JCS Vol.1 No.l August 2005

A Novel Bit-Weight Based Transformation Selection Algorithm for IFS Based
Fractal Image Compression

S.Arockiasamy', K. Vivekanandan?, J Subramani®
ISNR Sons College, Bharathiar University, Coimbatore, India
*Bharathar University, Coimbatore, India

28ri Krishna College of Engineering and Technology, Coimbatore, India

Abstract

Recently, it has been discussed in {1][2}{3] the possible
optimization strategies for enhancing the speed and
performance of IFS algorithm for fractal image
compression based on a duplicate block removal strategy.
Invariably, all the exisﬁng fractal image compression
algorithms suffer in performance mainly because of the
lack of an efficient image classification/sorting method.
A new method is proposed for further increase in the
performance of IFS by implementing a seed block image
sorting strategy for efficient search while selecting
suitable fractal seed blocks for transformations during
the IFS coding. In this method, the bit weight of an image
block is derived for the individual bits of the pixel/gray
values. Based on the derived weights, the image blocks
are addressed and classified to reduce the search area.
After selecting one image block based on their *Bit
Weight” the new block matching operation based on a
mathematical model proposed. The experiments with
different kinds of images have been done using this
algorithm. Further Normal IFS and Bit weight based IFS
image classification/sorting algorithms have been

compared through time and PSNR.

Key Words: IFS, Fractal Image Compression, Quadtree

decomposition, Affine Transformation, RMSE.

1. Introduction

The main aspect of fractal based image coding is to find
a suitable Domain block and a transformation for a rough
type Range block. The Fractal based compression
algorithm [7] reduces the images by only storing the
image sub spaces (seed images) and the IFS’s needed to
reproduce the original. There are different kinds of
algorithms available based on the selection of image sub-
space. The other features used in the IFS’s to encode the
image are transformation, rotation and scaling. In this
paper, a new idea is explored on two different kinds of

algorithms based on Block Sizes.

Eventhough variable block size strategies adopted, the
existing IFS based algorithms are very weak in terms of
speed and performance. Thus the whole problem can be
looked upon as a complex search problem. The common
global search mechanism consumes a lot of time, since it
takes many geometric transformations [8] and image
comparison operation. In this paper, the possibilities of
applying new image Block classification/sorting
algorithm to find the near optimal solution in fast and

efficient manner are analyzed.

A typical fractal image compression algorithm is

implemented with various stages as follows:

¢ Image decomposition stage.

A Novel Bit-Weight Based Transformaticn Selection Algorithm for IFS Based Fractal image Compression

e Separation or creation of Domain Blocks

and Range Blocks. -

e Selection of a Domain Block for the

" substitution of Range Block.

o Selecting the appropriate geometrical and

intensity transformation.

In all these stages, for comparing an image block with
one another, simple Root Mean Square Error (RMSE),
Norm and Variance are generally used. These techniques
may fail in finding an exactly matching Pomain Block
image for a Range Block [1] image in scme
circumstances. Moreover, one cannot ‘sort’ the domain
blocks in any manner for finding a match in an efficient
manner. Further, it is also not possible to filter a group of

domain blocks based on the value of variance or norm.

To find a suitable match for a Range block image,
compare it with all the domain block images in all possible
transformations, Obviously it will take lot of computation
time and also the time will increase further, even if little
increase in number of domain blocks or range blocks or
the both' There are sophisticated image matching or
pattern matching techniques based on statistical {4] and
Al methods such as Principle Component Analysis
(PCA), Neural Networks and Fuzzy Logic are available.
Basically these techniques consume a lot of time if we
adopt them in fractal [FS algorithm. Even though some
of these sophisticated approaches [5] leads to high level
of compression ratio and superior image quality after

decompression, they perform very poor in terms of speed.

2. Reducing the search space.

In a constant block based algorithm [6], the blocks in the

original image are mapped with the blocks in another

reduced version of the same image as shown in Figure

2.1.

