The Role of Metrics in Object-Oriented Sofiware Development : Some Issues

The Role of Metrics in Object—Oriented Software

Development : Some Issues

Anil Kumar Malviya', Sanjeev Patwa’

ABSTRACT

DeMarco(1982) once said: You can neither predict nor
control what you can not measure. Wemer Karl Heisenberg
said: “Since the measuring device has be constructed by
the observer....we have to remember that what we observe
is not nature in itself, but nature exposed to our method
of questioning” (in “Physics and Philosophy” {1958)).
These fundamenta)] realities underlie the importance of
software metrics. The intent of Software engineering is to
provide a framework for building software with higher
quality. Software metrics provide a quantative basis for
the development and validation of models of the software
development process. Metrics can be used to improve
software productivity and quality. This paper presents the
current state of metrics and discusses the role of object-

oriented metrics in object-oriented development.

Keywords: Measurement, software metrics, object-

oriented metrics.
1 INTRODUCTION

Measurement is fundamental to any engineering discipline,
and software engineering is no exception. Lord Kelvin
said: “When you can measure what you are speaking about

and express it in nubers, you know something about it;

1 A ssistant Professor, Kamla Nehru Institute of Technology
Sultanpur,U.P. anilkmalviya@yahoo.com

?f ecturer,Faculty of Arts,Science and Commerce Mody
Institute of Technology & Science (Deemed
Sikar,

University),Lakshmangarh, Rajasthan

sanjeevpatwa@yahoo.com

19

but when you can not measure, when you can not €xpress
it in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowledge,
but you have scarcely in your thoughts, advance to the
stage of a science”. Even when it is not clear how we
might measure an attribute, the act of proposing such
measures will open a debate that leads to greater

understanding [5[18].

Software people seern to have a love-hate refationship with
metrics. On one hand, they despise and distrust anything
that sounds or looks like 2 measurement. They are quick
to point out the “flaws” in the argument of anyone who
talks about measuring sofiware products, software process,
and (especially) software people. On the other hand, these
same people seem to have no problems identifying which
programming language is the best, the stupid things that
managers do to “ruin” projects, and where methodology
works in what situations [1]. Skeptics claim metrics are
useless and expensive exercises in pointless data
collection, while proponents argue justifiably they are

valuable management and engineering tools.

Measurements have been widely used in many engineering
disciplines, yet in the computer software industry there
still have been some doubts about their use in this field.
During recent years, the interests in software metrics have
grown both greatly and steadily in software industry. With
the project programmer and manager focusing on software
productivity and software quality, there exist needs for
better technique of software development and software

metrics during the process of development [20].

Karpagam Jes Vol. 5 Issue 1 Nowv. - Dec. 2010

We first briefly describe “What is measurement?”, “What
are Software Engineering Metrics?”, followed by “Current

state of Software Metrics”.

1.1 What is Measurement?

Measurement is defined as the process by which numbers
or symbols are assigned to attributes of entities in the real
world in such a way as to describe them according to
clearly defined rules. There are two broad types of
measurement: direct and indirect, Direct measurement of
an attribute is measurement which does not defined on
the measurement of any other attribute, indirect
measurement of an attribute is measurement which

involves the measurement of one or more other attributes
[7].
1.2 What are Seftware Engineering Metrics?

Software metrics are units of measurements. The ferm
“metrics” is also frequently used to mean a specific
measurement taken on a particular item or process.
Software metrics are quantifiable measures that could be
used to measure different characteristics of a software
system or a software development process. Software
metrics can be classified into three categories, product
metrics, process metrics and project metrics. Product
metrics are used to quantify characteristics of the product
being developed i.e. the software. Examples include the
product size, complexity, design features, performance and
quality level. Process metrics are used to quantify
characteristics of the process being used to develop the
software. Examples include the effectiveness of defect
removal during development, the pattern of testing defect
arrival, and the response time of the fix process. Project
“metrics are those that describe the project characteristics
and execution. Examples include the number of software
developers, the staffing pattern over the life cycle of the
software, cost, schedule and productivity ([1], [11], [12]).

