A Framework for Dynamic CPU Allocation with
Proportionai Share Schedulers

A Framework for Dynamic CPU Allocation with
Proportional Share Schedulers

V.L.Jyothi'

ABSTRACT

Applications such as interactive multimedia and web
application require real-time computation from the
operating system in order to be effective. The growing
popularity of these applications has spurred research in
the design of large multiprocessor servers that can run a
variety of demanding applications. These applications are
increasingly hosted on general purpose operating system,
The underlying operating system should include a
scheduler which satisfies certain requirements such as
flexibility and fairness, These requirements can be
addressed by means of proportional share resource
allocation. Recently, the proportional share allocation
problem has received a great deal of attention in the
context of operating systems and communication
networks. Allocating more CPU than is needed will be
wasted, whereas allocating less than is needed will delay
the job. The required proportion may change dynamically
as the resource requirement of the application changes.
Hence, a mechanism is needed to monitor the progress
of an application and to dynamically allocate the CPU
based on the progress.

Keywords : Multiprocessor, Operating Systems,

Proportional Share Schedulers, Dynamic CPU Allocation.
1. InTRODBUCTION

The basic idea of proportional share schedulers is that
each process has an associated weight, and resources are

allocated to the process in proportion to their respective

'Research Scholar, Sathyabama University.
*Senior Professor, St.Joseph’s College Of Engg.

1037

S. K. Srivatsa®

weights, Proportional share schedulers were first
developed decades ago with the introduction of weighted
round-robin scheduling [Siberschatz et al,1998). In the
weighted round-robin case, each process is assigned a
time quantum equal to its share. A process with a larger
share, then effectively gets a larger quantum than a process
with a small share,

Weighted round-robin (WRR) provides proportional
sharing by running all process with the same frequency
but adjusting the size of their time quanta. WRR is simple
to impiement, but provides weak proportional fairness.
Fair-share schedulers evolved as a result of 2 need to
provide proportional sharing among users. These
algorithms are based on controlling priority values were
developed and incorporated into some UNIX operating
systems[Essick.R,1990, kay.J et al, 1988] . These earlier
mechanisms were typically fast, requiring only constant
time to select a process for execution, In UNIX time-
sharing, scheduling is done based on multi-level feedback
with a set of priority queues. Each process has a priority
which is adjusted as it executes. The scheduler executes
the process with the highest priority. The idea of fair-
share is to provide proportional sharing among users by
adjusting the priorities of a process. Fair-shate provides
propostional sharing by effectively running the process
at different frequencies. Fair-share schedulers are
compatible with UNIX scheduling and relatively easy to
deploy in existing UNIX environments.

Proportional share resource allocation is particularly well
suited to the problem of providing real-time services

because its underlying schedilling mechanism is a

Karpagam JCS5 Vol. 3 Issue 3 Mar - Apr. 2009

quantum-based round-robin like scheduler. Much:of this
work is rooted in an idealized scheduling absﬁaction
called generalized processor sharing(GPS) [Parekh.A et
al. 1993]. Under GPS, scheduling tasks are assigned
weights, and each task is allocated a share of the resource
in proportion to its weight. Thus each task’s designated
share is guaranteed (fairness) and any misbehaving task
is prevented from consuming more than its share.
Recently, many algorithms such as SFS[Chandra et al,
2000], SMART [J.Nieh et al, 2003], DFS[Micah Adler
et al,2004] are proposed based on the concept of
generalized processor sharing(GPS).

GPS8 based algorithms are extensively used for real-time
systems. It is not widely accepted for general purpose
systems. The reason is difficulty in estimating the correct
weight assignment. A technique is needed to dynamically
estimate the proportion required by an application. With
these estimates, the system can assign the appropriate
proportion to an application.

The rest of this paper is structured as follows. Section 2
deals with the related work. Section 3 presents the system
architecture. Section 4 presents the results of our
experimental evaluation and we present our conclusion

in section 5.
2, BACKROUND AND RELATED WORK

There are many methods proposed in the literature for
dynamic CPU allocation. In Li and Nahrstedt (1998) a
general framework is proposed for controlling the
application requests for system resources using the
amount of allocated Tesources. Nakajima (1998) shows
how an application can adapt its requirement during
transient overloads by scaling down its rate, Lu et al.
(1999), considered a mechanism for adjusting the system
workload when tasks’ execution times are not known

precisely. However, this approach does not permit to

control each task’s utilization individually. Giorgio et al.
(2002}, a mechanism is considered to compute the actual
execution time of a task by monitoring the current load.
David C.Steere et al. (1999} propose a mechanism to
dynamically allocate the resource based on the progress
of the application. However the progress of an application
is measured by a symbiotic interface. This interface
requires the kernel interpretation. This approach requires
an application to be of producer-consumer type. Also,
the CPU is dynamically allocated by means of a
reservation based scheduler.