Figure, 2.1. Constant block matching scenario

Here the search space is more for doing the block
matching operation. In the proposed algorithm the search
space is reduced before the intensive search, which
involves a lot of transformation. For reducing the search
space, duplicate blocks, are removed from the search
space. For finding the similar blocks, a simple block
matching [8] technique based on RMSE value is used.
During this process, no geometric or intensity
transformation is used. The duplicate block removal phase
of this algorithm consumes very low time compared to
the overall tima for finding IFS using all the possible
transformations. The following figure 2.2 illustrates the-

search space reduction scenario.

Figure 2.2 After Decomposition

Figure 2.2 shows the original image after quadtree
decomposition [13]. Figure 2.3 shows the areas, which

are going to be used as seed blocks. In this

JCS Vol.I No.l August 2005

implementation, consider the blocks in figure 2.2 as
Domain Blocks and the removed Blocks as Range Blocks.
More size reduction can be achieved by dividing the
Domain Blocks by cousidering it as an image and
repeating the same procedure in multiple levels

recursively.

figure 2.3 After Duplicate Block removal

3. Block Classification and Matching Technique

There are some statistical block matching techniques,
which are commonly used in fractal image compression
algorithms [9]. In this paper, some of the standard
techniques and their properties, which make them not

suitable for image block comparison, are discussed.

Variance

Variance is a measure used to determine, how for the
data points differ from the mean. Formula for variance
is:

I & =3
-y 2D

N

i=1

SE

For the block matching operations the variance cannot
be simply used and care must be taken while using
variance for several block comparisons.

For example, Variance can be used to compare more than
one method of block comparisons of the same image. 1.e.
the minimum variance indicates best matching, under the
assumption that the different methods are used for same

image comparisons.

10

In statistical approach, while using variance as a measure
to compare several methods, it is assumed that the
expected values are one and the same for all these
methods. The variance should not be used to match two
different images, because of each image having different
mean values. For example, let us consider the images

represented through following matrices,

~ P =
(o BV T S]
R =R e R U

11 12 13
4 15 16
17 18 19

101 102 103

C= 104 105 106

107 108 109

All these matrices will give the same variance.

i.e., Variance (A) = 0; Variance(B) = 0; Variance(C) = 0;

The Problem in hand

Consider the following smooth or uniform gray images
of dimension4 x 4 (8 bits per pixel). The figures logically

show the magnified view of the actual 4 x 4 Image pixels

(0 &

H
[S

(B)

A
To denote the image mathematically, it is represented as

A=((4;)) , B=((B;)) and C ={((C}))

We can represent them as a 4 x 4 matrix with its gray

levels in equivalent numerical values as:

A={(a;)) , B=((by)) and C=((c;))

A Novel Bit-Weight Based Transformation Selection Algerithm for IFS Based Fractal Image Compression

0 000
0 0 00
A=10 0 0 0
0 0 0 0
100 100 1006 100
B= 100 100 100 100
100 100 100 100
100 100 100 160
255 255 255 255
Co 255 255 255 255
255 255 255 255
255 255 255 255

Even though the three images are obviously dissimilar
with respect to one anothér, the individual value of
variance of them will be equal to zero.

i.e., Variance(A) = 0; Variance(B)=0; Variance{C)=0;
It is to be noted that, the three images are not the sarme
eventhough the variances are the same and are equal to
zero. Hence the concept of variance cannot be taken as a
usefil measure to compare the two images. Suppose, if
only one pixel of C changes, then it will change the value

of variance significantly.

0 255 255 255

255 255 255 255
C* =

255 255 255 255

255 255 255 255

Now the Variance(C*) = 3810.05859, Similarly, if we
change A(1,1) as 255, and the variance of A*

3810.05859. Now the images C and C* are not having’

the same variance. However, we know that the irmages C

and C* are one and the same exceptthe C,, and C*|,.

