Karpagom Jes Vol. 6 Issue 5 Jul. - Aug. 2012

£
Processing of Inference Queries in Probabilistic Databases

V.Arthi!, V.P.Sumathi?

ABSTRACT

Real world applications like sensor network
monitoring, that deal with wide existence of uncertain
factors, employ relational databases to describe the
probability distribution of all variables in its environment,
Such probability distribution data finds extensive usage

through inference queries. In practice, however, rather

than a single probabilistic inference query, applications-

pose multiple but usually similar probabilistic
interference queries to the system. An environment that
involves frequent inference queries on relational
databases provides a possibility of applying
‘Computation sharing’ logic among different queries.
CTP is introduced in databases for probabilistic inference
queries, Such an approach provides two opportunities
for computation sharing. First opportunity is an existence
of many common variables that needed to be eliminated
during the evaluation of different queries. Second
opportunity refers to the variables appearing freql_lently
in the queries that can be cached and reused in later
queries. The materialized views are used to cache the

intermediate results of the previous inference queries,

which might be shared with the following queries, and-

consequently reduce the time cost. When a similar query
comes and requests the elimination of the same variables,

the inference query can rense these cached materialized

'Research Scholar, Depariment of Computer Science,
Kumaraguru College of Technology, Coimbatore.
Email: arty2406@gmail com

“Assistant Professor, Department of Computer Science,
Kumaraguru College of Technology, Coimbaiore.
Email: sumathi_subbu200!@yahoo.co.in

views to avoid re-eliminating the common variables
again. Variables that appear frequently in the query
workload can be efficiently processed by caching and
reusing the intermediate computation results. The work
focuses on how a sequence of Probabilistic Inference
queries can be efficiently processed with the application
of computation sharing logic, whick can highly optimize

query performance,

Keywords: Probabilistic inference, Variable elimination,

Clique tree propagation, Query optimization

1. INTRODUCTION

Data uncertainty becomes a popular topic in database
and data mining communities due to the wide existence
of uncertainty in many real applications, such as sensor
network monitoring, object identification, location-based
services (LBS), and moving object tracking, In these
applications, databases are often employed to describe
the probability distribution of all variables X in the sys-
tem. Due to the intrinsic property of uncertainty, many
interesting queries have been raised for different pur-
poses. Among them, probabilistic inference queries are
frequently used, e.g., in decision support sysfems [3].
Formally, an inference query is to compute the marginal

probability distribution P(Q) of a subset variables Q X

. from the probability distribution of all the variables. For

example, consider a database storing the probability dis-
tribution of all sensors'(variables) in a sensor network.

An inference query is to compute the marginal probabil-




Processing of Inference Queries in Probabilistic Databases

ity distribution of some sensors A and B, i.e. P(A,B); or { of inference queries are often posed to continuously

given the value of A=a, to compute the marginal prob-

ability of B, i.e., P(B|A=a) in order to know the effect of

A {e.g., humidity) on B (e.g., temperature). A straight-

" forward approach to evaluate an inference query is con-

ducting a relational query with group by operation. How-
ever, this approach has to join all the joinable tables to-
gether first, which is not efficient. To improve the evalu-
ation efficiency, a variable elimination algorithm in Baye-
sian networks was implemented in relational databases
[3]. In fact, the Bayesian nej:work itself is widely used
as a compact representation of the probability distribu-
tion of all the variables [6] and it can be naturally repre-
sented and stored in relational databases [8]. Selecting a
suitable set of views that minimizes the total cost asso-
ciated with the materialized views and is the key compo-
nent in data warehousing. {7] gives the results of pro-
posed tree based materialized view selection algorithm
for query processing. In distributed environment where
database is distributed over the nodes on which query
should get executed and also plays an important role.
One simple criterion would be to select a set of material-
ized view that minimizes the overall execution time of
the workload of queries. Materializing a view causes it
to be refreshed every time a change is made to the base
tables that it references. It can be costly to rematerialize
the view each time a change is made to the base tables
that might affect it. So it is desirable o propagate the
changes incrementally. Therefore, in this paper, we
mainly focus on probabilistic inferenice problems over
the prdbability distribution of all the variables represented
by Bayesian networks in databases.

