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ABSTRACT

The ways that the methods of data flow analysis can be
applied to improve software reliability are described.
There is also a review of the basic terminology from graph
theory and from data flow analysis in global program
optimization. The notation of regular expressions is used
to describe actions on data for sets of paths. These
expressions provide the basis of a classification scheme
for data flow which represents patterns of data flow along
paths within subprograms and along paths which cross
subprogram boundaries. Fast algorithms, originally
introduced for global optimization, are described and it
is shown how they can be used to implement the
classification scheme, It is then shown how these same
algorithms-can also be used to detect the presence of data
flow anomalies, which are symptomatic qf programming
CITOIS.
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InTRODUCTION

It is believed that a careful analysis of the use of data in
a program, such as that done in global optimization, could
be a powerful means for detecting errors in software and
otherwise improving its quality. Our recent experience
[27, 28] with a system constructed for this purpose
confirms this belief. As so often happens on such projects,
our knowledge and understanding of this approach were
deepened considerably by the experience gained in
constructing this system, although the pressures of
meeting various deadlines made it impossible to
incorporate all of our developing ideas into the system.
Moreover, during its construction advances were made
in global optimization algorithms that are useful to us,
which for the same reasons could not be incorporated in
the system. Our purpose in writing this paper is to draw
these various ideas together and present them for the
instruction and stimulation of others who are interested
in the problem of software reliability.

The phrase "data flow analysis" became firmly
established in the literature of global program
optimization several years ago through the work of Cocke
and Allen [2,3,4,5,6]. Considerable attention has also been
given to data flow by Dennis and his co-workers (9, 29]
in a different context, advanced computer architecture.
Our own interpretation of data flow analysis is similar to
that found in the literature of global program optimization,
but our emphasis and objectives are different. Specifically,
execution of a computer program normally implies input
of data, operations on it, and output of the results of these

operations in'a sequence determined by the program and
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the data. We view this sequence of events as a éﬂow of
data from input to ouiput in which input values coniribute
to intermediate results, these in turn contribute to other
intermediate results, and so forth until the final results,
which presumably are outbut, are obtained. It is the
ordered use of data implicit in this process that is the
central object of study in data flow analysis.

Data flow analysis does not imply execution of the
program being analyzed. Instead, the programis scanned
in a systematic way and information about the use of

variables is collected so that certain inferences can be

made about the effect of these uses at other points of the

program. An example from the context of global
optimization will illustrate the point. This example is
known as the live variable problem, which determines
whether the value of some variable is to be used in a
computation Reliability after some designated
computation step.

if it is not to be used, space for that variable may be
reallocated or an unnecessary assignment of a value can
be deleted. To make this determination it is necessary to
look in effect at all possible execution sequences starting
at the designated execution step to see if the vaﬁabie under
consideration is ever used again in a computation. This
is a difficult problem in any practical situation because
of the complexity of execution sequences, the aliasing of
variables, the use of external procedures, and other
factors. Thus a brute force attack on this problem is
doomed to failure. Clever algorithms have been
developed for dealing with this and related problems.
They do not require explicit consideration of all execution
sequences in the program in order to draw correct
conclusions about the use of variables. Indeed, the effort
expended in scanning through the program to gather
information is remarkably small. We discuss some of these

algorithms in detail, because they can be adapted to deal

with our own set of problems in software reliability, and
turn to these problems now.
Data flow in a program is expected to be consistent in 7
various ways. If the value of a variable is needed at some
computation step, say the variable “a” in the step
yeat+l,
Then it is normally assumed that at an earlier computation
step a value was assigned to “a”. If a value is assigned to
a variable in a computation siep, for example to ~, then it
is normally aésumﬂd_that that value will be used in a later
computation step. When the paitern of use of variables is
abnormal, so that our expectations of how variables are
to be used in a computation are violated, we séy there is
an anomaly in the data flow. Examples of data flow
anomalies are illustrated in the following programming
constructions, The first is