11

The variation of C;;and C'¥; may be due to
unavoidable circumstances, like dirt or dust etc. Similarly
one can conclude for the case of A and A*. So directly
comparing two images based on their individual variance
will not be appropriate in these cases.

However, in a case of an image, which is made up of
well-distributed pixel values, can be compared with
another image, which is visually similar to the previous
image. In such cases, the equality in the value of
individua] variances will reflect the similarity of the
images. '

That is, the value of variance or norm of an individual
image will be meaningful, if and only if it is used with
the variance or norm of another image as in the case of
RMSE. So sorting or grouping the image in an orderly
fashion based on individual variance or norm will not

help during searching the images for finding a match [9].

4. The solution Strategy

As discussed earlier, the statistical block matching
techniques fail in certain circumstances. So in this section
we discuss a novel technique for image block
classification [10] and matching suitable for fractal image

comMpression.

4.1 Calcnlating the Bit Weight of an Image

Consider the following 3 x 3 image

234 235 255
D=|243 242 255
255 234 255

We can represent the same image in binary as:

11101010 11101011 11111111y
D=|11110011 11110010 11111111
11111111 11101010 11111111)°

JCS Vol.l Ne.l August 2005

It is mathematically represented as: D={(d i))2 R
where base ‘2’ is used to represent the binary values.
Combine the columns one after another to form single

column as foilows

11101010
11110011
1111111
11101011
11110010
11101010
11111111
1111111
1in

Which can be obtained as X ((D+ j)=d,
Where i, j=1,2,3...n. (n=3)
The sum of individual columns wil} be:
X, = (99967496)
The Decimal sum of ones and zeros in a individual column
will not be higher than 9 since we are dealing witha 3 x 3
matrix of binary numbers. Since all the bits from LSB to
MSB signifies its weight with respect to its bit position,
the individual decimal numbers of the resultant number
made by the sum of all individual binary bits will also
posses the weight with respect to the position of the
individual position of the decimal number.
If we consider the bit weights of the individual blocks as
a feature and group the blocks accordingly, then finding a
matching block during IFS coding can be done in

comparatively very small time.

This measure is used to minimize the search space when
Domain and Range blocks are compared for matching
operation, i.e. for all the range blocks numerical sum is

calculated and the blocks are sorted and stored. In the

sorted order the range of values alone are taken for the
block matching operation with numerical sum of Domain
blocks instead of comparing with whole set of Range

blocks.

4.2 Calculating the Bit- Weight of a Image

Block For Transformation Selection

Consider the following 4 x 4 image

234
243
255
255

235
242
234
255

255
255
255
255

255
255
255
134

The above image can be represented in binary form as:

11101010 1110101F 11111811 1%11111%
LIT10011 11110010 11111111 11111111
B 11111111 11101010 1111111F 11111111
1T P1E11101 BI1L1Q111 11101010

The Average Weight of columns and the rows are (four

or three ones are considered as 1)

ColSum = (1111011 11101610 111111 31110101}/
283
=9 8 9 9)
RowSum = (1111111 EL1L1TEL 11810010 1110101%)/
28.3
=9 9 9 8)

The individual binary values are devided by decimmal 28.3
to get a digit <= 9

A Novel Bit-Weight Based Transformation Selection Algorithm for IFS Based Fractal Image Compression

The sum of individual columns will be:
TheVerticalBit — Weight = (9899)

TheHorizomalBit — Weight = (9998)

The resultant digit of a indivadul colum or Row will not
be higher than 9 . Now based on the column and row bit
weights, one can decide the orientation of the blocks.
The following figures illustrates the process of finding
the suitable transformation. The choice of a particular
transform in a given application [14] depends on the
amount of error that can be tolerated nd the computational
resource available, Compression is ackieved during the
quantization of the transformed coefficients.

