Some Observations on Early Software
Reliability of Object Oriented System.

Object

Some Observations or(:fEarly Software Reliability of -
riented System

Anil Kumar Malviya

ABSTRACT

Object-oriented approach is becoming very popular in
software development community as an alternative to
traditional approach i.e. structured analysis & design
methodologies due to obvious reasons. This approach has
become de facto standard of software development
organization. As we know, software reliability is one of
the important dynamic quality factors- in overall quality
models proposed in the literature. Several guidelines are
available in literature that suggest various “do’s” and
“don’ts” to produce an “easy to maintain” and “reliable”
system. Metrics to measure software reliability do exist
and can be used starting in requirements phase to software
design phase. In this paper we propose models that
capture such ideas and prepare background for
development of metrics for assessment of early reliability
of software. '
Keywords: Software metrics, Reliability, Inheritance,
Coupling & Cohesion

1. IntrRODUCTION

Object Oriented software development is a VELY nEW Way
(natural way) of thinking about software based on
abstractions of objects that exist in the real world or
problem domain. Objected Oriepted approaches are

getting a lot of attention from software development

! Assistant Professor, Department of Computer Science &
Engineering , Amity School School of Engineering &
Technology, Amity University, Noida (Uttar Pradesh).
Email:anilkmalviya@yahoo.com, akmalviya@amity.edu

1023

community. This is due to a variety of claims by many
software researchers and practitioners that an object
ortented approach to software development leads to better
productivity, reliability, maintainability, software
reusability and increased extensibility. A number of
papers have investigated the relationship between design
metrics and detection of faults in Objected OQriented
software[6,7,8,9]. Today, there is a compelling need in
educating engineers in reliability engineering and
developing economic and maintainable solutions in the
context of legacy systems, and not only in fast

development of software with the latest technology.

Software reliability modeling is the utmost productive
researc;h within software reliability engineering and over
100 models have been developed through different
approaches ([10],_ f11}, [12], [13],[14]). They provide
uscful feedback to the management to keep the software
process under control. Numerous studies have been
performed in the area of early software reliability
predictions & importance over the last few years(Tian,
Jeff 2000, Nagappan, N. 2004, Cukic 2005, Tripathi, R
2005, Ton, R.A. 2006, Hu, Q.P. et. al 2006 and many
others) using different modeling techniques. Early
software reliability prediction models are of paramount
importance since they provide early identification of cost
averruns, software development process issues,
optimal development strategies, etc. Smidth, C. et al. [15]
proposed an approach to the prediction of
software reliability based on a systematic identification

of software process failure modes and their likelihoods.

Karpagam JCS Vol. 3 Issue 3 Mar - Apr. 2009

A direct consequence of the approach and its sup%arting
data collection efforts is the identification of weak areas
in the software development process. Tripathi, R [16]
proposed a model for early software reliability and design
assessment. This model is based on Reliability Block
Diagram (RBD} for representing real-world problems and
an algorithm for analysis of these models in early phase
of software development. Cukic, B. [17] proposed a
model based on UML to find early reliability assessment
that spans the life cycle, from requirements modeling to
deployment, corrective maintenance, and evalution.
Cortellessa, V. et al. {18] proposed a methodology that
starts with the analysis of the UML model of software
architecture followed by the Bayesian framework for
reliability prediction. They utilize three different types
of UML diagrams: Use case, Sequence and Deployment
Diagrams. They are apnotated with reliability related
attributes.

Generally, these models are developed through two
approaches: analytical and data-driven. Analytical growth
models (SRGMSs) are stochastic models to describe the
software failure process with essential assumptions to
provide mathematical traceability. On the other hand,
data-driven models are developed from historical
sof’tﬁrare failure data, using regression, time series and
artificial neural network approaches[13].

We first, brifly describe the “O0D Methodology”, “Error,
Fault, and Failure”, “The Concept of Reliability”,
“Software Reliability Model”, “Software Metrics”,
followed by “Known Reliability Metrics”.

1.1 OOD Methodology

Object oriented design aims for robust software that can
be reused, refined, tested, maintained and extended. There
are several object oriented design methods, the Booch

method, the Jacobson method, the Rambaugh method and

the Wirfs-Brock method. Each of these object-oriented
techniques in addition to identifying objects necessary
to implement a system, identifying the internal details of
these objects too. The OMT methodology uses three kinds
of models, the object model, dynamic model and
functional model to describe a system. The object medel
describes the static structure of the object in a system
and their relationships. The object model contains object
diagrams. The object diagrams represent a structure
graphically. This model forms the starting point for object
design. The dynamic model of a system describes the
state of various objects changes when events occur. The
dynamic model is used to specify and implement the
conirol aspects of a system. The functional model is used
to describe the functionality of the system i.e. the
computation that takes place within a system. The

