Computational Hybrids Towards Software Defect Predictions

COMPUTATIONAL HYBRIDS TOWARDS SOFTWARE
DEFECT PREDICTIONS

Manu Banga

ABSTRACT

In this paper, new computational intelligence sequéntial
hybrid architectures involving Genetic Programming
{(GP) and Group Method of Data Handling (GMDH) viz.
GP-GMDH. Three linear ensembles based on (i)
arithmetic mean (ii) geometric mean and (iii) harmonic
mean are also developed. We also performed GP based
feature selection. The efficacy of Multiple Linear
Regression (MLR), Polynomial Regression, Support
Vector Regression (SVR), Classification and Regression
Tree (CART), Multivariate Adaptive Regression Splines
(MARS), Multilayer FeedForward Neural Network
(MLFF), Radial Bagis Function Neural Network (RBF),
Counter Propagation Neural Network (CPNN), Dynamic
Evolving Neuro-Fuzzy Inference System (DENFIS),
TreeNet, Group Method of Data Handling and Genetic
Programming is tested on the NASA dataset. Ten-.fo!d
cross validation and t-test are performed to see if the
performances of the hybrids developed are statistically

significant.
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Polynomial Regression, Support Vector Regression
{8VR), Classification and Regression Tree (CART},
Multivariate Adaptive Regression Splines (MARS),
Multilayer FeedForward Neural Network (MPFF),
Radial Basis Function Neural Network (RBF), Counter
Propagation Neural Network (CPNN), Dynamic
Evolving Neuro-Fuzzy Inference System (DENFIS),
Tree Net, Group Method of Data Handling (GMDH) and

Genetic Programming (GP).

1. INTRODUCTION

The software defect prediction is one of the most critical
problems in software engineering, Software cost
development is relate;i to how long and how many people
are required to complete a software project. Software
development has become an essential question [1]
because many projects are still hot completed on
schedule, with under or over estimation of efforts leading
to their own particular problems [2]. Therefore, in order
to manage budget and schedule of software projects {3],
various software cost estimation models have been
developed. A major problem of the software cost

estimation is first obtaining an accurate size estimate of
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the software to be developed [4] because size is the most

important single cost driver [5].

The main objective of the present work is to propose
new computational intelligence based hybrid models that
estimate the software defects accurately. The rest of the
paper is organized as follows. Section 2 reviews the
tesearch done in the field of software defect prediction.
Section 3 overviews the techniques applied in this study.
Section 4 describes briefly the NASA dataset that is
analyzed by proposed Hybrid Intelligent Systems.
Section 5 presents praposed Hybrid Intelligent Systems
developed in this study. Section 6 presents the resﬁlts

and discussions. Finally, Section 7 concludes the paper.

1l. LITERATURE REVIEW

Various software development effort estimation models
have been developed over the last four decades. The most
commenly used methods for predicting software
development efforts are Function Point Analysis and
Constructive Cost Model (COCOMO) [4]. Function
Point Analysis was developed first by Albrecht (1979)
(www.JIFPUG.Org). Function point analysis is a method
of quantifying the size and complexity of a software
system in terms of the functions that the system delivers
to the user [9]. The function does not depend on the
programming languages or tools used to develop a

software project [1]. COCOMO is developed by Boghm
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[2]. Ttis based on linear-least-squares regression. Using
line of code (LOC) as the unit of measure for software
size itself contains so many problems [10]. These
methods failed to deal with the implicit non-linearity
and interactions between the characteristics of the

project and effort

In recent years, a number of aliernative modeling
techniques have been proposed. They include artificial
neural networks, an;z,iﬂgy~based reasoning, and fuzzy
system. In analogy-based cost estimation, similarity
measures between a pair of projects play a ctitical role.
This type of model calculates distance between the
software project being estimated and each of the
historical software projects and then retricves the most
similar project for generating an effort estimate, Later,
Vinaykumar et al. [6] used wavelet neural networks
for the prediction of software defects. Unfortunately
the accuracy of these models is not satisfactory so there
is always a scope for new software cost estimation

techniques.

Tosun et al. proposed feature weighting heuristics for
analogy-based effort estimation models using principal
components analysis (PCA). Mittas and Angelis
proposed statistical simulation procedures involving
permutation tests and bootstrap teckmniques in order to -

test the significance of the difference between the
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accuracy of two prediction methods: the estimation by

analogy and the regression analysis.