The transformation selection algorithm is a idea
implemented through numerical value calculated for
various image blocks. This process is done once for each
block and the comparision operation [15] take place later.
The transformation selection algorithm is successiully
implemented and the test results also shown here. The
results achieved in this algorithm is comparable and
considered to be a candidate for the future compression
algorithm using fractal techniques. Once the
transformation selection [16] is over the remaining
operation is similar to the existing IFS algorithm only.
This process is given below in the form of diagrams.
Finding Suitzble Transformation of a Domain Block
for a Range Block.

Here, Al, A2 are Vertical Bit-Weights of the images
(Range Block & Domain Block) and Bl, B2 are
Horizontal Bit-Weights of the images. If we consider the
first column of square block as one of the range blocks
and the next colurn square blocks as the domain blocks,
then the right hand side rectangular boxes shows the
suitable transformation for the domain block to match
the range block.The above description is indicated in

figure 4.1

13

4.3 The Transformation Selection Algorithm
Consider the Vertical and Horizontal bit-weights AT, Bl
& A2, B2 of two image blocks 1 & I2. By considering
all the above said facts, the following algorithm can be
used to find the suitable transformations.
{If A1=A2 then

If (B1=B2) then

Perform No Transformation

Else

Perform Horizontal Flip

telse
[Al>A2
: Bi1<R2 Transformation: 90"
; Al=A2
Bl<B2 Transformation: 180"
] Al<A2
Bi<R? Transfonuatian: +90°
Al<A2
B R1=>RA2 Transformatinn: +607
Al<A2
Ri<R2 Transformation: -904°
Al<AZ
Ri=R2 Transformation: 1807
Al=A2
R1>R2 Transformaninn: 180
Al>A2
Ri=R? Transformation: +00°
Al<A2
Ri>R2 Transformarion: 90"
Al=A2
. Ri=R2 Trausformation: Q0
Al=A2
R1=R2 Transformation: 1807
Al>A2
Ri<R2 Transformation: +90°

Figure 4.1 Transformation Selection Method

JCS8 Vol.1 No.1 August 2005

{Iif(B1=B2) then
Perform Vertical Flip
Else{
If (Al #A2and Bl # B2) then
Diagonal Flip Right
Top to Left Boitom
or
Diagonal Flip Left Top to
Right Bottom}}

5. The proposed mathematical model for the
Transformation Selection Operation

Let ‘A’ be the original image, suppose that the image ‘B’
is obtained by reading the image ‘A’ upside down or some
other rotations/directions.

For example,

;A_[A“ Au} d

etA= Aﬂ Aﬂ an
[AZI An_l

B= .
_Azz AmJ

It is to be noted that the image ‘B’ is obtained from A’
by rotating 90° in clockwise. On the other hand the image
‘A’ is obtained from ‘B’, by rotating 30° in anticlockwise.
In such situations the bitwise coraparisons discussed in
[3] is not applicable. In case anyone uses the above
method, which will lead to a wrong conclusion that the
two images are not one and the same. However, it is known
that both the images ‘A’ and ‘B’ are the same, but
represented with different directions. To overcome such
difficulties, an improved version of the algorithm given
in 3] is proposed here. The proposed method can be used

for cornparing the images, which are arranged i any order.

A, A, A
For example, =y Ay Ay and
Ay Ay A,

14

4, 4, A
B= A21 Azz Azz
Ay Ay Ay

The steps involved in the proposed method are as follows:

+ +
Step 1: Consider the image A= Z Z %

=l j=1
Here + is used to denote the summation of the
pixels of the image A.

Let A= ((aﬂ-)), where d;; is the numerical
values of the pixel A,}- of the image A.

Step 2: Convert the matrix 4 = ((a;)) into a column
vector X = (X;) using the formula

X{(i-Dn+j)=a; foralliand].

Step 3: Arrange the vector X in increasing order and
denote it by X .

ie. X, (1) € X,(2) S . € X, (nY)
where X_ (i} is the i" element of X .

Step 4:Consider the image B = Z : Z ’ B

=t j=1
Here + is used to denote the summation of the
pixels of the image B.