20

1.3 Current State of Software Metrics

The current state of software metrics is not very
satisfactory. In the past, many metrics and a number of
process models have been proposed. Unfortunately, most
of the metrics defined have locked one or both of two
important characteristics: a sound conceptual, theoretical
basis and statistically significant experimental validation.
Most of these have been defined and then tested only ina

limited environment, if at all. In some cases, remarkable

success has been reported in the initial application or

validation of these metrics. However subsequent attempts
to test or use the metrics in other situations have yielded
very different results. One part of the problem is that we
have failed to identify a commonly accepted set of
software properties to be measured. As a result, the same
metric has been used to measure very different software
properties [2]. Despite these problems, software metrics
in limited environment can significantly in improving
software quality and productivity. Recent studies indicate
that there are strong relationship between OO metrics and
software quality ({3], {6], {13], [19] and [17}). The rest of
the paper has been organized as follows. In the next section
we provide the traditional metrics. In section 3 we discuss
the object oriented metrics. Section 4 describes the case
studies of object oriented software engineering metrics.

We conclude the paper in section 5.
2 TRADITIONAL METRICS

A large number of traditional metrics have been proposed
to measure the complexity metrics are the McCabe’s
Cyclomatic metrics {19] and Helstead’s Software science
metrics. McCab has proposed a graph-theoretic
complexity measure that is widely accepted, probably it
is easily calculated and is intuitively satisfying. Helstead
software science is based on a refinement of measuring

program size by counting lines of code. It is one of the

The Role of Metrics in Object-Oriented Sofiware Development ;: Some Issues

" most widely aécepted measures in industry and universities
and has been supported by several empirical studies.
Helstead software science can save millions in
maintenance cost, but while current measures can be used
to some degree, most are not sufficiently sensitive to

comprehensive ([21,[10]).

Complexity metrics can be used to predict critical
information about reliability and maintainability of
software system. Complexity metrics also provide
feedback during the software project to help control the
design. During testing and maintenance, they provide
detailed information about software modules to help

pinpoint areas of potential instability [18].
3 OsiecT ORIENTED METRICS

The Object Oriented approach and metrics are gefting a
lot of attention from software development commumnity.
This is due to a variety of claims by many software
researchers and practitioners that an object oriented
approach to software development leads to better
productivity, reliability, maintainability, software
reusability and increased extensibility. In order to achieve
these goals, a variety of object oriented software metrics
have been proposed in literature to help track the status
of software development. Tn subsection 3.1, we define the
Chidaraber and Kamerer (CK) metrics suite. The MOOD
set of object oriented are given in subsection 3.2.
Subsection 3.3 defines the metrics proposed by Lorenz
and Kidd.

3.1 Object Oriented Metrics proposed by

Chidamber and Kamerer

Chidamber and Kamerer {5] have developed one of the
most widely referenced set of class based metrics for
Object Oriented systems. This metrics suite for OOD is
the deepest research in OO metrics investigation. The Six

metrics they have identified are listed below.

21

» Weighted Methods per class (WMC): WMC measure
the overall complexity of the class. Itis the sum of the
complexities of the methods implemented within a
class. Method complexity of each class is assigned 1
the number of methods per class is a measure of WMC.
The number of methods and the complexity of the
method involved is a predictor of how much time and
effort is required to develop and maintain the class.
Classes with large number of methods are likely to be
more application specific, limiting the possibility of

reuse [5].
WMC= number of methods defined in class

o Depth of the Inheritance Tree (DIT): DIT of a class in
an inheritance hierarchy is the maximum length from
the class node to the root of the tree. The deeper the
class is in the hierarchy, the greater the number of
methods it is Hkely to inherit, making it more complex

to predict its behavior [5].