In practice, however, rather than a single
probabilistic inference query, users may frequently pose
multiple probabilistic interference queries to the system.

For example, again in the sensor networks, a sequence

monitor data distributions in different areas. The above
discussion indicates that compared to single probabilistic
inference query, efficiently answering multiple frequent
inference queries is more practical and useful. However,
previous works on probabilistic inference in -databases
seldom address the issues of optimizing the computation
sharing among different queries. [8][9] provide a
framework of implementing probabilistic inferences in
relational databases, but their work do not address the
efficiency issue with respect to large-scale databases.[3}
presents a broad class of aggregate queries, called
Marginalize a Product Function (MPF), and implement
the variable elimination (VE) algorithm in relational
databases. Specifically, the VE algorithm optimizes the
inference query by pushing down the aggregates in the
joining tree of the whole inference query. However, the
VE algorithm has no computation sharing among
different queries. Even when a similar inference query,
e.z., P(A), arrives after another query, e.g., P(A,B),ina
sequence of inference queries, the VE-based approach
has to reconstruct the query for the new P(A). To
summarize, previous works for answering a single
probabilistic inference query in databases is not efficient
for a sequence of queries since it does not support
computation sharing among different queries.

In fact, when a sequence of inference queries are posed,
there exist two opportunities of computation sharing
among the evaluation of different queries. Recall that
the inference query is to compute the marginal probability
of subset variables Q C X from the probability
distribution of all variables X, that is, to eliminate
variables X - Q from X, Thus, the first opportunity is
that there may exist many common variables needed to
be eliminated during the evaluatioq of different queries.

The computation of eliminating these common variables




Karpagam Jes Vol. 6 Issue 5 Jul. - Aug. 2012

(not included in the queries) can be cached aé shared
among the queries. The second opportunity refers to the
variables appearing frequently in the queries., We can
cache the query computation spent on these frequent
query variables for the possible reusing by later queries.
Corresponding to the two opportunities, there exist two
challenges to answer frequent inference queries
efficiently, which are 1) how to detect and organize the
elimination of common variables with respect to X - Q
in relational databases, which enables reusing among
different inference queries. 2) How to optimize the
inference queries by further reusing these frequently
queried variables in regards to Q. Motivated by the
challenges of sequences of probabilistic inference
queries, in this paper, we study the computation caching
and sharing among different inference queries in
relational databases. In order to share the computation
of eliminating common variables in X - Q of different
queries, we study the approach of treating inference as
message propagation. The clique tree propagation (CTP)
[10], also known as junction tree propagation , is based
on the same principle as VE except with a sophisticated
caching strategy. We implement CTP in relational
databases as follows: The results of eliminating the
common variables in X - Q are cached as materialized
views in relational databases. When a similar query
comes and requests the elimination of the same variables,
the inference query can reuse these cached materialized
views to avoid re-eliminating the common variables
again. Moreover, with respéct to the frequent queried
variables in Q, we cache and reuse the intermediate
computation results with query variables that appear
frequently in the query workload. Those frequent
variables in the workload have a high probability of
appearing again in the subsequent queries according to

workload statistics, and thus can reuse the cached results.

The correctness of a probabilistic inference on the
probability distribution is discussed with cached query
variables. By analysing the updating operations of cached
variables, we further reduce the times of discarding the
cached variables with high frequency.

We transform the message propagation in
probabilistic inferences to joining tree queries in
databases by using materialized views in relational
databases. The paper evaluates the CTP as relational
queries with materialized views. This approach enables
the computation sharing for the current query Q,,, from

the results of the previous query Q.

We explore the workload statistics to find the
frequent variable(s) among different queries, and apply
this workload information in the query optimization, This
CTP caching approach optimizes the message
propagation by caching the frequent query variables in
the materialized views, and thus maximizes the
computation reuse of the frequent query variables in a

sequence of inference queries,

1. PrROPOSED SysTEM MODEL

Here a framework of probabilistic inference queries
in relational databases is considered. We start with
relational tables storing the Bayesian networks [6], which
arc widely used as a compact representation of the

probability distribution of all the variables.