Let B ={((8;)), where b;is the numerical
values of the pixel B of the imege B

Step 5: Convert the matrix B = ((b,}) into a column
vector ¥ = (¥.) using the formula

Y((i-Dn+j)=b; foralliand].
Step 6: Arrange the vector Yin increasing order and
denote itby Y .
Yy (2)< . <Y, (r%)
where Y_(i) is the i" element of Y .

iLe.

Step 7: Compare Xo and Yo. If forevery i=1,2,..., i

X, (i} =Y (i), conclude that the two images A and
B are the same.

Step 8: If X (i) = Y (i} for atleast one *i’, conclude that

A Novel Bit-Weight Based Transformation Selection Algorithm for IFS Based Fracta! [mage Compression

the two images are not exactly equal. For further
conchusion, one may use the 2™ strategy piven in
[3], which will give the closeness of the two
images.

5.1 Implementation of the Algorithm

1. Input a 256 gray level image ‘I’ and cropped as a

square image, which will be suitable for quadtree

decomposition.

Figure 5.1 Original and decomposed Image

2. The given image into a number of non-overlapping
blocks of various sizes based on its features and

details using quadtree decomposition.

3. Since the seed blocks of sizes smaller than a
particular size is going to be used for coding the
image, remove all the blocks greater than that size
and visually similar blocks in smaller size groups.
This will remove all the visually similar blocks from

all size groups by leaving only one seed black.

Figure 5.2 Range and Domain blocks

4. Now consider the image as ‘D’ Domain Blocks
(seeds) of various sizes and ‘R_’ Range blocks of

various sizes.

5. Calculate the Bit-Weight of the Domain Blocks
(seeds).

15

6. Select a Range Block and calculate its Bit-Weight.

7. Select a group of Domain Block Which has a Bit-
Weights approximately equal the Bit-Weight of the
Range Block.

8. Find the matching block based on the calculated bit

weight.
9. Calculate the column bit weight and row bit weight.

10. Find the suitable transformation based on column

and row bit weights.
a) Write out the local FFS code.

11. Repeat all the steps from step-6 for each and every

range blocks.

a) Normal IFS b) Bit-weight Method

Figure 5.3 Image after decompression

6. Experimental Results

The algorithm has been implemented in MATLAB and
performed the experiments on a normal 1.7 GHz. Intel
Celeran desktop computer, which has 128 MB of RAM.
The comparative results for Lena and Nature image is
shown in Table 6.1. After the quadiree decomposition,
the minimum size of the block was 4 x 4 in size. But, for
calculating bit weight of the blocks, only the pixels of 3 x
3 from the original 4 x 4 were used. Because of this, some
of the blocks were wrongly coded while decompressing

the image.

JCS Vol.1 No.l August 2005

TABLE 6.1
Time and PSNR value for Lena and Nature image
Normal IFS | Bit-weight

Domai | (Secs.) Method (Secs.)
Range

n IFS IFS PSN
Bilocks PSNR

Blocks | Time Time R
943 310 i3l.6 27.59 | 80.44 28.91

631 133 44.04 | 27.83 | 40.00 30.45

For the simplicity of design, in normal method as well as
the proposed Bit-Weight Based method, all the Geometric
transformations and intensity transformations [17] are not
taken into account. In comparing the results of both
Normal Approach and Bit-weight based approach, it is
found that the proposed method has some interesting

qualities.

7. Conclusion and Further Research

This paper deals with two different types of IFS based
fractal image compression algorithm using duplicate block
removal strategy to reduce the overall search time in
Fractal Image Compression [11]. An implementation of
these ideas has successfully done and tested on MATLAB
[12]. The attained results are significant and comparable.
While comparing with most of the other constant block
size or variable block size based implementations, this
algorithm achieved very good performance in terms of
speed and performance. Further exploration can be made
on the ideas outlined in this work to improve the
performance of existing fractal image compression
algorithms. Other areas that can be explored in future to
improve both image quality and processing speed includes
trying different error catculations [16] between child and
parent or Domain and Range blocks other than the Root
Mean Square Error estimation. And, more attention can
be given for finding suitable transformation without doing

all the possible transformations during finding the IFS.