DIT=maximum inheritance path from the class to the

root class

o Number of Children (NOC): NOC counts the number
of classes which inherit from a particular class (i.e.
the number of classes in the inheritance tree down from
a class). Greater the number of children, greater the
reuse, since inheritance is a form of reuse. Greater the
number of children, the greater the likelihood of
improper abstraction of the present class. If a class
has a large number of children, it may be a case of
misuse of sub classing. The number of children gives
an idea of the potential influence a class has on the
design. If a class has a large number of children, it

may require more testing of the methods in that class.

NOC=number of immediate subclasses of a class

Karpagam Jes Vol, 5 issue T Now. - Dec'. 2010

s Coupling between Objects {CBO): CBQ is defined as
the total number of other classes to which class is
coupled. A class is coupled to another class if it uses
the member method and /or instance variable of the
other class. Excessive coupling between object classes
is detrimental to modular design and prevents reuse.
The more independent a class is, the easier is to reuse

it in another abstraction.
CBO=number of classes to which a class is coupled

e Response for a class (RFC): RFC is the count of the
set of all methods that can potentially be invoked in
response to all methods accessible within to all
methods accessible within the class hierarchy. The
larger the number of methods that can be invoked from

a class, the greater the complexity of the class.
RFEC=[RS| where RS is the response set for the class.

» Lack of Cohesion in methods (LCOM): LCOM is the
count of the number of method pairs whose similarity
is 0 minus the count of method pairs whose similarity
is not zero. The larger the mimber of similar methods,
the more cohesive the class is. Cohesiveness of
methods within a class is desirable, since it promotes
encapsulation and lack of cohesion implies classes
should probably be split into two or more subclasses.
Low cohesion increases the likelihood of errors during

the development process,
3.2 MOOD Set of Object Oriented Design Metrics

The MOOD metrics set refers to a basic structural
mechanism of the OO paradigm as encapsulation (MHF
and AHF), inheritance (MIF and AIF), polymorphism
(PF), and message passing (CF) and are expressed as

quotients. The Six MOOD metrics are listed below.

22

Method Hiding Factor (MIF)

MHF is defined as the ratio of the sum of the
invisibilities of all methods defined in all classes to
the total number of methods defined in the system
under consideration. The invisibility of a method is
the percentage of the total classes from which this

method is not visible.
Attribute hiding factor (AHF)

AHF is defined as the ratio of the sum of the
invisibilities of all attributes defined in all classes to
the total number of atiributer defined in the system

under consideration.
Method Inheritance factor (MIF)

MIF is defined as the ratio of the sum of the inherited
methods in all classes of the system under
consideration to the total number of available methods

(locally defined plus inherited) for all classes.
Attribute Inheritance Factor (AIF)

AIF is defined as the ratio of the sum of the inherited
attributes in all classes of the system under
consideration to the total number of available attributes

(locally defined plus number of all classes).
Polymorphism factor (PF)

PF is defined as the ratio of the actual number of
possible different polymorphic situations for class C
to the maximum number of possible distinct

polymorphic situations for class C,
Coupling Factor (CF)

CF 1is defined as the ratio of the maximum possible
nurnber of couplings in the systern to the actual number

of coupling not imputable to inheritance.

The Role of Metrics in Object-Crienied Software Development : Some Issues

3.3 Object Oriented Metrics proposed by Lorenz and
Kidd:

Lorenz and Kidd divide class based metrics into four broad
_categories: size, inheritance, internals and externals. The

metrics proposed by Lorenz and Kidd are listed below
[18].

e . Class size : The overall size of a class can be

determined using the following measures:

1. the total number of operations (both inherited and
private instance operation) that are encapsulated

within the class

2. the number of attributes (both inherited and private

instance attributes) that are encapsulated by the class

e Number of Operation Overridden by a Subclass
(NOOY: There are instances when a subclass replaces
an instruction inherited from its superclass with a
specialized version for its own use, this is called
overriding. Large values for NOO generally indicate

a design problem.

o Number of operations added by a subclass (NOA):
Subclasses are specialized by adding private
operations and attributes. As the value for NOA
increases, the subclass drifts away from the

abstraction implied by the superclass.

o Specialization Index (SI): This is the measure of the
degree of specialization for each of the subclass in

an 00 system.

