Karpagam Jes Vol. § Issue é Sep. - Oct. 2011

A New Approach for Moving Objects in

Spatiotemporal databases

K. Appathurai!

Abstract

Spatiotemporal access methods are secret into four
categories: (1) Indexing the past data (2) Indexing the
current data (3) Indexing the future data and (4) Indexing
data at all points of time. All the above categories are
having set of indexing structure algorithms [1, 2, 3,141
In this paper we consider the third proup and proposed
the new approach for the choose path method of TPR*
tree. This new loom gives better performance than

existing TPR* tree.

Keywords — Index, Query, Access Methods, Choose path
Method and Insertion Method.

I InTrRODUCTION

Spatio-temporal databases deals with moving objects that
change their locations over time. In commeon, moving
objects account their Jocations obtained via location-
aware mstrument to a spatio-temporal database server.
The server store all updates from the moving objects so
that it is capable of answering queries about the past [4,
5, 9, 10,15}, Some applications need to know current
locations of moving objects only. This case, the server
may only store the current status of the moving objects.

To predict future positions of moving objects, the spatio-
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temporal database server may need to store additional
information, e.g., the objects’ velocities [8]. Many query
types are maintained by a spatio-temporal database server,
e.g., range queries “Find all objects that intersect a certain
spatial range during z given time interval”, k-nearest
neighbor queries “Find k restaurants that are closestto a
given moving peint”, or trajectory queries “Find the
trajectory of a given object for the past hour”. These
queries may execute on past, current, or future time data.
A large number of spatio-temporal index structures have
been proposed to support spatio-temporal queries

efficiently [12, 13]. This paper is based on [5].
II ReLaTED WORK
2.1 R* Tree

The R*-tree as an extension of the B-tree for multi-
dimensional static objects. Figure 2.1 shows a 2D
example where 10 rectangles (a,b,...,/} are clustered
according to their spatial proximity into 4 leaf nodes
Ni,... N4, which are then recursively grouped into nodes
N3, NG that become the entries of the root. Each entry is
represented as a minimum bounding rectangle (MBR).
The MBR of a leaf entry Indicates the extent of an object,
while the MBR of a non leaf entry (e.g., NI) tightly
bounds ail the MBRs (i.e., a,b,¢c) in its child node. The
R*.tree is optimized for the window query, which
retrigves all the objects that intersect a query region. In
Figure 2.1, for example, the query visits the root of the
R-tree, N6, N4, and returns object £
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Figore 2.1: An R¥-fres

The R*-tree construction algorithm aims at minimszing
the following penaliy metrics: (i) the area, (ii) the
perimeter of each MBR, (iii) the overlap between two
MRBRs (c.g., NI,N2) in the same node, and (iv} the
distance between the centroid of an MBR (e.g., @ in Figure
- 2.1) and that of the node (e.g., NI) containing it.
Minimization of these metrics decreases the probability
that an MBR intersects a query region. Givena new enury,
the insertion algorithm decides, at each level of the tree,
the branch to follow in a greedy manner. Assume that we
insert an object & into the tree in Figure 2.1. At the root
level, the algorithm chooses the entry whose MBR needs
the least area improvement o cover k& N5 is selected
because its MBR does not need to be enlarged, while
that of N6 must be prolonged considerably. Then, at the
next level (i.e., child node of N3}, the algorithm chooses
the entry whose MBR growth leads to the smallest overlap
increase among the sibling entries in the node. Note that
different metrics are considered at level 1 (leafnodes are
at level 0) and higher levels. An overflow occurs if the
jeaf node is full, In this case the algorithm attempts to
remove and re-inserta fraction of the entries in the node,
trying to avoid a split if any entry could be assigned to
other nodes. The set of exitries to be re-inserted are hose
whose centric distances are among the largest 30%. In
Figure 2.1, b is selected since its centroid is the farthest
from that of NI. Node splitting is performed if the
overflow persists after the re-insertion. The R* split
algorithm consists of two steps. The first step decides a

split axis (from the x-, y-dimensions} as the one with the
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smallest overall perimezer computed as follows. Figure
2.2 continues the example, which, for simplicity, omits
this minimum node utilization constraint {(we assume that
a node can have a single entry, which corresponds to 33%
utilization). The 1-3 division {Figure 2.2a), for instance,

allocates #he first entry (of the serted

tist) into &, the other 3 entries into N2 . The algorithm
computes the perimeters of N and N, and performs the
same computation for the other (2-2, 3-1) divisions. A
second pass repeats this process with respect to the
MBRs’ right boundaries. Finally, the overall perimeter
on the x-axis equals the sum of all the perimeters obtained

from the two passes.

hy

{a) 1-3 division {b} 2-2 division (c} 3-1 division

Figure 2.2: Possible divisions in splitting

A1 on the x-axis

After deciding the split axis, the split algorithm sorts the
on the selected dimension, and gain, exarmines all possible
divisions. The final division is the one that has the
minimum overlap between the MBRs of the resulting
nodes. Continuing the previous example, assume that the
split axis is x; then, among the possible divisions i Figure
2.2, the 2-2 incurs zero overlap (between N and N2 )and

thus becomes the final splitting.