III. OvERVIEW OF THE TECHNIQUES EMPLOYED

In the following, we now present an overview of the
techniques applied in this paper.

A. GROUP METHOD OF DATA HANDLING

(GMDH)

The group method of data handling {GMDH) was
introduced by Ivakhnenko [7] in 1966 as an inductive
learning algorithm for modeling of complex systems. It
is a self-organizing approach based on sorting-out of
gradually complicated models and evaluation of them
using some exiernal criterion on separate parts of the
data sample [8]. The GMDH was partly inspired by
research in Perceptrons and Learning Filters. GMDH
has influenced the development of several techniques
for synthesizing (or “self-organizing”) networks of
polynomial nodes. The GMDH attempts 2 hierarchic
solution, by trying many simple models, retaining the
best, and building on them iteratively, to obtain a
composition {or feed- forward network) of functions as
the model, The building blocks of GMDH, or polynomial
nodes, usually have the quadratic form: The GMDH
neural network develops on a.data set. The data set
including independent variables (x , X,,... , x ) and one

dependent variable y is split into a training and testing
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set, During the process of learning a forward multilayer

neural network is developed by observing the following

steps:

In the input ia-yer of the network n units with an
elementary transfer function y = xi are
constructed. These are used to provide values of
independent variables from the learning set to the

successive layers of the network.

When constructing a hidden layer an initial
population of units is gene;ated. Each unit
corresponds to the Ivakhnenko polynomial form:
y=atbx +ox, +dx , texx, tix,ory=a+

bx1+ cx,t dxixz

Where y is an output variable; x,, X, are two input

variables and a, b,... , f are parameters.

Parameters of all units in the layer are estimated

using the leamning set.

The mean square error between the dependent
variable y and the response of each unit is

computed for the testing set.

Units are sorted out by the mean square error and
just a few units with minimal error survive. The
rest of the units are deleted. This step guaranties
that only units with a good ability for

approximation are chosen,
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Next the hidden layers are constructed while the

6.
mean square error of the best unit decreases.
7. Output of the network is considered as the

response of the best unit in the layer with the

minimal error.

The GMDH network learns in an inductive way and
tries to build a function (called a polynomial model),
which would result in the minirmm error between the
predicted value and expected output. The majority of
GMDH networks use regression analysis for solving the
problem. The first step is to decide the type of polynomial
that the regression should find, The initial iayer is simply
the input layer. The first layer created is made by
computing regressions of the input variables and then
choosing the best ones. The second layer is created by
computing regressions of the values in the first layer
along with the input variables. This means that the
algorithm essentially builds polynomials of polynomials.
Again, only the best are chogen by the algorithm. These
are called survivors, This process continues until a pré-

specified selection criterion is met, '
B. GENETIC PROGRAMMING (GP)

Genetic programming (GP) is an exfension of genetic
algorithms (GA). It is a search methodology belonging

to the family of evolutionary computation (EC). GP
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mainly involve functions and terminals. GP randomly
generates an initial population of solutions. Then, the
initial population is manipulated using various genetic
operators to produce new populations. These operators
include reproduction, crossover, mutation, dropping
condition, etc. The whole process of evolving from one
population to the next population is called a generation.
A high -level description of GP algorithm can be divided

into a number of sequential steps :

® Create a random population of programs, or
rules, using the symbolic expressions provided

as the initial population.

Evaluate each program or rule by assigning
a fitness value according to a predefined fitness
function that can measure the capability of the

rule or program to solve the problem.

Use reproduction operator to copy existing

programs into the new generation.

Generate the new population with crossover,
mutation, or cther operators from a randomly

chosen set of parents.

Repeat steps 2 onwards for the new population
until a predefined termination criterion has been
satisfied, or a fixed number of generations has

been completed.
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@ The solution to the problem is the genetic
program with the best fitness within all the

generations.

In GP, crossover operation is achieved first by
reproduction of two parent trees. Two crossover points
are then randomly selected in the two offspring trees.
Exchanging sub -trees, which are selected according
to the crossover point in the parent trees, generates the
final offspring trees. The obtained offspring trees are
usually different from their parents in size and shape.
Then, mutation operation is also considered in GP. A
single parental tree is first reproduced. Then a mutation
point is randomly selected from the reproduction, which
can be either a leaf node or a sub- tree. Finally, the leaf
node or the sub-tree is replaced by a new leaf node or
sub-trec generated randomly. Fitness ﬁlﬁctions ensure
that the evolution goes toward optimization by
calculating the fitness value for each individual in the
population. The fitness value evaluates the performance

of each individual in the population.