4. Cast Stupies ofF OBJECT ORIENTED SOFTWARE

METRICS

We will break our look at case studies into the

following areas:

4.1
4.2

anecdotal metric information

the Generat Electric Report

23

4.3, Chidambes and Kamerer’s research
4.4
4.5
4.6
47

4.8

Lorenz’s Research

Edward V. Berard Work

Harrison,Counsell and Nithi Work

Some other observations on Object Oriented Metrics

Qur Research Work
4.1 Anecdotal metric information

Anecdotal Object-Oriented Software engineering metrics

information inctudes [1]:

o Tt takes the average software engineering about 6
months to become comfortable wit object-oriented

technology

e The average number of lines of code per method is
small, i.e., typically 1-3 line code, and seldom more

than 10 lines of code

o The learning time for smalltalk seems to be on the

order of two months for an experienced programmer

s Once a programmer understands a given Object-
Oriented programming language, He/She should
plan on taking one day per class to (eventually)

understand all the classes of the library.

e Object-Oriented technology yields higher
productivity, ¢.g. fewer software engineering
accomplishing more work when compared to

traditional teams.

4.2 The General Electric Report

Deborth Boehm-Davis and LyleRoss conducted a study
for General Electric (in 1984); comparing several
development approaches for Ada software (i.e. structured
analysis/structured design, Object Oriented design
(Booch), and Jackson System Development). They found
that the object-oriented solutions, when compared to the

ather solutions [1]:

Karpagam Jcs Vol. S Issue 1 Nov. - Dec. 2010

» Were simpler (using Maccab’s and Halstead’s
metrics)

e Were smaller (using lines of code as metric)

e Appeared to be better suited to real time applications

o Took less time to develop
4.3 Chidamber and Kamerer’s research

One of the first suite of OO design measures was proposed
by Chidamber and Kamerer as discussed in section
3.1.The Chidamber and Kamerer [5] identified six Object
Oriented Metrics. An automated data collection tool was
then developed and implemented to collect an empirical
sample of these meirics at two field sites in order to
demonstrate their feasibility and suggest ways in which
managers may use these metrics for process improvement,

Some observations are as follows:

e All the metrics satisfy the majority of the properties
prescribed by Weyuker, with one strong exception,
property 6.Property 6 is not met by any of the metrics

in this suite.

e A benefit of having a suite of metrics is that there is
the potential for multiple measures of same

underlying construct.

¢ By using the metrics suite they can identify areas of
the application that may require more rigorous

testing and areas that are candidates for redesign.
4.4 Lorenz’s Research :

Mark Lorenz and Jeff Kidd have published the results of
their object-oriented software engineering metrics work.
Some of the interesting item in there empirical data

include:

o The ratio of key (important) classes to support classes
seems to be typically 1 to 2 and user interface
intensive applications tend to have many more

support classes.

» The average number of person day to develop a class
is much higher with C++ than is with smalltalk, e.r.,
10 days per smalltalk class and 20 to 30 days per

C++ class.

e The higher the number of lines of code per

method, the less object-oriented the class is.

o SmallTalk applications appear to have a much lower
average number of instance variable per class when

compared to C++ applications.
4.8, Edvard V.Berard work

Berard,E.V, [1] has worked on object-oriented project
since 1983.Some observaticns from some of the projects

include:

1. On a very large (over 1,000,000 lines of code)
object-oriented project, all of the source code was
run through a programe that reported on the metrics

for that software. Some observations are;

e Over 90% of all the methods in all of the classes

had fewer than 40 lines of (carriage return)

¢ Over 95% of all the methods had a cyclometic

complexity of 4 or less.