=A
X=B ‘
The first assignment to X is useless. Why is the statement
there at all? Perhaps the author of the program meant to
Write
X=A
Y=B
Another data flow anomaly is represented by the other
construction v
SUBROUTINE SUB(X, Y, Z)
Z=Y+W
Here W is undefined at the point that a value for it is
required in the computation. Did the author mean X
instead of W, or W instead of X, or was W to be in
COMMON? We do not know the answers fo these
questions, but we do know that there is an anomaly in the
data flow.
As these examples snggest, common programming eriors
cause data flow aﬁo;nalies. Such errors include

misspelling, confusion of names, incorrect parameter
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usage in external procedure invocations, omission 3{
statements, and similar errors. The presence of a data
flow anomaly does not imply that execution of the
program will definitely produce incorrect results; it
implies only that execution may produce incorrect results.
It may produce incorrect results depending on the input
data, the operating system, or other environmental factors,
It may always produce incorrect results regardless of these
factors, or it may never produce incorrect results. The
point is that the presence of a data flow anomaly is at
least a cause for concern because it often a symptom of
an error. Certainly software containing data flow
anomalies is less likely to be reliable than software, which
does not contain them.
Our primary goal in using data flow analysis is the
detection of data flow anomalies. The examples above
hardly require very sophisticated techniques for their
detection. However, it can easily be imagined how L. D.
Fosdick and L. J. Osterweil[27,28] similar anomalies
could be embedded in a large body of code in such a way
as 1o be very obscure. The algorithms, which we describe,
make it possible to expose the presence of data flow
anomalies in large bodies of code where the patterns of
data flow are almost arbitrarily complex. The analysis is
not limited to individual procedures, as is often the case
in global optimization, but it extends across procedure
boundaries to include entire programs composed of many
procedures.

The search for data flow anomalies can beco_me
expensive to the point of being totally impractical unless
careful attention is given to the organization of the search.
Our experience shows that a practical approach begins
with an initial determination of Whether or not any data
flow anomalies are present, leaving aside the question of
their specific location. This determination of the presence

of data flow anomalies is the main subject of our

t055

discussion. We will see that fast and effective algorithms
can be constructed for making this determination and that
these algorithms identify the va:iabies involved in the
data flow anomalies and provide rough information about
location. Moreover, these algorithms use as their basic
constituents the same algorithms that are employed in
global optimization and require the same information, so
they could be particularly efficient if included within an
optimizing compiler.

Localizing an anomaly consists in finding a path in the
program containing the anomaly; this raises the question
of whether the path is executable. For example, consider
Figure 1 and observe that although there is a path
proceeding sequentially through the boxes 1,2,3 4,5,
this path can never be followed in any execution of the
program. An anomaly on such a nonexecutable path is of
no interest. The determination of whether or not a pathis
executable is particularly difficult, but often can be made
with a technique known as Symbolic Execution [8, 19,
22]. In symbolic execution the value of a variable is
represented as a symbolic expression in terms of certain

variables designated as inputs,
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Figure 1: The Path In This Segment Of A Flow
Diagram Represented By Visiting The Boxes In The
Sequence 1,2, 3,4, 5Is Not Executable, Note That Y=
0 Upon Leaving Box 1 And This Condition Is True
Upon Entry To Box 4, Thus The Exit Labeled T Could
Not Be Taken,

rather than as a number. The symbolic expression for a
variable carries enough information that if numerical
values were assigned to the inputs a numerical value could
be obtained for the variable. Symbolic execution requires
the systematic derivation of these expressions. Symbolic
execution is very costly, and although we believe further
study will lead fo more efficient implementations, it seems
certain that this will remain relatively expensive.
Therefore a practical approach to anomaly detection
should avoid symbolic execution until it is really
necessary. In particular, with presently known algorithms
the least expensive procedure appears to be: 1) determine
whether an anomaly is present, 2) find a path containing
this anomaly, and then 3) attempt to determine whether
the path is executable. 7