2.2 TPR tree

A moving object 0 18 represented with {i) an MBR oR
thatdenotes its extent at reference time 0, and (ii) a
velocity bounding rectangle (VBR}) o V={oVI-
oVl+,0V2-,0V2+; where oVi- {oVi+) describes the

velocity of the lower (upper) boundary of oR along the i-
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.th dimension (1 <7 < 2). Figure 2.3a shows the MBRs
and VBRs of 4 objects a,b,c,d. The arows (numbers)
denote the directions (values) of their velocities, where a
negative value implies that the velocity is towards the
negative direction of an axis. The VBR of a is
aV={1,1,1,1} (the first two numbers are for the
xdimension), while those of b,c,d are bV={-2,-2,-2,-2},
cV={.2,0,0,2}, and dV={-1,-1,1,1} respectively. A non-
leaf entry is also represented with an MBR and a2 VBR.
Specifically, the MBR (VBR) tightly bounds the MBRs
{VBRs) of the entries in its child node. In Figure 2.3a,
the objects are clustered into two leaf nodes NI, N2,
whose VBRs are N1V={-2,1,-2,1} and N2V={-2,0,-1,2}
(their directions are indicated using white arrows).

arrows).

By 3Lz

(a) MBRs & VBRs at time 0 (b} MBRs at time 1

Figure 2.3: Entfry representations in a TPR-tree

Figure 2.3b shows the MBRs at timestamp 1. The MBR
of a non-leaf entry always encloses those of the objects
in its sub tree, but it is not necessarily tight. For example,
NI1{N2) at timestamp 1 is much larger than the tightest
bounding rectangle for a,b {c,d). A predictive [ 16] indow
query is answered in the same way as in the R¥-tree,
except that it is compared with the (dynamically
computed) MBRs at the query time. For example, the
query gR at timestamp 1 in Figure 2.3b visits both N1
and N2 (although it does not intersect them at time 0).

The TPR-tree is optimized for timestamp queries in
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interval [TC, TC+H], where TC is the current updatg time,
and I is a tree parameter called the horizon. The update
algorithms are exactly the same as those of the R*-tree,
by simply replacing the four penalty metrics of the
previous section with their integral counterparts. returns
the overlapping area (centroid distance) between N1 and
N2 at time t. These integrals are solved into closed
formulae. When an object is inserted or removed, the
TPR-tree tightens the MBR of its parent node. Figure
2.4 shows the MBRs after inserting a new object e (into
NI) attime 1. Nlis adjusted to the tightest MBR bounding
ab.e, by computing their respective extents at time 1.
Note that this does not compromise the update cost
because N1 must be foaded (written back) from (to) the
disk anyway to complete the insertion. On the other hand,
the MBR of N2 is not tightened because it is not affected

by the insertion.
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Figure 2.4: N1 is tightened during an

insertion at fime 1
2.3 TPR* Tree

The TPR*-tree improves the TPR-tree by employing a
new set of insertion and deletion algorithms that aim at
minimizing cost. This raises the question about the choice
of appropriate parameter values used for optimization.
We optimize the TPR*-tree for the static point interval
query q, whose (i) MBR has length [gRi/=0 on each axis,
(i) VBR={0,0,0,0}, and (iii) query interval T ={0,H},
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where H is the horizon parameter (also used in the original
TPR-iree). As shown in the experiments, this choice leads
to nearly-optimal performance independently of the query

parameters.
e Insertion

Figure 2.3.1 shows the high level description of the TPR*
insertion. Specifically, given a new entry e at insertion
time TI, the TPR*-tree first identifies the leaf N that will
accommodate e with the choose path algorithm. If N is

full, a set of entries, selected by pick worst, are removed

from N and re-inserted. Any leaf node that overflows

during the re-insertion will be split using node split, after

which a new entry will be added to the parent node. This
may cause the parent to overflow, and is handled in a
similar way, Next we elaborate choose path, pick worst,
and node split, and explain why the corresponding

algorithms in the TPR-tree are not efficient.