The objective is to design a framework to estimate the
progress of an application at the user level space. The
CPU cycles are dynamically allocated using a

proportienal scheduler based on the estimation.

3. ARCHITECTURAL COMPONENTS

| MONITOR [
F-
Progress
melrics
THREAD THREAD THREAD
Progress , ? ?
Allecate
resolmoes
Pro
eress Tunes
measure
ADAPTER

| SCHEDULER

Figure 1: System Architecture
Figure 1: Shows the Main Architectural Components.
Our proposed work monitors the progress of application
and increases or decreases the allocation of CPUJ to those
applications as needed. The high-level architecture is
shown in fig. 1. The scheduler dispatches threads in order

to ensure that they receive their assigned proportion of

the CPU during their period. An adapter adjusts each

1038

A Framework for Dynamic CPU Allocation with
Proportional Share Schedulers

application’s proportion automatically. A feedback is
included for dynamic adaptation. The monitor sampffes
progress metrics from the application and it is fed as a

progress measure to the adapter.
A . Moniior

The main purpose of the monitor program is to estimate
the correct proportion required by an application.
Progress estimation can be done in several ways. The
BeNice program monitors an application’s progress via
Windows NT performance counters. An alternate method
of obtaining progress information of an application is to
tap into the progress bar[MSDN library, 1998]. The
progress bar is a very poor metric of the actual progress
that a program makes [Seltzer.M et al, 1997]. The
proposed work estimate the progress based on the

importance of an application. Priority may be used to

differentiate a low importance process or a high

importance process. This may result in starvation or
priority inversion. The progress of an application is
measured by a symbiotic interface [David C.Steere et al,
1999]. This interface requires the kernel interpretation.
The proposed method measures the progress of an
application by means of a progress metrics, The progress

metrics depends on the nature of an application.

Periodically, a process provides an indication of its
progress, through either a library call or a standard
reporting interface. A rate calculator combines this
progress indication with temporal information from a
system clock to determine theé process’s progress rate.
This progress rate is used for two purposes: First, if is
fed into a target calibrator, which analyzes many progress
rate measurements to determine a target rate for the
process. Second, the progress rate is fed into a rate
comparator, which compares it against the target rate from

the target calibrator. The rate comparator judges whether

1039

the current progress rate is less than the target progress
rate. ‘

The proposed mechanism [10] allows the metrics to be
converted into a suitable progress measure and it is fed

into an adapter.

Target rate(T,)-Progress rate(P,)

Progress measure(Pm) =
Target rate(T,)+Progress rate(Pr)
This method avoids starvation by ensuring that every job
is assigned a non-zero percentage of the CPU. It also
avoids priority inversion by allocating CPUJ based on need
as measured by progress. It provides fine grain control
since process can request specific portions of the CPU.
Resource allocation should ensure that every application
maintains a sufficient rate of progress towards its

completion.
B. Adapter.

The main function of the adapter is to achieve higher
CPU utilization and better control performance. An
adapter tunes the scheduler according to the progréss
measure from the monitor program.
An adapter may increase or reduce the CPU allocation to
the process based on the following scenario :
CASE 1 : If progress rate is greater than target
rate then,
New desired allocation becomes :
w={(w-P)k ;
k — constant scaling factor.
CASE 2 : If progress rate is lesser than target
rate then,
New desired allocation becomes :
w,=(w,+P)k ;
CASE 3 : If progress rate equals to target rate
then,

New desired allocation becqmes the ideal allocation.

Karpagom JCS Vol. 3 Issue 3 Mar - Apr. 2009

Case 1 implies to reduce CPU allocation. Case 2 implies
to increase CPU allocation.
Case 3 indicates ideal allocation.
The new relative allocation (i.e. with respect to other
active process)
Wy = Wi

Zw,
The adapter, which typically executes more frequently
than the scheduler. It is responsible for signaling the

scheduler as the requirement of the tasks changes
C .Scheduler

The scheduler used is basically a proportional share
systern. In P8 system, each shared resource is allocated
in discrete quanta. At the beginning of each time quantum
a process is sélected to use the resource. A weight is
associated with each process which determines the
relative share of the resource that the process should
receive.

