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Speed Estimation Schemes for Sensorless Vector Control
of Induction Motor Drive
R. Gunabalan and V Subbiah

ABSTRACT

This paper describes the speed estimators for sensorless
vector control of induction motor drive. Speed and rotor
fluxes of the induction motor are estimated by adaptive
rotor flux observer, natoral observer with load torque
adaptation and Extended Kalman Filter {EKF). The
performance parameters speed and rotor fluxes are
estimated from the measured terminal voltages and
currents. Fourth order induction motor model is used in
natural observer and adaptive rotor flux observer and
speed is considered as a parameter. In EXF algorithm,
fifth order model is used and speed is considered as a
parameter and state. Direct filed oriented control is used
in al] the estimators. The speed of an induction motor is
estimated by MATLAB simulation under different speed
and load conditions. The estimated parameters along with

speed are used for closed loop control. -

Index Terms - adaptive observer, natural observer,
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1. InTroDUCTION

IIn controlling DC and AC machine drives speed
transducers such as tacho-generators, resolvers or digital
encoders are used to obtain speed information. They are
usually expensive. In defective and aggressive
environments, the speed sensor might be the weakest part
of the system. These degrade the system’s reltability. This
has led to a speed-sensorless vector control, In sensorless
vector control, speed is estimated by an estimator. In
general, an estimator is defined as a dynamic system whose
state variables are estimates of the system of interest,
Nowadays, a number of adaptive observer design
techniques are available for control systems. A limited
number of adaptive observer design techniques have been
successfully applied to speed-sensorless induction motor
control. The speed dependent model uses the estimated
speed and the output error between the models to drive
the estimated speed toward the actual speed using speed
torque adaptation. Kubota's adaptive observer [1]-[5] uses
the fourth order model of the induction motor considering
only the electrical variables as states and the speed as a
parameter to be adapted. Speed is considered as a

parameter and state in EKF algorithm {6]-[10].
2. OBSERVERS

A lot of speed observer systems are presented in the
literature. Most popular methods are based on Luenberger
theory, Kalman filters and neural observers {11}, [12].
Good results can be obtained with al] mentioned observers,
but Luenberger algorithms can be simplified, 50 it can be
more useful for industrial applications. Kubota’s adaptive

observer for multiple parallel connected induction motor

S
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drive system is presented in [3], [4]. Average and
differential current flowing through the induction motors
are considered to make the system stable under unbalanced
load conditions. Adaptive scheme is used to estimate the
rotor speed combined with state model. In the general
observer approaches, the proper observer pole or gain
selection which gives reasonable estimation both in the
steady state and transient state is very difficult and a
tedious task. The structure of Luenberger observer is

shown in Fig. 1.

The state space representation of the system is as follows:
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Figure 1 : Block diagram of Luenberger observer

-1 L, oL,
T, L.Lz, L.L,
0 ~—_1 — Cl?er Lm
T, L.L, L L.z,
A=|L, -1 - o,
Tr fr .
o La @, -1
fr TJ‘

51

L 0
ol
.
B = O'Ls
0
0
I |
where,
1 _ RS-I'-R,(L,HJ’Lr)2
TS N LIS
L'S = gl
x = [ iz e es 1
r = ks i J =0
v o= bs viT
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The full order state observer which estimates the stator
current and the rotor flux is given by the following state
equations:

equations:

X = AX + BV, + G(i, - i,) 3)
where the cap *" represents the estimated values.

The poles of the observer are made proportional to the

poles of the induction motor. Then the gain matrix G is

g4i|T 4
2, (4)

calculated as follows:
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g,=(k-1)(-a,,-a,)

g,=(k-1) (-a,,)

g,=-1)(ca -a,)+ck-1)(-2a,-a,,)

g,=c (1) (a,)

k is the proportional constant and the value of k chosen is
0.5.