Algorithm Insert (e)

/* Input: e is the entry to be inserted. */

1. re-insertedi=false for all levels
1ddiddhdl (h is the tree height)

2. initialize an empty re-insertion list
Lreinsert

3. invoke Choose Path to find the leaf
node N to insert e

4. Invoke Node Insert(N, e)

5. for each entry e’ in the Lreinsert

6. invoke Choose Path to find the leaf

node N to insert &’

7. Invoke Node Insert(N, e} End Insert
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Algorithm Node Insert (N, €)
/* Input: N is the node where entry ¢ is inserted */
1.if Nis a leaf node
2. enter the information of e
. if N overflows
. if re-insertedO="false //no re-insertion at leaf level yet
. invoke Pick Worst to select a set
Sworst of entries
. remove entries in Sworst from N; add
them to Lreinsert
7. re-inserted0=true
8. else
9. invoke Node Split to split N into itself and N’

10. let P be the parent of N

11. Node Insert(P, &) or Nede Insert(P,N’} if N has been
split

12. else //N is a non-leaf node

13. similar to lines 2-9 except that (i) the MBR/VBR of
the affected child node is adjusted, and (ii) in lines 4, 7
replace re-inserted( with re-insertedi where i is the level

of N End Node Insert

Figure 2.3.1 : Overview of the TPR¥ insertion

algorithm
» Choose Path

Given a new object, the traditional TPR-tree selects, at
each non-leaf level, the branch with the smallest
deterioration (in terms of certain penalty metrics) to
continue the insertion. The efficiency of this “greedy”

approach drops considerably, if multiple branches have
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- the same (zero) deterioration. To illustrate this, we use
Figure 2.5a that shows 6 leaf nodes a,b,...,f with their
parent nodes g,h.i that are the entries of the root (the
absolute values of all velocities are 1). Note that although
the MBRs of gh are disjoint at time 0, they overlap
significantly at timestamp 2 (Figure 2.5b). Consider the
insertion of (static) point p at time 2. At the root level, g
and h have no deterioration because inserting p into either
one does not expand the corresponding MBR / VBR. in
this case the algorithm must rely on the “tie-breaking”
conditions which, however, are much less effective. In
the example, h is preferred because it has smaller MBR,
inside which the best leaf node to include p is d. The best
choice, however, is to insert p to node a, as it requires
significantly smaller MBR expansion than d. Note that
this problem becomes even more serious as time
progresses and the overlaps between MBRs become
increasingly larger. Eventually, the greedy algorithm
becomes almost random, i.e., it just picks one of the
numerous candidate branches with zero penalty. The
problem is less serious in R-trees (i.e., static data) where

the MBRs do not grow with time.
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{a) MBRs & VBRs at time 0 (b) MBRs at time 2
Figure 2.5 : Inserting p at time 2
Motivated by this, we propose a choose path algorithm
which, given anew object, returns the insertion path with
the minimal increase in equation 3-1 (called cost
degradation in the sequel) among all the paths. Towards

this, choose path maintains a priority queue QP that
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records the candidate paths inspected so far. In Figure
2.5b, at the root QF is initiated with {[{g),0],
[(#),01,{(¥),207}, where each number indicates the cost
degradation (for the static point interval query with
gT={0,11}, if p is inserted into the corresponding path.
The degradation is 0 for g and & because, as mentioned
earlier, their MBRs/VBRs do not need to be expanded.
Note that at this point we have not accessed any of nodes
g,hi, i.e., the cost degradation is cornputed from their
extents stored in the root. At each step, choose path
explores the path with the smallest cost degradation. In
this example, it visits node g and inserts two paths (a,g)
and (b,g) in OP, after which QP = {[(1),0], [(a.g),3],
[(9,20], [(5.£),32]}. Notice that (a,g) and (b,g) are
complete, meaning that they include the leaf level
{although leaves ¢ and g are not visited). Similarly, the
next path expanded is (&), and QF becomes
OP={[(a.£),3], {d,1),9}, [(¢,h),17], 1(),20], [(b.g),32]}.
Now the algorithm terminates with (a,g) as the overall
best path, because its (accumulated) cost degradation is
smaller than that of all the other entries in QP. Note that
[(7),20] is not explored at all, as it already incurs larger
degradation at the highest level. Choose path finds the
best insertion path at the cost of some exira node accesses.
This, however, pays off due to the following reasons. First,
it feads to a better tree structure, which impmveé the query
performance. Second, our experiments show that in most
cases it only needs to explore on average 2-3 complete
paths because most paths will terminate at very high levels
(e.g., (i) in Figure 2.5b). Third, choose path only visits
non-leaf nodes that usualiy reside in the buffer. Fourth,
each update in spatiotemnporal databases usually involves
one deletion (followed by an insertion), which as
explained in the next section, is usually the dominating
factor in the total update cost. The deletion requires a