2. On a small project (about 25,000 lines of code),
staffed by 3 software engineering working half-time

on the project:

e The project was completed in six calendar months,

1.6., a total of 9 software engineering expended.

o ‘When the code was first compiled and compilation
errors were found, and no more errors were found,

before the code was delivered to the customer.

4.6. Harrison, Counsell and Nithi Work:

Harrison,R.,Councell,S.J. and Nithi, R.V. describe the

result of an investigation into a set of metrics for object

The Role of Metrics in Ob}eét—Oriented Software Development : Some Issues

oriented design called the MOOD metrics. Result shoe
that the metric could be used to provide an overall
assessment of a software system, which may be helpful to
managers of software development projects [9]. Some

observations are

e Six MOOD metrics has led us to conclude that, as
far as information hiding,inheritance,coupling, and
dynamic binding are concerned the six MOOD
metrics can be shown to be valid measure within

the context of theoretical frame work (specific)

o Empirical results indicate that the MOOD metrics,

Operate at the system level

e The MOOD metric could be of use to project
managers, providing an Overall assessment of a

system.

e However their utility will continue to be questioned
until a sufficient number of empirical validations
have been performed at a system level to establish
casual relationships between the metrics and external
quality artributes of systems, such as reliability,

maintainability, testability etc.

4,7 Some Other Observations on Object-Oriented

metrics

o Briand,L.C. et al. [12] investigate existing object-
oriented coupling, cohesion and inheritance
measures and the probability of fault detection in
system classes during testing and their capability to
predict where faults are located. The results still
support the idea that the measurement of OO designs
can still shed light on their quality.

e Li,W. et al. [13] concentrate on several object-
oriented software metrics and the validation of these
metrics with maintenance effort in two commercial
systems. The results of the analyses of the two

object-oriented systems show that-

25

There is a strong relationship between metrics and

maintenance effort in object-oriented systerms.

Maintenance effort can be predicted from

combinations of metrics collected from source code.
The prediction is successfully cross validated.

Mayer,B. [15] presents a classification of software

"metrics and five basic rules for their application.

Subramanyam, R. et al. [19]provide empirical
evidence supporting the role of OO design
complexity metrics, specifically a subset of the
Chidamber and Kemerer suite, in determining
software defects. Some observations of the research

are:

After controlling the size, some of the measures in
the CK suite of OO design complexity metrics

significantly explain variance in defects.

The effects of certain OO design complexity metrics,
such as WMC,CBO and DIT , on defects were found

to differ across the C++ and Java samples in the

study.

The programming language might play a role in the
relationship between OO design metrics and

defects.

Cartwright,M.et al. describe an empirical
investigation into an industrial object-oriented (OO)
system comprised of 133,000 lines of Ct++. Some

findings of the research are:

Chidamber and Kemerer’s DIT and NOC metrics
could therefore be used to pinpoint classes that are

likely to have higher defects densities.

Two other measures, available by the design stage,
the number of events for a class (EVNT) and the
number of states for a class (STATES), can be useful

Karpagam Jes Vol. 5 issue 1 Nov. - Dec. 2010

and a accurate predictions of the number of defects

and LOC,

LCOM to be “adequate™ predictors of fault-prone

classes

The Software Assurance Technology (SATC) at
NASA Goddard Space Flight Centre [17] has found
that a combination of “traditional” metrics and
melrics that measure structures unique to object

oriented development is most effective.

Dutoit, A.H. et al. [6] describe three proof-of-
concept experiments to illustrate the value of
communication metrics in software development
projects and propose a statistical framework based
on structural equations for validating these

communication metrics.

| Chidamber,S.R. et al. [4] suggest that the OO metrics
provide significant explanatory power for variations
in economic variables, over that provided by
traditional measures. Such as size in lines of code
and after controlling for the effect of individual
developers. Some observations of the empirical
results across the three financial services application

are as follows;

- Useful metrics data could be called on systems that
were written in a variety of programming languages
and on a system that was not yet coded.