The following proportional-integral adaptive scheme is
used.practically in order to improve the response of the
speed estimation: _

@, =K, (eidsé)qr _eiqsgbdr) +K; _[(‘%ds@qr _eiqséjdr)dt 3
Natural observer proposed in [13] is applied to both DC
servo and induction motor. It has the natural characteristics
of the actual motor under the same conditions of load
torque and input voltage, Its convergence will be as fast
as that of the motor in reaching its steady state, which is
fast enough for most applications. Torque is also estimated
along with speed without any feedback. To estimate the
rotor speed of an induction machine using natural observer,
various machine models have been used. Generally the
model is expressed in stator flux oriented reference frame.
The motor model proposed in [13] is fifth order model.
In this work, fourth order model is used similar to Kubota’s
adaptive observer [2] — [3]

The natural observer, shown in Fig. 2 for the system
described by (1) and (2) is in exactly the same form as the
actual system mode! and has no extemmal feedback i.e. no
fain matrix,

The natural observer which estimates the stator current
and the rotor flux is written by the following equations:

dX
di

= 4X + BU

(3)

Y = CX (6)

The estimated quantities are denoted by “*”,
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Load torque is estimated using the active power error as
the correction termand is kept within two particular Hmits

to avoid unstable oscillations.
T, =K, e,+K,e, + K, [e,dt timiing (7

T e (Ton T )

where

(8}

ep=P—-P=v,(i, —ids)+vqs(iqs —iqs)
where *...” denotes all of the other terms not including
@, . These terms are disregarded because f‘L appears only

in the derivative of @, .

Figure 2 : Block diagram of a natural observer with
adaptation
The speed estimation technique in [1] - [4] always needs
some correction term in order to follow speed changes.
This results in the estimations always lagging the actual
values. In natural observer {13], the speed estimation
follows the speed changes simultaneously. A new scheme
based on current estimation without flux and speed
estimations are shown in [14]. The input variables are
stator voltages and the output variables are stator current

and rotor speed.
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3. ExTENDED KALMAN FILTER

A Kalman filter is simply an optimal recursive data
processing algorithm. It processes all available
measurements, regardless of their precision, to estimate
the current value of all the variables of interest, with the
use of (1) knowledge of the system and measurement
device dynamics, (2) the statistical description of the
system noises, measurement eIrors and uncertainty in the
dynamics models and (3) any available information about
initial conditions of the variables of interest. The basic
Kalman filter is only applicable to linear stochastic
systems, and for non-linear systems the Extended Kalman
Filter (EKF) can be used, which can provide estimates of

the states of a system or of both the states and parameters.

The EKF is a recursive filter which can be applied to a
non-linear, time-varying stochastic system. The EKF uses
the partial derivatives of the measurement with respectto
the state variables in generating the measurcment
iransformation matrix. In electric drives, the purpose of
+he Kalman filter is to obtain the unmeasurable states (e.g.
rotor speed) by using the measured states and also the
statistics of the noise and measurements. In general, the
computational inaccuracies, modeling errors and errors
in the measurements are considered by means of noise
inputs. A critical part of the design is to use correct initial
values for the covariance matrices. The main design steps
for a speed-sensorless induction motor drive
implementation using the discretized EKF algorithm are

as follows:

1. Selection of the time domain induction machine

model.
2 Discretization of the induction machine model.
3. Determination of the noise and state covariance

matrices Q, R and P.

4. Implementation of the discretized EKF algorithm;
tuning. ’
In recent years, the EKF algorithm has been used for the
parameter estimation of induction motor. The structure

of the EKF is shown in Fig. 3.

In EKF, the rotor speed is considered as a state variable
and parameter. This makes the system matrix 4 nonlinear
ie.d = 4(X).
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Figure.3 : Structure of EKF
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B. Discretized Induction Machine Model

For digital implementation of the EKF, the discretized
machine equations are required. These can be obtained

from (1) and (2).

X(k+1)= A, X (k)+ B U k) (9)
Y(k)=C, X (k) (10)
L Ly wll, |
T, L. L,t, L,L,
o 1L Zedl, 1,
T, L L, L.L.z,
A, =
4= Ly 0 - _re. o
T, T,
0o Em e 1oL
T, T,
| 0 0 0 0 1]
I
LJ
o L
Bd_ Ls 1 0 0 0 0
¢ 0 Cd=
01 060 0
0 0
_0 0_.

To achieve adequate accuracy, the sampling time should
be appreciably smaller than the characteristic time
constants of the machine. The final choice for the sampling
time should be based on obtaining adequate execution
time of the full EKF algorithm and also satisfactory

accuracy and stability.