We show that the algorithms presented here do provide
information about the presence of anomalies on
executable paths. While they do not identify the paths,
the fact that they can report the presence of an anomaly
on an executable path without resorting to symbolic
execution is of considerable practical importance.
While an anomaly can be detected mechanically by the
techniques we describe, the detection of an underlying
error requires additional effort. The simple examples of
data flow anomalies given earlier make it clear that a
knowledge of the intent of the programmer is necessary
to identify the error. It is unreasonable to assume that the
programmer wiil provide in advance enough additional
information about intent that the errors too can be

mechanically detected. We visualize the actual error

detection as being done manually by the programmer,
provided with information about the anomalies present
in his program. Obviously, many tools could be provided
to make the task easier, but in the end it must be a human
who determines the meaning of an anomaly. We like to
think of a system which detects data flow anomalies as a
powerful, thorough, tireless critic, which can inspect a
programand say to the programmer: "There is something
unusual about the way you used the variable a in this
statement. Perhaps you should check it." The critic might
be even more specific and say, "Surely there is something
wrong here. You are trying to use ~ in the evaluation of
this expression, but you have not given a value to a".
The data flow analysis required for detection of anomalies
also provides routine but valuable information for the
documentation of programs. For example, it provides
information about which variables receive values as a
result of a procedure invocation and which variables must
supply values to a procedure. It identifies the aliasing
that results from the multiple definitions of COMMON
blocks in programs. It identifies regions of the program
where some variables are not used at all, It recognizes
the order in which procedures may be invoked. This
partial list illustrates that the documentation information
provided by this mechanism can be useful, not only to
the person responsible for its construction, but also to
users and maintainers,

We are ready now to enter into the details of this
discussion. We begin with a presentation of certain
definitions from graph theory. Graphs are an essential
tool in data flow analysis, used to represent the execution
sequences in a program. We follow this with a discussion
of the expressions we use to represent the actions
performed on data in a program. The notation introduced
here greatly simplifies the later discussion of data flow

analysis. Next, we discuss the basic algorithmic tools
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required for data flow analysis. Then we describe both g
technigue for segmenting the data flow analysis and the
systematic application of this technique to detect data
flow anomalies in a program. We conclude with a
discussion of the experience we have had with a prototype

system based on these ideas.

Basic Definitions - Graphs : (35)

Formally a graph is represented by G(N, E) where Nis a
set of nodes {nl, n2 , ..., nk}and E is a set of ordered
pairs of nodes called the edges, {(n~, n~), (nj3 , m:4), ™

, {n~_~, n~m)}, where the n~,s are not necessarily

distinct. For example, for the graph in Figure 2,

N -- {a,b,c,d,e},

E = {(a,b), (a,0), (b,d), (d,b), (c.c}.(d.e), (c,8)].

The number of nodes in the graph is represented by N[
and the number of edges by JE[. For the graph in Figure
2,iN_il~,5and JE[=7. For any graph ]JE[I _,, I since

4

a particular ordered pair of nodes may appear at most
once in the set E,

Figure :2 Pictorial Of ADirected Graph. The Points,
Labeled Here As A, B, C, D, E Are Called Nodes, And
The Lines Joining Them Are Called Edges.
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_nj].+1, ey 1L

For the graphs that will be of interest to us it is usually
true that [E| is substantially less than [NJ? in fact it is
custornary to assume that |E| < k|N| where k is a small
integer constant,

For an edge, say (n, nj), we say that the edge goes fromn,
to n~; n, is called a Predecessor of n, and n is called a

Successor of n,. The number of Predecessors of a node is
called the in-degree of the node, and the number of
successors of a node is called the out-degree of the node.
For the graph shown in Figure 2, a is the predecessor of
b and ¢, the out-degree of a is two; a is not a successor of
any node, it has the indegree zero. In this figure we also
sec that e is both a successor and a predecessor of b, and
¢ is a successor and predecessor of ifself. A node with no
predecessors (i.e., in-degree = 0) is called an entry node,
and a node with no successors (i.e., out-degree = Q) is
called an Exit node; in Figure 2, a is the only entry node
and d is the only exit node.

