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Abstract

A probability model for job allocation to nodes in a cluster
for better CPU utilization and reduces I/O and
communication overhead is presented in this paper. For
the NP-hard problem of job assignment, load balancing
is done with a local and global scheduler (LS and GS). A
newly arriving job need not wait at the home node for the
want of resources as GS takes care of it. Using three
differeﬁt queues for the processes, GS assigns the best set
of optimal resources at a foreign node with a minimal
transfer cost to the processes. The experimentally
simulated results show that the model compares well with
the existing modeis and well suited for time and space
sharing systems with minimatl /O overhead and excellent

resource utilization.
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1. Introduction

Clusters are becoming the primary platform for executing
demanding scientific, engineering and commercial
applications [1]. They provide a cost-effective, high-
performance, time-sharing and multi-user environment for
executing parallel and sequential jobs. When lengthy
processes operate in a dynamic environment with
continuously changing conditions, the load balancing (LB}
becomes a critical issue in the clusters, where loads on

nodes may not be uniform. To improve the utilization of
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the resources and throughput, it is essential that loads are
to be balanced among the nodes. Simitarly, the processes’s
response time and average job waiting time are to be
managed efficiently. The LB may be implemented using
either by Process Migration (PM) and /or by Remote
Execution (RE) [8].

During a PM, the running process is stopped and
checkpointed and data are transferred to a Foreign Node
(F,.). The PM is completed by “crashing” a process at the
Home Node (H,) and restarting it at the F, from the
transferred checkpoint data, thus maintaining the global
consistency and safe data communication as in projects
such as CoCheck {24]. Algorithms like Charlotte [13],
freeze free [21] and MPVM [6] provide for safe data
communication by implementing PM into the data
communication protocol. In RE, when a process is
transferred to another node and started, no memory is
allocated for it. This causes less overhead and is significant
while smaller processes are considered. This paper
addresses the user-level dynamic LB based on the
appropriate choices of PM and RE, which can be achieved
with interdependent LS and GS. The LS contains a Ready
Queue (LRQ) with a “transferring and job assignment

mechanism”. It runs at each node of the cluster. The job

.assignment is an NP-hard problem{14]as the job arrival

time may be random with different priorities and non-linear
CPU-burst rate.
To improve the process response time and throughput,

the LS execute the shortest process and the independent
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partial jobs of long-term process at the F. In the present

work, each LS maintains the probability value to decide
on the PM/RE and redirection of the job assignment to
one of the best choices of ¥, The workload data is
periodically broadcasted to the GS, which collects the
information pertaining to the cluster states (Information
policy) to make decisions regarding RE and PM (LB
strategy). This is done in a distributed manner and hence
is scalable. To make it efficient, current workload
information of each node should be updated periodically
and thus, the inconsistent view of the system states due to

outdated information is thwarted.

2. Related works

Most of the clusters are used for dedicated applications,
which use parallel programming languages (like PVM
[15], MPI [11], and LAM/MPI [22] etc} and static job
assignment (Round Robin and Random allocation)
policies completely ignoring the current state of the
resource utilization. On the other hand, the space sharing
global resource management {(Gang Scheduling and back
filling with Gang scheduling} [7, 12, 23] partitions the
clusters into disjoint sets of machines for executing parallel
jobs to increase the resource utilization. This is mostly
found in batch processing systems.

Dynamic and adaptive job allocation policies are used to
increase the process response time in time-sharing
environments. A dynamic policy {like in GLUnix {16])
based on the current resource availability, assigns a newly
arriving job to a lightly loaded node detected using the
sender or receiver initiation policies.

Mosix [2, 3, 4] is a Linux operating system for clusters. It
implements a transparent preemptive process migration
at the kernel. It uses only PM for LB. Condor, Amoeba
and Mach use implicit non-preemptive LB policy [8},

wherein only the active processes migrate to a F. This

39

requires either a priori information on processes’s
execution times or a list of migratable processes supplied
by the users.

