second Order system attached to the PID
controller
Plot the unit step time response of the closed loop
system
overshoot < Percentage overshoot of the
closed lnop system
return {overshoot)

end
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calc_settlingtime( kp ki, kd,nr,dr)

1, Fomm the transfer function of the PID controller
with kp ki kd

2. Form the closed loop transfer function of the
Second Order system attached to the PID
controller

3. Plot the unit step time response of the closed loop
system

4. settling time <— Seitling time of the closed
loop system

5. return (settling_time)

end

cale_steady_state_error(kp,kikd,nr,dr)

1. Form the transfer function of the PID controlier
with kp ki kd

2 Form the closed loop transfer function of the
Second Order system attached to the PID
controller

3. Plot the unit step time response of the closed loop
system |

4. steady state_ervor <— Steady state erior of
the closed loop system

5. return (steady_state_errotr)

4. NUMERICAL ILLUSTRATIONS
IHustration 1.

1. Consider the transfer function of the Eighth order
Linear Time Invariant continuous system from [11]
represented as
G(s)
19.8257 +429.26156s° +4843.8098s°
+45575.8925 +241544.755° +

005812.0552 + 189044315 + 842597.05 (4.1}

f 4304157 +358.42955° +2913.8638s°
+18110.567s* +67556.983s” +
173383.58s> +149172.195 + 37752.826
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[Ne]

. Applying the Rule-Based approach [Appendix [], the

Second order system formulated is:

19.825 +2.1864

G, (5)=—
s* +0.5634s +0.0980

(4.2)

. Initial values of (K ,K ,,K;)=(0.5634,0,0)

The proposed Tuning algorithm is invoked with the

following parameters:
Overshoot < 1%
Settling Time < 0.5 secs
Steady state error 1%

The values of the parameters returned by the algorithm

arc:

Kp =3.0634, K, =0.5000, K, =9.5393
The Transfer function of the designed PID controller
is:

Kd._sz +K,s+K;

G, (s)=
: A
_9.5393s% +3.0634s +0.5000 (4.3)
S

The closed loop transfer function of the PID controller
represented by G, () in equation (4.3) attached to
the Second order system represented by G, (s) in

equation (4.2) is obtained as;

1 ()= G0G)

1+ G.(5)G,(s) 44

. The closed loop transfer function of the PID controller

represented by (_(S) in equation (4.3) attached to
the Eighth order system represented by (G(s) in

equation (4.1} is obtained as:

T'(s) = G (s)G(s) 45)
14+ G, (5)G(s)

The unit step time responses G{s), 7,(s)and

Tcl (5) represented by equations (4.1), (4.4) and (4.5)

are shown in Figure 4.1(a), Figure 4.1(b) and Figure

4.1(c) respectively.

10.From Figure 4.1(c), it is note that designed PID
controfler is suited for the given over damped higher
order system yielding favorable unit step time

response subject to the given design constraints.

Figure 4.1(a) Unit Step Time response of the Eighth
Order System for IHustration 1

Figure 4.1(b) Unit Step Time Respense of the Second
Order System with the PID controller for
INlustration 1

Figure 4.1(c) Unit Step Time Response of the Eighth
Order System with the PID controller for Illustration
1
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TNustration 2.

1.

G,{(s).=

- 0.2744s” +1.89885 +11.0000

Consider the transfer function of the Eighth order
Linear Time Invariant continuous system from {12]

represented as

-G{s)

(3557 +1086s +13285s°
+824025% + 2783765 +
51181252 + 4829645 + 1994480

58 +21s7 +2205° +15585°
+7669s* +24469s° +
4635032 +45952s + 17760

(4.6)

Applying the Rule-Based approach [Appendix I}, the

Second order system formulated is:

355 +438.8719
s? +1.8988s + 40.078

4.7)

Initial values of (K ,,K »,K ;)= (1.8988,0,0)

The proposed Tuning algorithm is invoked with the

following parameters:

" Overshoot ' < 1%
‘Settling Time: < 0.5 secs
Steady state error < 1%

‘The valuyes of the parameters returned by the

algorithm are: _
Kp =1.8988, K, =11.0000, K, =0.2744

The Transfer function of the designed PID controller

. is:

K5 +K, s+K,;

S

G.(s)=

(4.8)

S

The closed loop transfer function of the PID

controller represented by G, (s} in equation (4.8)
attached to the Second order system represented by

G, (s) in equation (4.7) is obtained as:

9.

10.

T.(s) = G, (5)G,(s)

T 1+G,(5)G,(5) 49

The closed loop transfer function of the PID
controller represented by (,(s) in equation (4.8)
attached to the Eighth order system represented by
G(s) in equation (4.6) is obtained as:

TC'(S) _ GC(S)G(S)

"1+ G.(5)G(s) (4.10)

The unit step time responses G(s), T .(s)and
T; (s) represented by equations (4.6), (4.9) and
(4.10) are shown in Figure 4.2(a), Figure 4.2(b) and
Figure 4.2(c) respectively.