functional model contains data flow diagrams.
1.2 Error, Fault and Failure

The term errors, faults and failures are often used
interchangeable, but do have different meanings. Error-
People make errors. A good synonym is mistake. When
people make mistakes while coding, we call these
mistakes bugs. Errors tend to propagate: a requirements
error may be magnified during design and amplified still
more during coding. A fault is the result of an error. It is
more precise to say that a faunlt is the representation of an
error, where representation is the mode of expression,
such as narrative text, dataflow diagrams, hierarchy
charts, source code, and so on. Defect is a good synonym
for fault, as is bug. A fault occurs when a human makes a
mistake, called an error, in performing some software
activity. A failure occurs when a fault executes. Actually,
a failure is a departure from the system’s required
behaviour. In other way , we can say human error can

jead to a fault and a fault Acan lead to failure. Thus we can

1024

Some Observations on Early Software
Rellability of Object Oriented System

say, a fault is an'inside view of the system, as seen by the,

eyes of the developers, whereas a failure is an outsiffg
view, a problem that user can sees. Not every fault
corresponds to a failure; for example, if faulty code is
never executed, then the fault will never cause the code

to fail.
1.3 The Concept of Reliability

The reliability of a software system is defined as the
probability of failure free operation for a given time
duration under specified conditions of operation. The user
oriented reliability of a program (in a certain user
environment) is defined as the probability that the
program will give the correct output with atypical set of
input data from the user environment. The sequence of
codes executed in a particular run is dependent on the
input data and an error in the non executed statements or
branches does not have any effect on the output of the
program, the systern reliability depends on the probability
that a bug is activated in the run. The reliability of the
system, therefore, depends on the user profile. The user
profile summarizes the dynamic characteristics of a
typical execution of the program in a particular user
environment [1]. The relationship between software
quality factor and metrics can be seen in [(2), page 522,
fig. 18.2].

The reliability of a component, of an object based
software systemn that is a class can be viewed in terms of
imtial number of errors of faults (bugs) that can be present
when a class is designed or implemented. Certain earlier
studied have shown the relationship between the number
of initial faults and cyclomatic complexity of a component
of structured software systems [3}. Thus the number of
initial faults in the methods of the objects and the number
of faulty definitions/assumptions/implementation of its

attributes can also indicate a measure of reliability of

1025

classes that are modules of a software system. Similarly
the Control objects responsible for implementation of the
dynamic behavior of software system can also be

considered.
1.4 Software Reliability Models

Many Software reliability models have been developed
over the years. Within these medels, one can distinguish
two main categories [15]:

1) Software reliability prediction models (SRPMs) typically
address the reliability of the software early in the lifecycle
at the requirements, preliminary design, detailed design
or coding level Predictive models are used to assess the
risk of developing software for a given customer under a
given set of requirements within given resources, staff,
budget, schedule, and development environment i.e,
before the project truly starts.

ii) Sofware reliability estimation models (SREMs)
evaluate current and future soffware reliability from
failure data gathered beginning with the integration testing
of the software. In the category of estimation models one
can count reliability growth models, input domain models

and fault seeding models.
L.5 Software Metrics

Software metrics are quantifiable measures that could be
used to measure different characteristics of a software
system or the software development process. Software
metrics is an emerging area, Because the software has no
physical attributes, conventional metrics (such as metrics
for weight, density, etc) are not much help in designing
metrics for software[4].

Recent studies indicate that there are sirong relationships
between Object oriented metrics and software quality.
Building high reliability software depends on the
apphication of quality attributes at each phase of the

development life cycle with emphasis onerror prevention,

Karpagam JCS Vol. 3 Issue 3 Mar - Apr. 2009

especially in the early life cycle phases. Megi’cs are
needed at each development phase to measure applicable

quality attributes[14].
1.6 Known Reliability Metrics

Many models have been proposed for software reliability
assessment for structured programs inciuding the Jelinski
and Moranda models, the Goel and Okomuto model,
Musa’s models and Littelwood and Veratl model. All these
medels are based on the estimation of the number of initial
faults present in a program component. Hence the
estimation of number of initial faults in a program unit of
structured programs is also considered as a reliability
model. Cheung {!] discusses the definition of user-
oriented reliability and its relationship to the user profile.
He has developed user-oriented reliability model to
measure the quality of service a program provides o a
user.