The system noise is represented by (k) (v -noise vector
of the states) which is assumed to be zero-mean and white
Gaussian noise. It is independent of X(k) and its

covariance matrix is Q and the system model becomes

X(k+1)= Ay X (k) + BUKE) +v(k) (11)

The measurement noise is represented by w(k) which is

assumed to be zero-mean and white Gaussian noise, It is
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mdependent of X (k) and ¥ (£) and its covariance matrix

is P and the output equation becomes
Y (kY= CX (k) + w(k)

(12)
C. Determination of the Noise and State Covariance

Matrices Q, R and P

The purpose of the Kalman filter is to obtain the
unmeasurable states (e.g. rotor speed) by using the
measured states and also the statistics of the noise and
measurements. In general, the computational inaccuracies,
modeling errors and errors in the measurements are
considered by means of noise inputs. A critical part of the
design is to use correct initial values for the covariance

matrices.

The elements of Q and R depend on the number of state
variables [2], [4]. The system noise matrix Q is a five-by-
five matrix and the measurement noise matrix R is a two-
by-two matrix. This should require the knowledge of 29
elements. However, by assuming that the noise signals
are not correlated {no relation between the covariance
noise matrices), both Q and R are diagonal and only 5

elements must be known in Q and 2 elements in R,

Generally, the parameters in the direct and quadrature axes
are same. This inplies that the first two elements in the
diagonal of Q afe equal (gy; =4g4;) and the third and
fourth elements are also equal. So Q= diag
(g,l,q”,q33,q33,q55) contains only 3 elements,
Similarly, the two diagonal elements in R are
equal (1, = r,, = ), thus R=diag(r, r). Tt follows that
in total only 4 noise covariance elements must be known,

(g, 0 0 0 o0
0 g, 0 0 0

=0 0 ¢, 0 0 R_[r O:I
0 0 0 g, 0 0 r
10 0 0 0 g
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D. Implementation of the Discretized EKF Algorithm

The state estimates are obtained by the EKF algorithm in

the following steps:

Stepl. Initialization of the state vector and covariance

matrices

Starting values of the state vector X, = X(z,) , the neise
covariance matrices Q,(5x5) and R,(2x2) are set
together with the starting value of the state covariance
matrix P, (5 x 5) . The starting value of the state covariance
matrix can be considered as a diagonal matrix where all
the elements are equal. The initial values of the covariance
matrices reflect the degree of knowledge of the initial

states.
Step2: Prediction of the state vector

Prediction of the state vecior at the sampling instant

(k +1)is obtained from the input U(k)and the state

vector X (k) .

X (k+1)= A, X (k) + B, U (k) (13)
where,

Fofutt) i) o) dp0 a.0f

Uty =Puk) Vath) 0 0 Of
Step3: Covariance estimation of prediction
The covariance matrix of prediction is estimated as
Plk+1) = f(k+DPERY STk +1)+0 (14)
where, [ is the gradient matrix.

fle+1)= %x [4,X + By U];:i(lu-l) (15)

T T, @fl, TL,
I-— 0 - " ==
I‘S LSLI' Tf L.TLJ' LSLI'
-a11, -T.
o 1oLz T “Thy
T; LSL-P‘ LI LJ’ rl’ L.E Lf
k+1)=
Sk=D=| 1L, - e, m,
7, z,
o Zu g =L 1,
7, 7,
| o 0 0 0 .
where,
o, =&, (k1) by =8 (k+1) ¢y =G (k+1D)

In f(k+1), 17 elements are constants and remaining
8 elements are variables. In a practical DSP application it
is useful to compute first f(k +1), since it contains the
constant required in X "(k +1) . This leads to reduced

mermory requirements and reduced computational time.
Step4: Kalman filter gain computation

For induction motor applications, the Kalman gain matrix
contains 2 columns and 5 rows.
K(k+D)=P (k+ D e+ Dk +DP G+ D (R+D)+AT" (16)

h(k +1) is a gradient matrix, defined as

we+ 1) = 9 [CaX Ly an

1 ¢ 0 0 0

Step5: State vector estimation
The state vector estimation (corrected state vector

estimation, filtering) at time (k+1)is perforined as

follows:
Re+D)= X" e+ 1)+ K+ DY k+D~Y(k+D)] (18)

Ple+1)=C X (k+1) (19

" Step6: Covariance matrix of estimation error
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The error covariance matrix is obtained from

P+ =P +)— Kk +Dh+DP (R +1)  (20)




Karpagam Jes Vol 5 Issue 1 Nov, - Dec, 2010

Step7: Updation

Putk =k+1, X(k}=X(k-1),P(k)=P(k-1)and go to
step 2.