GP is guided by the fitness fuﬁction to search for the
most efficient computer program to solve a given
problem. A simpl_e measure of fitness [13] is adopted
for the binary classification problem which is given as

follows.

no of samples classified correctly

Fitness (T) =
no of samplesfor training during evaluation
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We used the GP implementation available at http://

www.rmltech.com

. COUNTER PROPAGATION NEURAL NETWORK

(CPNN)

The counter propagation network is a competitive
network. The uni-directional PNN has three layers. The
main layers include an input buffer layer, a self-
organizing Kohonen layer and an utput layer which
uses the Delta Rule to modify its incoming connection
weights. Sometimes this layer is called a Grossberg
Outstar layer. The forward-only counter propagation
network architecture, consists of three slabs: an input
layer (layer 1) containing n fan out units that multiplex
the input signals X , X,,....., X, (and munits that supply
the correct output signal values y,,, ,.., ¥, to the output
layer), 2 middle layer (layer 2 or Kohonen layer) with
N processing elements that have output signals 2, 2,,...,
z,, and a final layer (layer 3) within processing
elements having output signals y,’, ¥,’..., ¥, - The
outputs of laver 3 represent approximations te the
COtPONENts ¥, ¥ps---s ¥y of y = f{x) The input layer in
CPNN performs the mapping of the multidimensional
input data into lower dimensional array. The mapping
is performed by use of competitive learning, which

employs winner-takes-it-all strategy . The training

process of the CPNN is partly similar to that of Kohonen
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self-organizing maps. The Grossberg layer performs
supervised learning. The network got its name from
this counter-posing flow of information through its

structure.

D. SurPORT VECTOR REGRESSION (SVR)

The SVR is a powerful learning system that uses a
hypothesis space of linear functions in a high-
dimensional space, trained with a learning algorithm
from optimization theory that implements a learning
bias derived from statistical learning theory[11]. SVR
usés a linear model to implement non-linear class
boundaries by mapping input vectors non-linearly into
a high dimensional feature space using kernels, The
training examples that are closest to the maximum
margin hyperplane are called support vectors[12]. All
other training examples are irrelevant for defining the
binary class boundaries. The support vectors are then
used to construct an optimal linear separating
hyperplane (in case of patiern recognition) or a linear
regression function (in case of regression) in this feature
space. The support vectors are conventionally
determined by solving a guadratic programming (QP)

problem.

E. CLASSIFICATION AND REGRESSION TREE

(CART)

CART was introduced by Breiman ¢t al. {13] can solve
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both classification and regression problems (http://
salford-systemns.com). Decision tree algorithms induce
a binary tree on a given fraining data, resulting in a set
of ‘if-then’ rules. These rules can be used to solve the
classification or regression p.roblem. The key clements
of a CART analysis [13] are a set of rules for: (i)
splitting each‘ node in a tree, (ii) deciding when a tree
is complete; and (iii) assigning each terminal node to
a class outcome (or predigted value for regression). We
used the CART implementation available at hitp://

salford-systems.com.

Multivariate adaptive regression splines (MARS) is an
innovative and flexible modeling tool that antomates
the building of accurate predictive models for
continuous and binary dependent variables. It excels
at finding optimal variable transformations and
interactions, the complex data structure that often hides
high-dimensional data. This approach to regression
modeling effectively uncovers important data patterns

and relationships that are difficult, if not impossible,

for other methods to reveal,

F. TREE NET

DENFIS was introduced by Kasabov and Song [131.
DENFIS evolve through incremental, hybrid
(supervised/unsupervised) learning, and accommeodate

new input data, including new features, new classes,
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etc., through local element tuning. New fuzzy rules

are created and updated during the operation of the

system. At each level, the output of DENFIS is
calculated through a fuzzy inference system based on
most activated fuzzy rules, which are dynamically
chosen from a fuzzy rule set. A set of fuzzy rules can
be inserted into DENFIS before or during its learning
process. Fuzzy tules can also be extracted during or
after the learning process. It makes use of a new concept
of ‘ultra slow learning’ in which layers of information
are gradually peeled off to reveal structure in data.
TreeNet models are typically composed of hundreds of
small trees, cach of which contributes just a tiny
adjustment to the overall model. TreeNet is insensitive
to data errors and needs no time-consuming data
preprocessing or imputation of missing values. TreeNet
is resistant to overtraining and is faster than a neural

net.
G. REGRESSIONS ANALYSIS!