query to locate the object to be removed. Due to ifs
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improved query performance with respect to the TPR-
tree, the update overhead of the TPR*-tree is much lower.
A similar situation exists for the relative performance of
updates in R*- and R-trees; although the R*-tree involves
more complex insertion operations, it results in faster

updates due to its better structure.
s Pick Worst

Insertion to a full node generates an overflow, in which
case both TPR- and TPR*-trees re-insert a fraction of
the entries from the node. The TPR-tree, following the
strategy of R*-trees. So the reinsertion becomes useless
and a nede split must occur. In general, entries selected
in this manner are usually those that move away most
quickly from the centroid of the bounding MBR, instead
of those that decide the extents. Again, this problem is
not important for conventional R ftrees. In pick worst
returns a set of eniries whose removal reduces the MBR

or VBR of the parent node.

Node Split

Similar td TPR-trees, the split algorithm of the TPR*-
tree computes the overall perimeter for each dimension
i, by considering all possible divisions of the entry list
sorted according to the starting/ending points of their
extents an this dimension. Then, the split axis is selected

as the one with the smallest overall perimeter.
¢ Deletion

To remove an object ¢ whose (i) MBR at the deletion
time TD is eR(TD), and (ii) VBR is eV, the deletion
algorithm first identifies the leaf node that contains e, by
searching the tree using eR(TD) as the query window.
Specifically, anode o is visjted if and only if (1) its MBR
o(TD) at time TD contains eR(TD), and (ii) its VBR oV
contains eV. A difference from normal window queries is

that the search terminates as soon as e is found.
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IIT STATEMENT OF PROBLEM

In TPR* Tree, the node insertion algorithm takes more
time for searching the free leaf node. In particular the
choose path method the greedy approach is followed. This

becomes not optimized. So the performance is decreases.

IV Prorosep WORK

The proposed algorithmupdates all the objects data better
than TPR* Tree -index structure. In TPR* Tree index
algorithm, the time taken for selecting the new node for
insertion is too long. So the performance is very low in
case of moving Objects. Using existing algorithm with
some modifications in Choose Path Function, It is
possible to reduce the searching time for node selection.
So that all the objects data are updated better than TPR*

Tree —index.

The following is the proposed algorithm i.e TPRC* Tree
-index. In TPRC* Tree -index Choose path function
maintain a heap method, instead of searching all the entire
tree for finding the free node, we search few more nodes
for finding the free node, so automatically the searching
time is reduced and quickly stored the data from moving

objects.

Algorithm Insert (z)

/* Input: z is the entry to be inserted. */

1. re-insertedi = false for all levels 1d"id”h”1 (h is the
tree height)

2. initialize an empty re-insertion list Lreinsert

3. invoke Choose Path to find the leaf node N to  insert
z

4. Invoke Node Insert(N, z)

5. for each entry z’ in the Lreinsert

6. invoke Choose Path to find the leaf node N to insert

3

Z
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7. Invoke Node Insert(N, z) End Insert

Algorithm Node Insert (N, z)

/# Input: N is the node where entry ¢ is inserted */

1. if N is a leaf node

2. enter the information of z

3. if N overflows

4. if re-inserted0=false //no re-insertion at leaf level yet
5. invoke Pick Worst to select a set Sworst of entries

6. remove eniries in Sworst from N; add them to Lreinsert
7. re-inserted0=true

8. else

9. invoke Node Split to split N into itself and N’

10, let P be the parent of N

11. Node Insert(P,”) or Node Insert(P,N"} if N has been
split

12. else /N is 2 non-leaf node

13. similar to lines 2-9 except that (i) the MBR/VBR of
the affected child node is adjusted, and {ii} in lines 4, 7
replace re-inserted0 with re-insertedi where 1 is the level

of N End Node Insert

In Choose path function, Cheap method is followed for
finding the path i.e [(g,0], [(h),0], [(i}, 15] here g is the
path expanded 0 for accumulated penalty shown in the

figure 4.1. using simulation method the betterment is

conformed.
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Figure 4.1 inserting p at time 2
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V CoNCLUSION

This paper presents a novel indexing technique, the
TPRC* Tree —index. which can answer queries about the
past, the present. The TPRC* Tree index is based on TPR*
Tree -index. it avoids duplicating objects while indexing
of chronological information and thus achieves major
space reduction and proficient query processing. we
improve choose path function of node insertion, so that
greatly reduce the searching time for finding of free nodes

for node insertion. So that the performance has improved.
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