The EKF described above can be used to estimate the
speed of an induction motor under both steady state and

transient conditions.
E. Tuning of the Covariance Matrices

The tuning of the EKF involves an iterative modification
of the covariance in order to yield the best estimates of
the states {6] Changing the covariance matrices Q and R
affects both the transient and steady state operation of the
filter. Increasing Q corresponds to stronger system noises
or larger uncertainty in the machine model used. If the
covariance R is increased, this corresponds to the fact
that the measurements of the currents are subjected to a
stronger noise and should be weighted less by the filter.
Thus the filter gain matrix elements wilt decrease and this
results in slower transient performance. The initial values

of Q and R are selected randomly and tuned accordingly,

A reduced-order EKF-based estimator is presented to
estimate the rotor flux in [5]. Speed of the induction motor
is not estimated in this paper, The estimator uses the
mathematical model of the rotor circuit to perform the
function of prediction of the rotor flux components.
Moreover the estimator includes a third equation to predict
the inverse rotor time constant. Reducing the order of the
mathematical model simplifies the computational
problems and makes it technologically feasible to
implement Kalman filters in real time with DSP

Processors.

DC link voltage is used to estimate the speed of the
induction motor along with the measured stator currents
in [6]. The execution time of the EKF algorithm itself is
about 150ps and the EKF is updated every 200us. Within

this time span the rotor speed is regarded as almost
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constant. The speed estimation method is implemented
by TMS320C30 DSP chip. The compensation of the
parameter variation with the increase of temperature is

not studied.

To optimize the covariance and weight matrices of EKE,
little atternpt has been made in [7] using genetic algorithm,
Speed is estimated from the measured terminal voltage
instead of DC link voltage. EKF based sensorless
estimation algorithms for the stator and rotor oriented
models of induction motor is developed in [8]. This
algorithm is aiming minimum estimation error in both
transient and steady state over a wide speed range

including very low and zero speed estimation,

A major challenge at very low and zero speed is the lost
coupling effect from the rotor to the stator. So as a solution,
load torque and rotor speed are simultaneously estimated,
with the velocity taken into consideration via the equation
of motion and not as a constant parameter. The advantage
is that it does not require change of algorithm or
adjustment of gain or parameters for convergence at steady

state. Closed loop operation is not discussed in that paper,

Temperature and frequency- dependent variations of the
rotor (R, ) and stator (R) resistances are Jstimated
accurately along with load torque, flux and speed in
transient and steady state [9]. Two EKF algorithms are
executed consecutively at every time step when ompared

with single EKF which estimate R_or { &) only.

In EKF algorithm [5]-[9] and [15], manual tuning of
covariance matrices using trial and error method is simple
to carry out, but the process is very time consuming and
sdtisfactory performance can only be obtained with great
effort from an experienced operator. In the past, the
implementation of Kalman filter for the motor drive system
is difficult due to the large cornputation fime. But, recent

advances in computer technology including high-speed
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digital signal processor make the digital implementation -

. . . 80 7 T T T
of Kalman filter feasible without heavy computation | A S : i
700 R S It .
burden in the motor drive system. 3 P
600 :
4. SimuLATION RESULTS 00t , ____________________
. o T ook 3
Table I shows the rating of the induction moter used for g ;
simulation, Direct oriented field sensorless control scheme g o
is used because it is less sensitive to parameter variation. e
. . . . 100 f----etmeen R
. Simulations are carried out under different load and speed ] :
" gfemeee s St ot
conditions. b ;
PP B : i i ;
W o5 1 15 2 25
TABLE 1 Time (8)
Rating and Parameters of Induction Motor Fig.ure 4 : Speed response
Motor Rating
Qutput 37KW H
E
Poles 4 Z
E
Voltage 160V 5’
Current 20A
Motor Speed 1500 rpm
R, (.3831 ghm
R, 0.2367 ohm
8 3334 mH
L 3334 mH
L 32,11 mlf I ;
a0 i ; i i i : i i {
0 0.5 1 1.5 2 25 3 3.5 4 4.5 &
i) Tima (8)

Case (i) Luenberger observer method
Figure 5 : Torque and current response

Speed is estimated from the measured terminal voltages (a) Torque (b) igs

and curents using Luenberger observer, Proportional and '

integral gain constants used for Luenberger observer are ?sor : ‘

0.8 and 1200 respectively. The estimated speed and actual 20 ------ ﬁ ------------ F ------ F ------ ------

speed response are shown in Fig. 4 for a step change in 15037 """ """"""" “ """ """ * """ “ """

speed and load. At first, the speed is set at 400 rpm and at E 1004----- ------ ----- ------------ beneee ------ r ----- ------ ------
= 1.3s, speed command changes from 400 rpm to 600 E" 0 ______ _____ ____________ * ____________ h ______ ______

rpm and motor runs at no load condition. At t=3s, a load . N :

of 5 Nim is applied to the motor at a speed of 600 Tpm.