Rhodos [9] is a micro kernel distributed operating system
with RE and PM. The LB strategy is separated from the
transferring mechanism. Most of the systems allow explicit
LB with the user deciding which processes to migrate and
it’s time instant. But with micro kernels, implementation

of PM becomes involved.

3. The Proposed Model

In general, efficient process scheduling is involved and
none of the I.B-strategy is optimal [14].

The following notations are used in the present work:
The Cluster has a finite set of (n+1} nodes, N = {N, N,
..., N } in which N-; denotes the home node H and N,
(1£ i £ n) are F s with the known probabilities of P,
P,....B,, for the accommodation of a newly arriving job
at N The computation of each P, is based on the
availability of the (i) CPU and Memory during the process
run and (ii) Number of processes waiting in queue and
their properties (like waiting either for an I/O to occur or
other network resources requirement, dependent
computational results from other processes, ctc.).

When P, = 0, there are no more resources available at Ni
and a newly created processes need not wait at H and it
may have to go for the Global Ready Queue {(GRQ) for
its execution. This is the self-refined fault tolerance at N;
and it results in maximizing the performance of process
execution and minimizing the job waiting time. Using
either the conditions P < P, && Opt (N)or Py= 1
(Where N, is H and N, is a F,) LS attempts to equally
distribute the resources in the cluster during process run.
Thus, the proposed model utilizes the upused system
resources in the cluster network.

The GS has a set of priority queues {Q; 1315 explicitly,

N

these are Global Ready Queue (GRQ), Resource Acquired
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Queue (RAQ) and Process Suspended Queue (PSQ). For
each j" queue, there is a finite set of “m’ waiting processes
WJ.({PIJ.,PZ“'.,...,PH{ 1). The transfer cost (Tc;i, in
Seconds) of i® process in the j* queue is the set of values
of {c,i } where c,'; is the cost incurred while transferring
the i process to the k! F, (where 0 £ k £ n and N, 'H,).
The GRQ contains a set of ‘m’ independent long-term
processes whose executions are not started (waiting for
preemptive migration). These processes require the Es
with a minimal transfer cost with a maximal P, value,
This is done by using the matrix, R = [r,J, where eachr,
is P, for the i process with minimal transfer cost when
more nodes qualify. The cost of its preemptive migration
=1 + m/b, where r is the cost of PM from Hy to F, (in
Séconds), m is the memory size of migrant process (in
MB) and b is the memory transfer bandwidth (in MB/
Second). Normally, the average value of r

k(k ), Z Z v

4. The Best Optimal Node with a Minimal Transfer
Cost

For ea(;h process ‘1’, there is a compatibility matrix M, =
[dj ], where 0 £ £ 1, that decides the PM to the k" F,
from the j" queue. The value of can be computed using
PACE [20], before the process execution starts. When =1,
then ¥ is incompatible for i® process’s migration. The
choice of the best optimal resource of a node is obtained
as Opty (Ny) = ¥k Min (d ).

Initially, one of the queues from GS is chosen (based on
some scheduling criteria) and the resources from possible
F,s are allocated to all the processes in that queue as for
as possible before switching to another queue, using the
fimction Opt, (N,). The set of chosen N,s are referred as
compatible sub-set {x }. The set obtained by excluding
{x.} from Fs is referred as incompatible sub-set {v.)-

For the next queue in GS, the sought resources are chosen
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from {y,} instead of from all Fs. The above process is
repeated until either {y,} becomes null or an optimal
compatible subset couldn’t be found from it. The entire
procedures are then repeated all over again from the start
(from the sct of all F s) until all processes (in all the queues
of GiS} are assigned with optimal resources from F,s.
The optimized transfer cost is computed as follows; Let
the set S be possible compatible F,s. Find a set N 'S
with a minimal transfer cost. When the process E.j (i
process in j™ queue) has a compatible sub-set X, in S, call
it a compatible process.