A. Probabilistic Inference Query

Consider a set of discrete random variables X = X, -
.. X }. A Bayesian network [6] is a compact graphical
representation for the joint distribution of all the
variabies. Specificaily, a‘Bayesian network is a directed

acyclic graph (DAG), where each node represents a




Processing of Inference Queries in Probabilistic Databases

random variable and is associated with a tableau of the
conditional probabilities given its parents, called a factor.
By conducting the product join of all the factors in a

" Bayesian network, we get the joint probability

: distribution P(X,. ...X ) over all the variables. We show
an example of Bayesian network in Fig. 1.Consider
binary random variables B,E,A,J,M. Each node (a factor)
is associated with a tableau in the figure, for example tA
corresponding to a node A represents the conditional
probabilities P{A|B,E) of A given variables B,E, The

product join of all the factors is the joint distribution, ie,

1 ;

Fig.1. Bayesian networks as relational database

P(B,E,A,J,M) = P(B)P(E)P(A[B,E)P(JIA)P(M]|A)

Therefore, the Bayesian network is a compact
representation of the joint distribution. In fact, the joint
probability distribution in this example can be in the size
of 25 tuples, while the Bayesian network representation
needs only 20 tuples in all the factors. In this paper, we
study probabilistic inference queries in Bayesian
networks within refational databa'se environments. A
probabilistic inference is a process of cdinputing marginal
probability P(Q) to an inference query Q < X based on
the joint distribution. For example, calculate marginal
probability P(B,M) from the joint distribution.

P(BM:EZA:JP(B,E,A,J,M)

- 265

é{ The general form of posterior query is P(Q|E=¢), where

Q denotes the query variables and E represents the
evidence variables with observed values e
correspondingly. For instance, an inference with evidence

can be P(BM=1).
B. Inference as Relational Query
The Bayesian networks can be naturaily represented

and stored in relational databases. Specifically, we

transform each factor to a relational table. Other than

~ variable atiributes in a factor (relation), we introduce an

exira attribute p to represent the probability valuve. For
example, the corresponding relation of factor P(AIB,E)
is tA (A,B.E,p),where p denotes the probability of
P(A|B,E). According to properties of Bayesian networks,
the joint distribution is specified by joining all the
relations of factors, and can be représented by arelational
database view. For example, P(B,E,A, M) in (1)

corresponds to the view:

CREATE VIEW joint AS (SELECT B, E, A, J, M,
tB.p *tE.p *tA.p * tl.p* tM.p AS p FROM tB, tE, tA,
tI, tM WHERE tB.B=tA.B AND tE.E=tA.E AND
tM.A=tA.A AND tJ.A=tA.A )

Fig.2. Query optimization in the joining tree




Karpdgcm Jes Vol, 6 Issue 5 Jul. - Aug. 2012

Consequently, the marginal probability of an gﬁference
query, P(Q), can be computed by aggregating the joint
distribution to eliminate all the other variables not in Q,
ie., :

SELECT Q, SUM(P) FROM joint GROUP BY Q.

Note that the posterior probabilistic inference is a
special case of a general inference query; it can be
handled by adding an extra WHERE constraint to the
above aggregate query. For example, the inference query

P(B[M=1} can be conducted by the query

SELECT B, SUM(p)/q FROM joint WHERE M=1
GROUP BY B

where q is P(M=1) that can be computed by the
previous query of marginal probability. Thus, this
predicate computes the marginal probability distribution
of variable B when M=1 is observed, i.e., P(BjM=1).