A path in G is a sequence of nodes n , N ,..., & such
that every adjacent pair (nji, nji+1) is in E. We say that
this path goes from n, ton,. In Figure 2, a, ¢, d is a path
fromatod;b,e,b, is apath from b to b. There is
infinity of paths fromb tob: b, e, b b,e,b, e, b; etc. The
length of a path is the number of nodes in the path, less
one (equivalently, the number of edges) ; thus the length
of the patha, b, e, b, ¢, d in Figure 2 is six. Ifnj], n, ..
, 1y is a path p, then any subsequence of the form n,

1w my, for1< i<kand1<m<k-—i isalsoa
path, p’; we say that p contains the path p'.

If p is a path from n, to n, and i=j, then p is a cycle. In
Figure 2 the paths b, ¢, b;b ,e ,b, ¢, b and ¢, ¢ are cycles.
Thepatha, b, e,b, e, ¢, d contains a cycle. Apath, which
contains no cycles, is “acyclic”, and a graph in which all
paths are acyclic is an “acyclic graph”.

If every node of a connected graph has indegree one

and thus has a unique predecessor, except for one node
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which has indegree zero, the graph is a tree T(N, ?.‘ The
graph in Figure 3 is a tree, and if the

d

€ ¢ g

Fig3

Figure : 3 Pictorial representation of a tree rooted at
0. Each node has a unique predecessor except the root
which has no predecessor.

edges (e, b), (e, ¢), and (c, c) in Figure 2 are deleted, then
the resulting praph is also a tree. The unique entry node
is called the root of the tree and the exit nodes are called
the leafs. It will be recognized that there is exactly one
path from the root to each node in a tree; thus we can
speak of a partial ordering of the nodes in a tree. In
particular, if there is a path from ni to nj in a tree, then ni,
comes before nj in the tree; we say that ni, is an ancestor
of nj and nj is a descendent of ni . In Figure 3 every node
except a is a descendent of a, and a is the ancestor of all
of these nodes. Similarly b is an ancestor of the nodes c,
d,e, f, g; on the other hand, h is not an ancestor of these
nodes. A tree, which has been derived from a directed
graph by the deletion of certéiq edges, but of no no_des, is

- called-a spanning tree of the graph.

These elementary definitions are commonly accepted,
but they are not universal. Graph theory seems to be
notorious for its nonstandard terminology, Additional
information on this subject can be found in various texts

such as Knuth [24], and Harary [13].

The following figure 4 explains some assignment of
program segment node p represents the statement x =
x+1, node p+1 represents the first part of IF statement
ie., IF (X <Y), node p+2 represents the second part of
IF statement Big = Y and node p+3 represents the
statement of the next line of the program.

Psendo code :

x=x+LO

IF(XLTY) J5+1

A=X*X
Figure 5 explains the programming statement of IF —
THEN
IF(A LE. 1.0 =J+1,
Figure 6 shows the working condition of IF — THEN -
ELSE

CIF(A LB. 1.O)J=J+1

ELSE
1=1+1
A=X*X
Figure 7 depicts the looping statement FOR — TO — NEXT

FORI=1TO 10
I=1+1
NEXT1
Figure 8 exhibits pictorial representation of DO —
WHILE and UNTIL - DO.

DO
J=J*5
WHILE(J.LT.100)
ALGORITHMS TO SOLVE THE LIVE VARIABLE

PROBLEM AND THE AVAILABILITY PROBLEM

THROUGH DISTANCE GRAPH (NAMELY 2-
DISTANCE GRAPH)[13]

In the last section the live variable problem and the
availability problem were defined and a simple example

was given to show how a ‘solution to the live variable
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problem can be used to determine the présence g P
absence of data flow anomalies. In this section we describe

particular algorithms for solving the live variable problem p
and the availability problem. Several such algorithms have ' pd-‘i
appeared in the literature [6,16, 23, 31, 35]. The pair of 7
algorithms we have chosen for discussion do not have w 2

the lowest asymptotic bound on execution time. However,
they are simpler and more widely applicable than others P“‘a v

and their speed is competitive. F’g 5
Algorithm Depth First Search:

1. Push the entry node on a stack and mark it (this is the

first node visited; nodes are marked to prevent visiting

them more than once),
2. While the stack is not empty do the following; p

2.1 While there is an unmarked edge from the node at the

top of the stack, do the following; p+2 p+1
2.1.1 Select an unmarked edge from the node at the top

of the stack and mark it (edges are marked to prevent

selecting them more than once) ; P+3

2.1.2 If the node at the head of the selected edge is

unmarked,then mark it and push it on the stack (this is Fig B

the next node visited) ;
2.2 Pop the stack;

3. Stop.

gl

pri F._ ¥es . )
W
P+ 2

P pe2

Fig4 Fig.8
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The above mentioned algorithms representied #by the
respective diagrams involve a search over a flow graph
in which the nodes are visited in a specific order derived

from a depth first search. This search procedure is defined

by the following algorithm, where it is assumed that a .

flow graph G~,(N, E, no} is given, and a push down stack

is available for storage.

) 9

Fig.d
Figure : 9 Numbering of the nodes of a graph in the

order in which they are first visited during a depth
first search. This numbering is called preorder.

In Figure 9 the nodes of the flow graph are numbered in
the order in which they are first visited during the depth
first search. We follow the convention that the leftmost
edge (as the graph is drawn) which is not yet marked is
the next edge selected in step2.1.1; thus the numbering
of the successor nodes of a node increases from left to
right i‘nlthe figure. The ordering of the nodes implied by
this nurﬁbering is called preorder [24]. The order in which
the nodes are popped from the stack during the depth
first search is called postorder [16, 24).

Definition: Let G be a connected graph with vertex set V
and edge set E ,H is the subgraph of G is defined as r-
distance graph of G is defined d{u,v) = r in G, where
d(u,v) is nothing but the distance between the two vertices
nand vin V.

Note: Here 0 is the convenient vertex to make the required
distance froﬁl the given situation. If necessary introduce
else.

2-Distance -Graph of the above figure 9;

0

6 4 2

Figure : 10 THustration of Postorder and R-distance

Numbering of the Nodes of a Graph.

In Figure 10 the nodes are numbered in postorder. This
numbering could be generated in the following way.
Introduce a counter in the depth first search algorithm
and initialize it to 0 in step 1. In step 2.2, before popping
the stack, number the node at the top of the stack with
the counter value and then increment the counter. If each
postorder node number, say k, is complemented with
respectto [N|, i.e,, X' ¢- IN {-k, then the new numbering
represents an ordering known as r-postorder |16]. This
numbering is shown in parentheses in Figure 10.

The depth first spanning tree [33] of a flow graph is an
important construction for the analysis of data flow. This
construction can be obtained from the depth first search
algorithm in the following way. Add a set E-which is
initialized to empty in step 1. In step 2.1.2 put the selected
edge in E' if the head of the selected edge is unmarked.
After execution of this modified de~.th first search
algorithm, the tree T(N, E ) is the depth first spanning
tree of Gp(N, E, no),the flow graph on which the search
was executed. The depth first spanning tree

of the flow graph in Figure 9 is explained as follows,
These edges in the set E - E' fall into three distinct groups:
1) forward edges with respect to T: ¢ E E - B!, 15 in this
group if this edge goes from an ancestor to a descendant
of T;

2) back edges with respect to T: ¢ E E -- E', is in this
group if this edge goes from a descendant to an ancestor
of T, or if this edge goes from a node to itself;

3) cross edges with respect to T: ¢ E
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ConcLusioN é’

In this paper, We observed the following

1) They require no human intervention or guidance and
2) They are capable of scanning all paths for possible
data flow anomalies.

3) A human tester need not be concerned with designing
test cases for this system. This can be assured by the
system that no anomalies are present. In case an anomaly
is present, the system will advise the tester and further
testing or debugging would be necessary. It is advisable
to adopt the above proposed graphical model in the early
phases of a testing through directed graph. Further fixing
hypothesis and testing efforts involves more powerful
systems that employ techniques such as symbolic
execution. In future, this work can be extended to widen
the class of errors detectable by means such as Artificial

Immune Recognition System (AIRS),
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