The rest of the paper is organized as follows: Section 2
discusses various points of interest, given as guidelines
in the literature regarding design of reliable software
systems. We propose some models in section 3, based on
the discussion given below in section 2. Section 4

concludes the paper.
2. PROGRAMMING FOR RELIABILITY

To increase the reliability by preventing software errors,
the focus must be on comprehensive requirements and a
comprehensive testing plan, ensuring all requirements are
tested, Focus also must be on the maintainability of
software since there will be a “useful life’ phase sustaining
engineering will be needed[14]. Good engineering

methods largely improve software reliability. Any Object

Oriented System can be characterized mainly by the .

encapsulation, inheritancé and polymorphism. In Object
Oriented System, class is the fundamental unit; therefore

design of classes has a major impact on the overall quality

of the design. So, it is good starting point to introduce
reliability into the object oriented system. 1t is known
that sysiem reliability is inversely proportional to the
number of unrepaired defects in the system. Here, there

are some suggestions available to design reliable Object

. Qriented systems.

Improved programming techniques, better programming
languages and better quality management have lead to
very significant improvements in reliability for most
software. .

Reliability in a program can be achieved by avoiding the
introduction of faults and by including fault tolerance
facilities which allow the system to remain operational
after a fault has caused a system failure. Faults are
detected before the software is put into operation.
Reliability in a program can also be achieved by defensive
programming approach. Defensive programming is an
approach to fault tolerance which can be carried out
without a fault-tolerant controller. Defensive
programming technique which involves incorporating
checks for faults recovery code in the program. Faults
are detected before they cause a system failure [3].
Reliability in Object Oriented Systems can be achieved
by avoiding excess height of inheritance tree, large value

of WMC, RFC, CBC and small value of NOC metric,
3. Tue OBSERVATIONS

The class is the fundamental unit of an Object Oriented
System. Therefore, measures and metrics for an individual
class, the class hierarchy, and class coliaborations will
be in invaluable to a software engineer who must assess
design qguality. The objective is to consider the
characteristics of classes and the system for which metrics
have been worked out. This section attempts to summarize
the relationship between the “numbers of initial faults”

in a class of software m terms of known metrics available

1026

Some Observations on Early Sofiware
- Reliability of Object Oriented $ystem

proposes to work out a software reliability model treating
this “number of initial faults” as a basic parameter for
reliability modeling of object oriented software,

(1) The Depth of Inheritance tree (DIT) of aclass Cinan
inheritance hierarchy is the depth from the root class in
the inheritance tree. In other words, it is the length of the
shortest path from the root of the tree to the node
representing C or the ﬁumber of ancestors C has. In case
of multiple inheritances, the DIT metric is the maximum
length from a root to C, The experiments show that DIT
is very significant in predicting defect proneness of a
class; the higher the DIT the higher is the probability

that a class is defect-prone [4, 6]. Thus we can say that
No, of fault o¢ DIT (i)

(2) Suppose class C has methods M, ,M,,......... M
defined on it. Let the complexity of the method M, be C,
The WMC (Wgighted methods per class) metric is defined
as WMC= ZC" . The analysis shows that the WMC
metric hasa r;:sonable correlation with fault~proneness
of a class. The larger the WMC of a class the better the
chances that the class is fault prone [4, 6]. Thus we can

say that
No. of fault «c WMC (1)

(3) The RFC {response for 2 class) value for a class C is
the cardinality of the response set for a class. The response
set of class C is the set of all methods that can be invoked,
if a message is sent to an object of this class. This includes
all the methods of C and of other, classes to which any
method of C sends a message. The experiment shows
that the RFC value is very significant in predicting the
fault proneness of a class. The higher the RFC value the
larger the probability that the class is defect prone [4, 61,
Thus we can say that

No. of fault oc RFC (i)

1027

for classes of Object based software, The section finally

(4) The CBC {Coupling between Classes) value for a

class C is the total number of other classes to which the

_class is coupled. Two classes are considered coupled, if

methods of one class use the method of instance variables
defined in the other class. The experiment shows that the
CBC value is very significant in predicting the fault
proneness of a class. The higher the CBC value the larger
the probability that the classes defect prone [4, 6]. Thus

we can say that
No. of fault CBC (iv)

{5} The NOC (Number of Children) metric value of a
class C is the number of immediate subclasses of C. The
experiment shows that the larger the NOC, the lower the
probability of detecting defects in a class, That is the
higher NOC, classes are less defect prone [4, 6].