The algorithm used is closely related to weighted fair
queueing (WFQ) algorithms. WFQ [J.C.R.Bennett et
al,1996]was proposed for fair allocation of network
bandwidth. It can be modified to apply in the domain of
processor scheduling. WFQ can be designed to emulate
a hypothetical weighted round robin server. The service
received by each thread in a round is proportional to the
weight of the thread.

The algorithm is formulated in terms of virtual time, The
concept of virtual time was introduced by [Zhang]. WFQ
introduced the idea of virtual finishing time V(F) to do
proportional share scheduling.

Schéduling Mechanism

Each process is associated with a weight w,. The virtual
time of a process is a measure of the degree to which a

process has received its proportional allocation relative

to other clients. When the process executes, its virtual

time increases at a rate inversely proportional to the sum

of the weights of all active process.

Given a process’ virtual time, virtual finish time V(F)

can be computed. Virtual finish time V(F) is defined as

the virtual time the process would have after executing

for one time quantum,

At a high-level, the algorithm can be briefly described

as:

® Arrange the process in increasing order of weight,

® Compute the virtual time V{t),virtual finish time
V(F) for each thread.

® A process which appears earlier than any other
process, (i.¢) a process with the smallest virtual
finish time V(F) is selected for scheduling.

The dynamic CPU allocation is achieved by the above

framework using proportional share schedulers. The

adapter tunes the CPU allocation based on the progress

of an application which is monitored by the monitor.

Based on the tuned weight from the adapter, the scheduler

computes the virtual time, virtual finish time and using

the above mechanism, schedules the job.
4. PerrorMANCE EvaLuaTION

Our test machine is a Pentium IV 800-MHz personal
computer with 640KB of Base memory, 256KB of Cache
Memory and 20 GB of Hard Disk. The operating system
used is Windows XP/Windows 2000 Server.

We tested this mechanisn using two class of processes :
i) Numerical Solver and ii) File Archive Utility.
Progress based regulation for the numerical solver is
estimated as the count of iterated solution steps. The
progress estimated for file archive utility is the number if
files it scans. For all experiments except the calibration
test, a target progress rate is established by running the
application on an idle system until the initial calibration

phase completed.

1640

A Framework for Dynamic CPU Allocation wiih
Proportional Share Schedulers

Fig. 1 illustrates the progress of a numerical solver us?g
this mechanism. The x-axis is run time. The y-axis
indicates the progress rate, expressed in the normalized
target duration between test points. Values greater than
one indicate progress above the target rate; values less

than one indicate progress below the target rate.

FLOW DIAGRAM

Get the Process's
parameler

-

Compute the target
rate and progress rate

S AN

Compute the progress
rate and Target rate

No

Suspend the
preCess

Transform
into weight

hd

Invoke a
proportional share
scheduling
algorithm

Figure 1: Progress of Numerical Solver

1041

Progress

12 3 4 5 6 7 8 9 0 1 12 13

run time {seconds)

Figure 1 : Progress of Numerical Solver
Dynamic CPU allocation is evaluated with certain
performance metrics. The proposed method is compared
against a dynamic CPU allocation mechanism which use

the progress of an application [David C.Steere et al.].
o Overhead

Overhead is calculated as the ratio of the CPU time
consumed by the algorithm (PS scheduler with feedback
mechanism) to the wall time duration of the experiment.
Fig. 2 shows the overhead of the algorithm when process
are scheduled at quantum Iengfhs of 10,20,40
milliseconds. As quantum increases, overhead decreases.
In generai, overhead is very low for any number of

process using the proposed algorithm.

08 1

Q7 +
_ D61
Qé 05 1 —&—quantum=10msg
ﬁ 04 1 ——quantum=20ms
g 03 —a—quanium=40dms

0.2 4

oA /—v’—’_"

5} -+ + —

[} 10 15
Numbar of processes{N}

Figure2: Overhead of the Proposed Algorithm

Figure 3. compares overhead for proposed method and .
existing method (David C.Steere et al.). It is found that
the overhead is below 30% for the proposed method
when scheduled for 10ms.