The conditional probability for the compatibility of a

process

P,

Nk

ZNAES[]' - d‘i ]

Pall _F,s)

/ig P(x,)= 6}
When the process P.j is incompatible, then the sub-set

{all FNS} {NCmp}
conditional probability of incompatibility of the process

Pis P(y,)=1-P(x,)

Yie is obtained 2s Ny, =

amd P(all _Fys)= D Py, ; @
Nyeall _Fys
From (1} and (2), the optimal transfer cost is Opt,

MNd-  Min
FBleq, N eNg,,
153 1skel

{c,’;, +r* P(xc)}

A process Pj’ is selects a F, only if it cant maximize the

information per unit cost of the process. i.e.,

IPU(N,, P’
Max —JL’L*-Q Where,
‘P € NAEN(mp C."\' +i';-k
1<ig3, 1<i<n

PUML ) ={P(x, )log, P(z,) ~P(y,)log A(y,.)}

When the processes in RAQ require the remote resources
frequently, in order to reduce the I/0Q and communication
overhead, the processes may be transferred to those Fs
where the resources are available to a maximum extent

and for the most of the time. Let T be the total time to run
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a process and a be the probability that follows an
exponential distribution for it to require a remote node

be the

Retrive

for a time duration T within T. Let T, | T,
times required to store and retrieve the eheekpomt image
from the stable storage respectively. It can be seen that

T. =T _+T_ +T Where, T,

Store . “Deky | “Sys | % Record. » Ty~ Delay incurred

while transferring a checkpoint to a stable storage, Ty _-
Delay in sending a system message during checkpointing

and T

recarg ~ €12y involved while saving a checkpoint on

a stable storage. Similar notations canbe defined for T, . .

The time required to restart at F is

E = (1 aTOpr )( T.S'rure + TDﬁr ) + aTOpI
1
(‘TSrore + TOp! + TRerrne += TOpr)
2
and may be simplified as
1

E= T.S'rore + TOpr + a[TRe:rneTOpr T ) TOpf ] '

total cost of PM in RAQ is Opt, (N) + E.

The processes are always in consistent state [10] in GRQ
and RAQ because either they await for starting or it may
be waiting for an event (for I/O or remote resource) to
occur. Hence, the synchronization becomes simple. On
the other hand, the PSQ contains a huge number of
independent processes whose executions are in progress.
The processes may also migrate for reasons mentioned in
[17, 18]. Hence, scheduling becomes a complicated issue
as the nodes are in communication on the fly with the

system in an inconsistent state. To schedule efficiently and

elegantly synchronize, the processes in PSQ are partitioned

into smaller groups based on their causal dependency [10].

_ s the cost reqmred for the process synchromzatlon then

" the total cost of PM in PSQ is Opt, (NL)+ E+C, *N

NN, s the nu.mhez.of casually related processes and .‘C -’--‘ .

41

5. Experimental Results
The experiments were performed on a cluster of PCs under
Linux 2.4.18. The cluster consists of 16 dual computing
nodes connected by a 100 MB/s Ethernet. The computing
nodes are equipped with Pentivm It processor running at
I GHz, 128 MB of main memory and 20 GB of stable
storage. All program implementations use the LAM/MPI
version 1.2.5. Test programs were compiled using the
GNU GCC version 2.96.

In Addition to the system utilization and I/0O overhead
the average response fime/slowdown time in time sharing
systems and waiting time in space sharing system are
computed and compared during PM and RE. The system
ZL nl,

t x N

"

utilization his given by, 77 = » where, N~ total

number of nodes, 1, is the number of nodes used by job i,

m

. is the execution time for the job i and t_is ZI i
i

for all m jobs.

The experiments are of two types. First, the proposed
model is compared with Mosix and GLUnix of dynamic
LB time-sharing systems. Second, the result of the current
model is compared with Gang-Scheduling (GgS) and
backfilling combined with Gang Scheduling (BFGS) in
the space-sharing environments.