It is supervised learning type where we are using
Multiple Linear Regressions with ordinary least squares
technique. As a consequence, the weights of the
connections between the kernel layer and the output

layer are determined..
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IV, DATA DESCRIPTION AND DATA

PREPROCESSING

The NASA data is obtained from Promise Repository.
(Entire dataset contains information about 4109
projects. The dataset consist of 18 attributes. These
attributes are also divided into sub-attributes, t.hereby
making the total number of attributes 105. The first
cleaning step was to remove the projects having null
values for the attribute named Summary of Work Effort.
Secondly regarding summary of work effort only 1538
project values are given for the five attributes viz. Input
count, Output, Enquiry, File and Interface. If we
consider more attributes then we get only a few projects
which are not sufficient for machine learning
techniques. Hence, finally, we considered 1538 projects
values with five attributes to do train and test several
intelligent models. Finally, we normalized the data set.
The effectiveness of our proposed hybrid intelligent

systems is tested on this normalized dataset.

V. PROPOSED HYBRID INTELLIGENT SYSTEMS

The fundamental assumption in computational
intelligence paradigm is that hybrid intelligent
techniques tend to outperform the stand-alone
techniques. We proposed 6 new hybrid architectures
for software cost estimation and compare their

performances based on RMSE values
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A. ENSEMBLE SYSTEM

We first implemented linear ensemble systems.
Ensemble systems exploit the unique strengths of ¢ach
constituent model and combine them in same way. For
constructing ensemble system we have chosen the three
best techniques viz., GMDH, GP and CPNN from
stand-alone mode. These three techniques have yielded
the best RMSE values in the 10 -fold cross validation
method of testing. We constructed ensembles using
three methods. They are Arithmetic Mean (AM),
Harmonic Mean {HM) and Geometric Mean (GM). The

proposed Ensemble system is depicted in Figure 1.

GMDH

GP

CPNN

Figure.l Ensemble System

B. RECURRENT GENETIC PROGRAMMING
(RGP) ARCHITECTURE

The second proposed architecture is a recurrent
architecture for Genetic Programming (RGP) in which
output of the GP is fed as an input to the GP. This is
analogous to recurrent neural networks having feedback

loop where output can be fed back as input [14].
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However, the difference is that we wait until GP
converges and yields the predictions. These predictions
along with the original input variables are fed as inputs
to another GP afresh. The flow diagram of therrecurrent
architecture for Genetic Programming (RGP) is
depicted in Figure 2. The idea here is to investigate if
the recurrent nature of the hybrid would improve the

RMSE of the first GP.

{7}

Figure.2 Recurrent architecture for GP (RGP}

C. GP-GP Hysrmp

It is observed that there are some features in the dataset
that are contributing negatively to the prediction
accuracy of all the models. Hence, we resorted to feature
selection (F.S). We used GP for feature selection. Using
GP based feature selection we selected four most
important variables for training. Accordingly, in the
proposed hybrid first important features are selected
using GP and then those are fed to GP for predictions
resulting in GP- GP hybrid. The architecture of

proposed GP-GP hybrid is depicted in Figure 3.
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Figure.3 GP-GP Hybrid Architecture

D. GMDH-GP nysrm

As an extension to this work, it is worth investigating
the boosting of well performing techniques with each
other. Accordingly, we proposed a new sequential
hybrid in which the predictions of GMDH along with
input variables are fed as input to GP for predictions,
resulting in GMDH-GP hybrid. The -architecture of GP-

GMDH hybrid is depicted in Figure 5.

{ Imput )—il GMDH
GP

Figure.4 GMDH-GP Sequential hybrid

E. GP-GMDH hybrid

We also proposed another sequential hybrid to explore
the boosting power of GP with GMDH. In this new
hybrid, the predictions of GP along with input variables
are fed as input to GMDH for predictions. The

architecture of GP-GMDH hybrid is depicted in

Figureb.
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=

GMDH

O

Figure.5 GP-GMDH Sequential hybrid

V1. Results and discussion

We used ISBSG data set, which contains 1538 projects
and five independent variables and one dependent

variable.