Karpagam JCS Vol. 3 Issue 3 Mar- Apr. 2009

Overhead (%)

K

—— Froposg mathod

== Exisling metod

5 10 15
Number of process

Figure 3 ; Overhead Comparison

) Error {mean deviation)

¢ Fairness

To evaluate the fairness of a proportional share
algorithm, the service time error for a process has to
be defined. The service time error is the difference
between the ideal allocation and the actnal allocation,
Actual allocation can be defined as the amount of
time allocated to a process during interval (t1,12)
under the given algorithm. Ideal allocation is the
amount of time that would have been allocated under
an ideal scheme. The goal of a proportionat share
scheduler shouid be to minimize the allocation error
between the clients. |

Fig. 4 shows the service time error between the
processes is minimized. Thus, the proposed
algorithm{WFQ) with feedback mechanism achieves

fairness.

= et et W bt
o W oa i NW W in e

Rumber of process

—f- Proposed method

Figure 4 : Service Time Error

o CPU Aliocation Error

A traditional metric used in scheduler’s analysis and
comparison is the error of CPU allocation. The decision
ofa controller is based on a difference between assigned
and consumed CPU allocation. A scheduler with
significant error in CPU allocation may cause unstable

controller behavior, lead to a2 poor application

performance.

25
£
5 2
H —ii— proposed dynamic
245 allocation
2 1
o
2 . —a— dyanmic aliocation
3 with symbiotic
5 interface
E 05
2

0 &
5 10 15
Number of process

Figure 5: Allocation Error
Fig. 5 plots the allocation error for the proposed dynamic
allocation and the dynamic allocation with symbiotic
interface. It is found that the proposed method results in

minimum allecation error,
5. CoNCLUSION

A framework is proposed to assign the required
proportion based on the progress of an application and
to schedule the process using proportional share
schedulers. The amount of CPU time given to an
application depends on its progress measure. The system
uses a monitor, a controller and a proportional share
scheduler. A feedback based controller dynamically
adjusts the CPU allocation to meet current resource needs
of applications. The advantage of dynamic scheduling
based on the progress automatically scales as the
application’s requirement changes. All processes can
dynamically achieve stable configurations of CPU sharing

so that starvation is aveided.

1042

A Framework for Dynamic CPU Aflocation with
Proportional Share Schedulers

|

REFERENCES

A Silberschatz and P.Galvin, “Operating Systf:n
Concepts ", Reading, M4, USA: Addison-Wesley,
5th ed, 1998.

R Essick, "An Event-Based Fair Share Scheduler”,
in Proceedings of the Winter 1990 USENIX
Conference, GSENIX,Berkeley, CA,USA, PP.147-
162, Jan.1990.

A.Parekh and R.Gallager, “4 Generalized Processor
Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case”, IEEE/
ACM Transactions on Networking, 1(3), PP.344-
357, June 1993,

Abhishek Chandra, Micah Adler, Pawan Goyal &
Prashant Shenoy, “4 Proportional Share CPU
Scheduling Algorithm for Multiprocessors”, In
Proceedings of the Fourth USENIX Symposium on
Operating System Désign & Implementation (OSDI
2000}, San Diego, CA, Oct’2000.

A.Chandra, M. Adler & P.Shenoy, “Deadline fair
scheduling : Bridging the theory & Practice of
proportionate fair scheduling in multiprocessor
servers ", In Proceedings of IEEE Real-time

Technology & Applications Symposium, June 2001,

1043

6. JNieh, S.Lam, “4 Smart Scheduler -for Multimedia
Applications” , In proceedings of ACM Transactions
on Computer Systems, Vol. 21, No. 2, May 2003.

7. Li. Band Nahrsedt. K, “A control theoretic model
Sor quality of service adaptions”, InProceedings of
Sixth International Workshop on Quality of Service,
PP. 145-153..

&=

Nakajima.T, “Resource reservation for adaptive
Qo8 mapping in real-time mach”, In Proceedings
of In Proceedings of Sixth International Workshop
on Parallel and Distributed Real-Time Systems, PP,
1047-1056, 1998. '

9. Lu,C.Stankovic, J.A.Tao, “Desigr and Evaluation
of a feedback control EDF scheduling algorithm "
InProceedings of the 20th IEEE Real-Time Systems
Symposium, 1999,

10. D.C.Sticere, A.Goel, j.WalpoIe, “A Feedback-driven
Proportibn Allocator for Real-Rate Scheduling”,
In proceedings of The ACM Symposium on
Operating Systems Design & Impiementation, 2000.

11. J.CR.Bennettand H.Zhang, “WFQ : Worst-case Fair .

Queueing ", INFOCOM 96, San-Francisco, March

1996.