In a Time-Sharing Systems, a molecular dynamics (MD)
program [5] is executed. A random generator is used to
fire the jobs to the LS such that the arrivals follow a
Poisson distribution. The programuses 100 iterations and

500 job arrivals with a problem size of 50,000 atoms,

which occupy 5 N[B INEmOTY. The MD programis modeled

based on remote resources (I/C and Remote File)
requirement and the minirnum number of processors
required by each job is uniformly distributed from I to 32
using the proposed GS.
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Figure 1. Mean response time versus Load Factor
using MD iterative programming

—f— GLUnix
——MOSIX
400 - --e—-—-ProbabilisticModel
) 90 4
& 804
= 70
£ 60
& 50
35 40
GEJ 30 4
“ 20 4
@ 10
0 — T ; T 1
SN AN A
Load Factor

Figure 2. System utilization versus Load Factor
using MD iterative programming

The program takes approximately 327.5 seconds to
computes 100 iterations on 16 dual processors. The
experiments compute the mean response time and mean
system utilization. All experiments uses 500 job arrivals
with 100 iterations and the results are presented in Figurel
and Figure 2. The load factor (LF) is defined as, LF=1*
T

Exc?

where 1 is the mean arrival rate and T, _is the
execution time on 32 processors. Figure 3 presents the
mean slowdown versus I/O overhead, where each
measurement is averaged over 50 different simulations.

Observe that, the probabilistic model outperform GLUnix

with almost 50 % improvement in I/O overhead (0.35 or

more) and give slightly better results for Mosix.
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Figure 3. Mean Slowdown versus I/O overhead in
MD iterative programming
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Figure 4. Mean Slowdown versus I/O overhead in
Space sharing system

Discrete event simulation is used in space-sharing system.
Each job requires a specified number of processors, runs
for a certain time, and also has a user estimate for its
runtime. The jobs are classified as: very short (< 30 sec),
short (< 5 min), medium (< 1 hr), long (< 10 hr), and very
long (> 10 hr). A single data file supplied by the user
specifies its details. The batch size issetto 5,000 jobs, as
recommended by MacDougall for open systems under
high load [19]. Depending on the length of the workload,
3 to 10 batches were executed. All experiments use 32
processors with the batch size of 5,000 jobs and the

results are presented in Figure 5 and Figure 6. From the
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results, the ability to fill the holes actually improved when
the load is very heavy while using the probability models.
Further, Figure 4 presents the mean slowdown versus
I/O overhead, where eachmeasurement is averaged over
10 different batches. Observe that, the probabilistic model
outer perform with 72% improvement  for the /O
overhead (0.425 or higher) of GgS and give
approximately 38 % better results for BFGS.
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Figure 5. Average job waifing time versus
Utilization in space sharing system

i Gg3
—8—BFGS
~—a~- Probabilistic Model
70 -
c 60
8
A
% 40 A
8
= 30
@
2 20
bt
g ®
]

065 07 075 08 085 08

Utilization

Figure 6. Average job Slowdown versus Utilization
in space sharing system

From Figures {(1-6), it can be seen that the system
utilization is appreciably good, possibly due to the on the
fly identification of casually independent process groups
in GS while scheduling. Further, the results of the present

study are qualitatively the same as in all other models.
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Under all load factors, the /O overhead and the average
response time are less in probabilistic model implying its
better suitability.

6. Conclusions

The experiments are conducted in space and time-sharing
environments. The Local scheduler assesses for the
resource availability at the home node periodically during
the process run. The Global scheduler reduces the job
waiting tim; and the average process response time by
employing three different queues. The choice of best
optimal resource node is determined for avoiding the
frequent process migration. The processes are partitioned
mmto smaller groups based on their causally dependency
and this makes the synchronization simple while process
migrate using a minimal transfer cost function. This
significantly reduces the I/O and communication overhead.
The mean system utilization has been observed to increase

with several causally dependent processes groups.
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