1I1. Query OPTIMIZATION WITH VE

A naive implementation of an inference query is to
materialize a joint view by joining all the tables together,
and then, perform GROUP BY (GB) operation to
aggregate and eliminate the variables not in the
query.[1][2] present transformations to push GROUPBY
operation down into the joining tree. Since GROUP BY
operation reduces the cardinality of a sub query result,
an early conduction of GROUP BY can potentially save
the cost of subsequent joins. Interestingly, there is a
similar strategy in the literature of probabilistic inference
in Bayesian networks, cailed the variable elimination
algorithm, This is not surprising due to the similarity and
correspondence between Bayesian networks and
relational databases We first consider the elimination of
one variable from the joint distribution [3]. Let PX,.X,,
.+ »X_) be a joint distribution, Eliminating X, fromP is

to compute

P{X, . . XK= }: PLXy . Koo X

266

Since the joint distribution is represented by a set of
factors in Bayesian networks, we only need to multiply
all the factors containing X, and aggregate the results to
eliminate X,. In terms of relational databases, all the
tables that include X: are product-joined, and the results
are aggregated and grouped by the variables that have

not been eliminated so far.

re @ ) wisy

prny (D _@?mm'- .
v ©F B s

PINIRY @ﬁ .{Lﬁ@ﬂﬁ)

Fig.3.Bayesian Network

Given an ordering of variables for elimination, we can
build the joining tree of the inference query. For instance,
consider the ordering <E,J,A> for query P(B|M=1).As
shown in Fig. 2, the first variable E is eliminated by
joining all the relations with E, i.e., tE is product joined
with tA and conducting GROUP BY with the remaining
variables A,B. As a second step, variable J is eliminated.
Finally, we eliminate A and GROUP BY B with a further
WHERE M=1 condition to generate the results. Note
that the evidence condition M=1 can be pushed down in

the joining tree in order to reduce the intermediate results,

IV. CTP IN DATABASES

Here the inference query Q, is studied by reusing
the computation results in the previous query Q.. Recall
that the variable elimination answers one query at a time, _
and has no computation sharing among different queries.
However, some of the sub query results in the joining
tree could be reused among different queries.

In order to cache these intermediate query results,
we employ the clique free propagation to compute

marginal probability, which enables the computation




Processing of Inference Queries in Probabilistic Databases

sharing among different inference queries. In additiox;( |
to following the similar principle of VE, the clique tree
propagation utilizes a smart caching strategy. Intuitively,
we use the clique tree to cache the intermediate results

{named messages) of eliminating some variables in the

VE algorithm. When a new query arrives, it is possibie
to reuse the messages cached in the clique tree to avoid
re computation. Consequently, the inference is conducted

as message propagation in the cligue tree.

» A clique tree is an undirected tree, where each node

represents a set of variables, i.e., a clique.

® Message propagation is defined as Given a set of
query variables Q, the message passed from the
clique C to C’ aggregates all the variables in C but
not in C” and Q.

e  In CTP Preliminary, a pivot is a clique node selected
in the clique tree which usually contains some or
all of the variables of query Q. During the inference
query processing, we consider all the messages that

are passed toward the pivot.

BAL TN P(S), P(LS, PUBISY
fio Y b, et
........... g
CRLE
e ) )
axs % MR CTT >
FOGER) BER,B)

Fig.4. Clique tree propégation

Instead of discarding all the interrﬁediate results in
VE, all the clijue nodes and messages £ in the clique
tree are cached after processing the current query. If the
variables of a following query is a subset of variables

contained in a clique node, e.g., 2 query with variable A

belongs to clique (AT) in Fig. 4, then we can directly

267

compute the inference results from this clique. Otherwise,
the messages have to be propagated in order to coliect
all the query variables, e.g., a query with variables S,D
which cannot be covered by a single clique. When the
following queries request the same cached message fi
again, we can reuse the cached message result and stop

propagation in the corresponding subtree.

(e o
.
A e
o -
5 ™
/g\ Gk @fﬂ"
e :
an S =
' : { ol L
P, {68} vy o
Gr w1 (W) b
i PRTL)  PNk) rm“‘r Fk
o ' ’ .. N
/’® e //:E:/ Py
-
W KAy Hg’j PITAY T N

Fig.3.CTP applied to databases, Joining tree of Q, = {L.}

The Relational Framework for CTP, Transforming CTP
to Relational Query are defined in the system. In
Transforming CTP to Relational Query process having
the four steps, such as Materialize the Clique, Materialize
the Message, Sharing among Queries, Transformation

Algorithm.