Thus we can say that
No. of fault I/ NQC (v)

{6) The LCOM metric is the number of methods that
access one or more of the same attributes, If LCOM is
high, methods may be coupled to one another via
attributes. This increases the complexity of the class
design, thereby increasing the likelihood of errors during

development. Thus we can state that
No. of fault o« LCOM {vi)

From equations (i), (i), (ifi), (iv) and (v), we can say that
No. of fault = K*(DIT * WMC *RFC *CBC*LCOM) /
NOC

Where, the constant K will have to be worked out for a
specific software team of concern organization based on
experience of team members and other characteristics
related to software processes. The number of faults can
be used to determine the total number of faults in software
in terms of number of initial faults in all the various class

of the object based software, Analternate approach could

Karpagam JCS Vol. 3 Issue 3 Mar - Apr. 2009

be to develop a reliability model of one single c:i?'using
the number of initial faults in that class as a basic
parameter and then a general reliability model for the
total sofiware can be expressed in terms of individual

classes/objects.
4. ConCLUSION

The above model explains the relationship between the
" number of initial faults present in an object and some
metrics defined for an object oriented software system.
The “number of initial faults” serves as an important
parameter of reliability model for software. These
observations will be helpful in working out a software
reliability model for object based software. The model
can be used to measure of how good is one class design
from the other class design, especially in terms .of internal
structure. Further research in the area of reliability of
object oriented systems should focus on the areas: (i)
Empirical validation of the above models and (ii)
providing the reliability models earlier in the life cycle

at the requirements and preliminary design phase.
REFERENCES

{1] Roger C. Cheung, “User Oriented Software
Reliability Models”, TEEE Transactions on Software
Engineering, Vol, SE-6, No.2, PP. 118-125, March 1980,
[2] Roger S. Pressman, “Soﬁque Engineering-A
Practitioner § Approach ", Fourth edition, The McGraw-
Hill Companies, Inc.

[3] Ian Sommerville , “ Software Engineering”, Fifth
edition, Addison-Wesley Publishing Company.

[4] Pankaj Talote, “dn Integrated Approach to Software
Engineering ”, Second edition, Narosa Publishing Hose,
[5] Linda Rosenberg, Ted Hammer & Jack Shaw,
“Software Metrics & Reliability”, Software Assurance
Technology Centre, NASA.

[6] S.R. Chidamber & C.H. Kemerer, “4 Metrics Suite for
Object Oriented Design” JEEE Transactions on Software
Engineering, Vol.20, No. 6, June 1994,

[7] Briand. L.C, Wust.J, Daly. J.W and porter. D.V,
Exploring the Relationships between Desgn Measures
ans Software Quality in Object Oriented Systems”, The
Journal of Systems and Software, Vol. 51,PP. 245-273,
2000. |

[8] Briand. L.C , Melo. W.L and Wust. J, “Assessing the
Applicability of Fault-Proneness Models Across Object-
Oriented Software Prajects ", JSERN Report No. ISERN-
00-06, Version 2.

[9] El-Emam, K.EI and Melo. W, “The Prediction of
Faulty Classes Using Object-Oriented Design Metrics”,
National Research Council Canada, Nov. 1999,

{10] Musa. I.D, Iannino. A & Okumoto. K, “Software
Reliability: Measurement, Prediction, Application”, Mc-
Graw-Hill, New York, 1987.

[11} Xie. M, “Software Reliability Modeling”, World
Scientific, Singapore 1591,

[12] Lyu. M.R, “Hand Book of Software Reliability
Engineering ", IEEE Computer Society préss ,1996.
[13] Hu. Q.P, Dai.Y.S, Xie. M and Ng S.H, “Early
Software Reliability Prediction with Extended ANN
Model”, Proceeding of the 30™ Annual International
Computer Conference COMPSAC, 2006,

[14] Rosenberg. L, Hammer. T and Shaw. J, “Sofiware
Metrics and Reliability”, NASA, Software Assurance
Technology Centre.

[15] Smidths. C, Stoddard. R.W, Stutzke. M, “Software
Reliability Models: An Approach to Early Reliability
Prediction”, IEEE Software, 1996.

[16] Tripathi. R and Mall. R, “Early Sttzgg Software
Reliability and Design Assessment”, Proceeding of the
12% Asia-Pacific Software Engineering Conference
(APSEC, 2005). |

1028

Some Observaiions on Eary Software
Rellabllity of Object Orlented System

[17] Cukic. B, “The Virtues of Assessing Softwa?'
Reliability Early ", IEEE Software, May/June 2005.

(18} Cortellessa. V, Singh. H, Cukic. B, “Early reliability
assessment of UML based sofiware models”, IEEE
Workshop on Software and Performance (WOSP, 2002).

Author’s Biography

Anil Kumar Malviya is an Assistant

Professor in Computer Science &
Engineering Department at Amity
| University, Noida (U.P.). He received his

B.Sc. and M.Sc. both in Computer
Science from Banaras Hindu University, Varanasi

respectively in 1991 and 1993 and Ph.D. degree in
Computer Science from Dr. B.R. Ambedkar University,
Agra in 2006, His research inierests are Data Mining
and Software Engineering including Software reliability,
maintainability, Usability and Software Testing,

1029