. None of three applications at this site showed

significant use of inheritance-DIT and NOC tended

to have minimal values.
. WMC,CBO and RFC tended to be highly correlated.

. High levels of coupling (HICBOQ) and lack of
cohesion (HILCOM) were associated with:

- lower productivity

- greater rework

26

- greater design effort

These results showed be of interest to both practitioners
and the OO research community as to the degree to which

the metrics are of practical significant.
4.7 Our Research Work:

1. We have proposed model [14] that captures the
relationship between the number of initial faults
present in an object and some metrics defined for
an object oriented software system. The proposed

model is as follows:

No.of faults=K * (DIT * WMC *RFC * CBC *
LCOMYNOC......... (1)

The constant K will have to be worked out for
specific software team of concerned organization
based on experience of team members and other
characteristics related to software processes. The
“number of initial faults” serves as an important

parameter of reliability models for software [14].

2. We propose model [14] that prepare the background
for development of metrics for assessment of
maintainability of software systems. The

maintainability model is as follows;

M=K / (DIT * CBO *RFC * LCOM *

The constant K will have to be worked out for
specific software teams of concerned organization
based on experience of team members and other
characteristics related to software processes. The
maintainability values of all classes of the software
system can be used to find average (or mean)

maintainability values of classes in the system.

AM="M0 oo, 3)

The Role of Metrics in Object-Oriented Software Development : Some issues

3. In paper [14] we have presented a three level
approach to measure the maintainability of a class
in term of import coupling metrics. The proposed
model of maintainability at analysis, high level and

low level design phases given as follows:

M, (¢)=K (1/(CBO (¢} * CBO (c) * DAC'(c) * CA
(D)oo (B

M, (c)=KARFC(c)*CM(c)) .-(5)

M, (c)=K/((MPC(c) * ICP(m) *
MM({c,d)}

The K is constant. This model has provided a tentative
measure to control the maintainability of a class at analysis,
high level and low level design phase of object oriented
software development. It will provide a basis for
measuring software maintainability of an object oriented

system in more meaningful way.
5. ConNcLUSIONS

Object oriented metrics exist and do provide valuable
information to object oriented developers and project
managers. The SATC [17] has found that a combination
of “traditional” metrics and metrics that measure structure
unique to object oriented development is most effective.
At this time there are no clear interpretation guidelines
for these metrics although there are guidelines based on
common sense and experience. Object oriented metrics
technology has become an important and meaningful
research field in software industry. it can aid the software
project managers and developers to ephance the quality
of the software development process. They can identify
areas of the application that may require more rigorous
testing and areas that are candidates for redesign. Using
the metrics in this manner, potential flaws and other
leverage points in the design can be identified and dealt
with earlier in the design-develop-test-maintenance cycle

of an application.

27

REFERENCES

1. BerardE.V., “Metrics for Object-Oriented Software
Engineering”, The Object Agency, Inc., Internet.

2. Bieman, JIM., “Metric Development for Object-

Oriented Software”, Internet.

3. Briand,L.C., Wust, J, Daly, J.W. and Perter,
“Exploring the relationships between design
measures and software quality in Object-Oriented
systems”, The Journal of Systems and Software

51(2000) 245-273.

4. Chidamber,S.R., “Darcy,D.P. and Kemerer, C.E,”
Managerial Use of Metrics for Object-Oriented
Software:An Exploratory Analysis”, 1EEE

Software

Transactiens Engineering,

Vol.24,No.8,August 1998.

on

5. Chidamber,S.R. and Kemerer, C.F., “4 metric Suite
for Object Oriented Design, " IEEE Transactions on
Software Engineering, Vol.20,No.6, June 1994,

6. Dutoit, A.H. and Brugge,B., “Communication
Metrices for Software Development”, 1IEEE
Transactions on Software Engin_eering,Vo].ZQ, No.4,
April 2003,

7. Fenton,N.,”Software Measurement: “4 necessary
Scientific Basis”, 1EEE Transactions on Software

Engineering, Vol.20,No.3,March 1994.