16

References

it

[2]

31

[4]

[3]

{e]

{7

183

(91

[10]

(1]

[12]

(13]

{4

[153

[16]

(17

8. Arockiasamy, K. Vivekanandan, * A new Duplicate Bleck
Removal strategy for Reducing the Search Space to Erhance
the Performance of IFS Fractal Image Compression
Algorithms, * National Conference on Networking and Multi
Agent System, Gobi Arts Coliege, Gobichettipalayam,
September 2004,

S. Arockiasamy, K. Vivekanandan, “ A proposal for reducing
the Search Space by new duplicate Biock Removal Strategy
to Enhance the Performance of IFS Fractal Image Compression
Algorithms,"ACCST Quarterly Research Journal to Arts,
Commerce and Computer Science and Technology, May 2605.

S.Arockiasamy, K.Vivekarandan * A Novel Seed Block
Image Sorting and Classification Strategy for fast and efficient
Block Matching in Fractal Image Compression,” International
Conference on NUMBER THEORY AND FOURIER
TECHNIQUES, SASTRA Deemed University, Kumbakonam,
India, December 2004. ’

Mark nelson, Jean-Loup Gaily, “The Data compression
Book,” BPR Publications, Second Edition, 1996.

Khalid sayood, “ Introduction to Data compressien,” Harcourt
India Pvt., Lid., Second editien, 1996, 2000 by Academic press.

Barnsley M., “Fractals Everywhere,” Academic press,
San Diego, 1989,

Yuxuan Ruan and Toh Gua Nge, * Fractal Image
Compression,” Schoot of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore.

Jean Cardinal “ Fast Fractal Compression of Grey scale Images,
“1EEE Trars. Image Processing, Vel. 10, No. 1, January 2001,

Hsuan T.Chang and Chung J. Kuo, Member, IEEE, “lteration-
Free Fractal Image Coding Based on Efficient Domain Pool
Design,” JIEEE Trans. Image Processing, Vol.9, No.3, March
2000.

Mario Polvere and Michele Nappi, “ Speed-Up In Fractal Image
Coding: Comparison of Methods,” IEEE Trans, on Image
Processing, Vol. 9, No.6, June 2000.

Cheung-Ming Lai, Kin-Man Lam, member [EEE, and Wan-Chi
Siu, Senior Member, 1IEEE, * A Fast Fractal Coding based on
Kick-Out and Zero Contrast Conditions,” {EEE Trans. [mage
Processing, Vol.2, No.4, April 2002.

Rafael C. Gonzalez, Richard.E.woods and Steven L. Eddins,
“Digital Image Processing Using MATLAB, * Pcarson
Education, Reprint 2004

B. E. Wohlberg and G De. Jager, “A Review of Fractal
Image coding literature,” IEEE Trans. Image Processing, 8
{12): 1716 - 1729, Dec. 1999,

E. W. Jacobs, Y. Fisher,and R. D. Boss, * Image Compression:
Astudy of the lterated Transtorm Method, *“ IEE'= Trans. Image
Processing, 29(3): 251-263, 1993.

Rafael C. Gonzalez and Richard E. Woods, * Digital Image
Processing, * Prentice Hall of India, Terth Indian reprint 2005,

Wagdy H. Mahoud, Tennessee Technologica! University, USA,
David Jeff Jackson, The University of Alabama, Tuscaloosa,
USA, “Hybrid Image Partitioning Algerithms Fer Fast Fractal
Image Compression,” IJCA, Voi. 11, No.l, March 2004,

Y. Fisher, Ed., “Fractal Image Compression: Theory and
Application,” Berlin, Germany: Springer-Verlag, 1992