From Figures 4.2(a) and 4.2(c), it can be observed
that designea PID controller removes the oscillations

of the given Eighth order system and stabilizes it

within the design specifications,

Figure 4.2(a) Unit Step Time response of the Eighth

Order System for Hlustration 2

5. DISCUSSION

+ In this paper a new methodology for tuning the parameters

of a PID controller has been presented.. The proposed

method makes use of a good Second order approximant

~“of the given higher order system to begin the design

- 283

exercise. The design process is carried out in the
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Figure 4.2(b) Unit Step Time Response of the
Second Order System with the PID controller for

Hlustration 2

Figure 4.2(c) Unit Step Time Response of the
Eighth Order System with the P1D controller for

Ilustration 2

domain with Overshoot., Settling time and the Steady state
error as the performance specifications. Unlike the other
available schemes such as the Ziegler-Nichols method
etc.,[1-8], stimple schemes have been proposed for taking
the initial values of the control parameters and updating
them systematically during the tuning process. As the
analysis is done in the time domain, even inexperienced
designers can adopt our methodology. The controller
designed for the second order approximant is cascaded
to the original higher order system and the closed loop
- system is studied for stability. The methodology is well

- iltustrated with examples taken from the literature and it

284

is found to be sfraightforward and computationally less

intensive. Computer programs have been developed to

'implement the methodology to assist the designer. The

method can also be extended for Discrete and
Multivariable system stabilization. For obtaining the
second order approximant, a Rule-based approach
[Appendix [] proposed by the authors has been used
though any other model reduction technique[11-14] can

be employed.
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AppENDIX - [

Rule-based approach for the formulation of Second

QOrder Approximant
Analysis of the original higher order system

1. Let G(s) be the general form of the transfer function
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of an n® order linear time invariant confinuous system

represented as

G(s)

d

il

s" b, 3" et as+ag i)

bs" b, s" .. +bs+b
The Transient and Steady state gains of this system
can be determined using the formulae,
(a.2)
(@.3)

The unit step time response of G(s) is analyzed with

Transient gain T, =4a, /b,

Steady state gain S, =,/ b,

a computer program and the Rise Time T, Peak
Time T, Peak Amplitude P and Settling Time
T_are noted.

Observing the unit step time response, the nature of
the system represented by G(8) can be classified into
one of the categories viz., Aperiodic, Almost Aperiodic
or Periodic

TFormulation of initial second order system

5. The general form of the transfer function of a second

order system in the s-domain can be represenied as,

As+ B

G, (s5)=
2 (5) 242w, + o,

(a.4)

where ¢ is the damping ratio and @, is the
undamped natural frequency of oscillation.
The following guideline is used to determine the initial
values of { and @,:
If the nature of the original higher order system
represented by the transfer function (a.1} is:
(i) Aperiodic or Almost aperiodic, { istakenas 0.9
and @, 1 caleulated using the formula,
w, =4/ *T,).
(i) Periodic, ¢ is taken as 0.4 and @, is calculated

using the formula,
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», =w,{1-¢?)

where, @, is the damped frequency of oscillation
given by
W, =2ml/T,,
‘n’ being number of oscillations before the system output
settles.
7. Now, the values of A and B corresponding to equation

(a.4) canbe computed as
A=T, and B=S,/w; (a.5)
8. The unit step time response of the initial second order

system (7, () is analyzed with a computer program

and its characteristics are noted as listed in step 3.

9. The cumulative error index .J, using the Integral
square error of the unit step time responses of the
given higher order system (G(s)represented by
equation (a.1} and the initial second order system

(7, {s) represented by equation (a.4) is calculated.
Rule based appreach for Ervor minimization
10. The values of  and @, are kept in the working
mermory.
11. The following rules are considered for updating the
current values of ¢ and @, iteratively.
Rule I: The allowable range of { is0.9< <1 for
Aperiodic systems.
Rule 2: When ¢ is constant, @, is inversely
proportional to the Settling time 7,

Rule 3: When { is constant, @, is inversely

n

proportional to the Peak time T ?

Rule 4: When é’ is constant, @, is inversely

proportional to the Rise time T,
Rule 5: When @, is constant, { is inversely
proportional to the Settling time T,

Rule 6: When @, is constant, { is inversely

proportional to the Peak time 1,
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Rule 7: When ®, is constant, § is directly
proportional to the Rise tirhe 7,

Rule 8: When @, is constant, g is inveréely
propertional to the Peak amplitude P,

Rule 9: When é’ 1s constant, @, has no influence
on Peak amplitude P,

12. At the end of each iteration, the current values of
¢ and @, are used to reformulate the transfer
function of the second order model, maintaining
the Transient and Steady state gains of the original
higher order system.

13. The unit step time response of the current second order
system is analyzed with a computer program and its
characteristics are noted as listed in step 3.

14. The current cumulative error index ./, using the
Integral square error of the unit step time responses
of the given higher order system (G{s) represented
by equation (a.1) and the current second order
model is calculated.

15. When J, is greater than the cumulative error index
of the previous iteration or .J,,, the rule based
algorithm stops.

16.The second order system corresponding to the
minimum cumulative error index is declared as the
winner.
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