8. Fenton,N.E. and Pfleeger,S.L., “Software Metrics:
A Rigorious and Practical Approach”, PWS
Publishing Company.

9. Harrison,R.,Counsell, 8.J. and Nithi, R.V., “dn
Evalution of the Mood set of Object-Oriented
Software metrics ", IEEE Transactions on Software

Engineering,Vol.24,No.6,Junc 1998.

Karpagam Jes Vol. 5 Issue 1 Nov. - Dec. 2010

10. Harrison, W., Magel, K. Kluczny,R. and DeKock,A.,
- “Applying complexity metrics to program

maintenance”, IEEE Computer December 1982,

11. Jalote,P., “An Integrated Approach to Software
Engineering”, Second Edition, Narosa Publishing.

12. Kan,S.H., “Metrics and Models in Software Quality

Engineering ", Pearson Education Asia,2002.

13. Li,W.and Henry, S., “Object-Oriented Metrics that
predict maintainability”, J.Systema Software,

1993,23:111-122,

14. Malviya, A.K.,Some Observation on Reliability
Metrics for Object-Oriented Software”, Proceeding
of ICSE-2000 25-26 March, 2000, I.T., Banaras
Hindu University.

15. Meyer,B., “The role of Object-Oriented Metrics”,
IEEE Computer Nov. 1998, P.123-125.

16. McCABE, T.J., “4 complexity Measure”, IEEE
Transactions on Software Engineering, Vol SE-

2,No.4, December 1976.

17. NASASATC, “Applying and Interpreting Object-

Oriented Metrics " Internet

18. Pressman,R.S., “Software Engineering: A
Practitioner’s Approach”, Fourth Edition, The
McGraw-Hill Companies, Inc.

19. Subramanyam, R. and Kishnan, "Empirical Analysis
of CK Metrics for Object-Oriented design
Comlexity: Implications of Software Defects ", IEEE
Transactions on Software Engineering,Vol.29,No 4,

April 2003.

20. Xie,T.,Huang H.,Chen,X.,Mei,H. and Yang.F.,
“Object-Oriented Sofiware Mefrics Technology”,
Technical Report, October,1999 Internet.

28

Author’s biography

Dr. Anil Kumar Malviya is an Assistant
Professor in Computer Science &
Engineering Department at Kamla

Nehru Institote of Technology, (KINIT),

4 Sultanpur. He received his B.Sc. &
M.Sc. both in Computer Science from Banaras Hindu
University, Varanasi respectively in 1991 and 1993 and
Ph.D. degree in Computer Science from Dr. B.R.
Ambedkar University, Agra in 2006. He is Life Member
of C8I, India. He has published over 8 papers in National
& International Journals and 5 papers are in International/
National conferences and seminars. His research interests
are Data mining and Software engineering, Cryptography
& Network Security.

Mr. Sanjeev Patwa is Lecturer in
Computer Science at FASC, Mody
Institute of Technology & Science,
(MITS), Lakshmangarh (Sikar) .He has
long teaching experience, He received
his B.Sc. (PCM) from M.L.Sukhadia
Umversity Udaipur , MSc (C.3)) & M.C.A. from JRN

Deemed University, Udaipur. He also received “B" Level
certificate from DOEACC Society, New Dethi. He has
also done PGDCA from Rajasthan University, Jaipur. He
has published some papers in National & International
Journals and 5 papers are in International/National
conferences and seminars. He is also author of 4 computer
His research interest is Software

science books.

Engineering.