We employed GMDH, GF, CPNN, MLR, Polynomial
Regression, SVR, CART, MARS, MLFF, RBF,
DENFIS, and TreeNet. We performed 10-fold cross
validation throughout the study and the average results

are presented in Table 1.

Table 1: Average RMSE of 10 fold cross validation

RMSE
SN | METHOD (TEST)
1 GMDH 0.03784
2 GP 0.03794
3 CPNN 0.04499
4 CART 0.04561
5 TREENET 0.04565
6 MLP 0.04817
7 MLR 0.04833
8 DENFIS 0.04837
5 MARS 0.0487
10 SVR 0.0492
11 RBF 0.05167
Polynomial
12 Regfmm 0.05327
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It is observed that GMDH performed the best with least
RMSE value of 0.03784 and GP stood a close second
with an average RMSE value 0f 0.03794 among all stand
alone techniques tested followed by CPNN, CART,
TREENET, MLP, MLR, DENFIS, MARS, SVR, RBF

and Polynomial Regression in that order.

We also implemented three linear ensemble systems
using AM, GM and HM to exploit the unique strengths
of the b.est performed stand alone techniques GMDH,
GP and CPNN. We notice that AM based ensemble
system has outperformed GM based and HM based
ensemble techniques, The results are presented in Table
2. However, they are not so spectacular when compared
to the best performing stand- alone methods. This is

evident from the nature of the AM, Gm and HM.

Tabie 2: Average RMSE of ensemble models

RMSE
SN | METHOD (Test data)
1 AM 0.0421
2 GM 0.04403
3 HM 0.0455

The results of the hybrids are presented in Table 3. Here
we observe that all the proposed hybrid models RGP,
GP-RGP, GP- GP, GMDH-GP and GP-GMDH

outperformed all other stand-alone techniques due to
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the synergy that took place in hybridizing them. From
the results of GP-GP and GP-RGP it is inferred that the
features selected by GP helped to boost the performance

of GP and RGP.

We further explored the boosting power of GP with
another well performing technique GMDH and boosting
power of GMDH with GP. We observed that GP-GMDH
yielded least average RMSE value of 0.02833 and
GMDH.- GP stood second with an average RMSE value _
of 0.03098 among al! the hybrids tested. They are

foliowed by RGP, GP-RGP and GP-GP in that order.

We also performed t-test to test whether the difference
in RMSEs obtained by the top five methods viz, GP-
GMDH, GMDH-GP, RGP, GP-RGP and GP-GP is
statistically significant or not, Thus, the t-statistic values
computed for those hybrids are presented in Table 3.
The calculated t-statistic values are conmarerd with 2.1,
which is the tabulated t-statistic value at n,+n,-2=10+10-
2=18 degrees of freedom at 5 % level of significance.
That means, if the computed t-statistic value between
two metheds is more than 2.1, then we can say that the
difference between the techniques is statistically
significant, The t-statistic value between GP-GMDH and
RGP is 2.47694 whereas that between GP-GMDH and
GP-RGP is 2.83543 and in the case of GP-GMDH and

GP-GP it is 4.27465. Considering GP-GMDH as best
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performer, it is observed that the difference between i{GP,
GP-RGP and GP-GP is statistically significant. The t-
statistic value between GP-GMDH and GMDH-GP is
1.6972 which is less than 2.1 and hence the difference
between GP -GMDH and GMDH-GP is statistically

insignificant.
VII1. Conclusions

This paper presents new computational intelligence
sequential hybrids involving GP and GMDH for software
cost estimation. Throughout the study 10-fold cross
validation is performed. Besides GP and GMDH, we
tested a host of techniques (;n the ISBSG dataset. The
proposed GP- GMDH and GMDH-GP hybrids
outperformed all other stand-alone and hybrid
techniques, Hence, we conclude that the GP-GMDH or
GMDH-GP model is the best model among all other

technigues for software cost estimation.

Table 3: Average RMSE of hybrids models

RMSE t-test
SN | METHOD (Test data) value
1 RGP 0.03275 2.47694
2 | GP-RGP 0.03343 2.83543
3 GP-GP 0.03676 427465
4 | GMDH-GP 0.03098 1.6972
5 | GP-GMDH 0.02833 .
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