The torque response and the torque reference current (iqs) = ﬂ ------ ---- ------ ------

are depicted in Fig. 5. The difference between the actual 00— e e e s

Time (s)

speed and the estimated speed is shown in Fig. 6 and is ¥ig 6: Error in estimated speed

almost zero value under steady state.
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Case (ii} Natural observer method

Natural observer algorithm is explained clearly in [13].
Fourth order induction moter model is used similar to
Luenberger observer but the model used in [13] is fifth
order. The torque adaptation gains used in natural observer
are K, =0.005,K,=0.2 and K =0. Load torque is lirnited
between 80Nm to -80 Nm for estimators. Fig. 7 depicts
the speed response of a natural observer for a step change
in speed and load. It estimates the load torque along with
speed. Initially, the speed is set at 400 rpm at no load
condition and at t=1.5s, speed command changes from
400 rpm to 600 rpm. It is observed that the estimated speed
follows the actual speed. At t = 3s, a load of 5 Nm is
applied the motor and speed is maintained at 600 rpm.
The estimated torque by load torque adaptation is shown

in Fig. 8.

S00 T

T
H
i H
i H . i
4 I H . . H
BOOp---mrmmrmmmn A e b b
v H 4 H H
1 ' 1 i

L R

B0 T

e R S e R R

400 Sk

Speed (rpm)

300}----- NS SO

' H '
200 F----- B s ST R
1 H : v
i
i

[

Tima (5)

Figure. 7 Speed response by natural observer
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Torque {Nm}

Torque (Nm)

: i i i
o Q.5 1 1.5 2 25 3 3.5 4 45 5
(&) Time {s)

Fig. 8 Forque respense by natural observer

(a) Actual torque (b)Estimated torque

Case (iii) EKF Algorithm

Speed reversal test is conducted in EKF, The speed and
i, responses are shown in Fig. 9. The motor speed
command is set at 1000 rpm. The induction motor runs at
no load and at t= 53, speed is reversed to -1000 rpm and
the estimated speed follows the actual speed. The error
between the estimated speed and the actual speed depends
on the elements of the covariance matrices. Actual speed
refers the speed derived from the model. The torque
response and the corresponding torque reference current

are shown in Fig, 10,

Step change in load test is also carried out by simulation.
The speed of the motor is maintained constant at 1000rpm.
Att=0, the load torque is zero and at t = 2.3s, a sudden
load of 10 Nm is applied to the motor. The speed response

and the torque response are shown in Fig. 11 and Fig. 12.
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Figure 11 Step torque response by EKF

Figure 9 Speed Reversal test by EKF
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TABLEIT
Performance Comparison
P ; Luenberger Natural Extended Kalman
arameters Observer Observer Filter
Fourth or .
Machine . Four{h Order fifth order . Flﬁh order
induction motor . \ inductiot motor
Model induction
model model
motor model
Considered as a Considered Considered as a
Speed asa
parameter parameter and state
parameter
Depends upon the
S:ccacf_:; Less Around zero noisc covariance
s r matrices
. . . Computationally
Algorithm Simple Simple Complex
Cerrection Required (by . Required (by
term nG Not required Kal in K
(feedback) observer gain G3) afman gain K}

5. CoNCLUSION

This paper has presented the overview of three different
speed estimation schemes and simulation results are
presented. In Luenberger observer, speed and rotor fluxes
of the induction motor are estimated based on adaptive
control theory. The natural observer design technique is
very simple in structure. Natural observer estimates torque
along with speed. The convergence is achieved using
parameter adaptation; the convergence problems of the
adaptation algorithm and observer are simplified. Also,
since the feedback signal is used only in the adaptation
scheme, the measurement noise is filtered by the
adaptation scheme. EKF considers the modeling
inaccuracies and measurement errors and thereby
improves the performance of the induction motor drive.
EKF is computationally more complex than other
estimators. The error in the estimated speed depends on
the initial values of system and measurement noise

covariance matrices.
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