A. Transforming CTP to Relational Query

The implementation issues of the message caching and
propagation in relation databases are considered. Recall
that the factors are stored as relational tables in databases.
Similarly, in order to cache and reuse the intermediate
results among different queries, we utilize the
materialized views in databases for the clique tree
propagation. Specifically, we store the cliques and
messages f. as materialized views to enable the
computation caching and sharing. Given a query Q, we
implement the message propagation.in the clique tree as

the joining tree with materialized views.




Karpagam Jes Voi. 6 Issue 5 Jui, - Aug. 2072

B. Materialize the Clique { '

The clique is the minimum unit in the clique tree, and
also in the reuse of joining trees among queries. During
the inference query processing, we always use the product
function of all the functions attached in the clique, i.e,
Aj gj. Thus, this product function can be pre-computed
and cached in a materialized view for the computation
sharing. For example, consider the clique (LSB) in Fig.
4. In the query, we always use the product function

" P(S)P(BIS)P(L]S) in that clique. Therefore, we can store

the product function as a materialized view for the clique

CREATE MATERIALIZED VIEW vLSB AS (
SELECTL,S, B, tL.p * tS.p * tBpAS p
FROM tL, S, tB

WHERE tL.S=tS.S AND tB.S=(S.5 )

By applying similar strategies, each clique can be
materialized by a view, Then, the message propagation
is conducted on these materialized (clique) views, rather

than the original tables of factors.

Fig.6. Joining tree of Q,,, = {A,R}

268

€. Materialize the Message

The materialized views are used to represent the
messages. Recall that each message f is also a function
of variables. The computation of the message can be
implemented by relational queries, and we want to share
the message query results among different inference
queries. Thereby, we use the materialized views to store
the query results of the messages, i.c., the materialized
(message) views. Again, in the example in Fig. 4, we
consider message f, passed from clique (TLR) to
(RLB).Given a query Q, message f, collects all the
functions attached in the clique view vTLR and the
functions sent to the clique (TLR), that is, f| and £,

CREATE MATERIALIZED VIEW vi5 AS (
SELECTL, R, Q,vTLRp * vflp * v2p AS p
FROM vTLR, vfl, vi2

WHERE vTLR.T=vfl.T AND vILR.L=vf2.R
GROUPBYL,R, Q)

According to (2), all the variables in C but not in C’* and
2 should be eliminated and aggregated. In this example,
only those variables in (RLB) and Q, will be reserved in
message f,. Note that evidence conditions like L~1 can
also be represented in the materialized view, e.g., by
WHERE L=1. In other words, the same as the VE
algorithm, we can also push down the WHERE L=1
condition in the joining iree of CTP in query optimization

settings.

D. Sharing among Queries

Now, we consider the next query Q,, by sharing with
the previous query Q,. The messages are passed from
the leaf cliques toward the new pivot with Q,, .First, ail
the materialized views of cliques in Q, can be reused

directly, for example the cliqlfe {AT) with P(A) join with




Processing of Inference Queries in Probabilistic Databases

P(T|A) in both the queries of Figs. 5 and 6.Moreov£’
message f that have the same variable settings in both

query Q, and Q,,, can be reused as well.

Therefore, rather than rebuilding the entire joining
tree for query Q,,,, we consiruct the joining tree on the
materialized views of the previous query Q,. The joining
tree with reused materialized views will be small in size.
For example, in Fig. 7, we show the joining tree with
caching and sharing views for the query in Fig. 6. All
the requested clique node functions are reused from the
materialized views, such as vAT and vTLR. Moreover,

the same setting messages f,f,f

»hf,, and f can also be

reused. Since messages f,f, are contained in message
f6,we can directly use the materialized view vf, of

message f.

E. Transformation Algorithm

Consider message f passed from the clique C to C’.
Let £V be the set of variables passed from Cto C’, and
let £V_be the set of variables eliminated in the previous
steps before C. In terms of relational databases, £V, is
the set of variables in GROUP BY operation of f, while
£.V_are all the other variables in the joining tree T  rooted
in f. For example, in Fig. 5, f.V, is {L,R}, and £V is
{B,D,S}. The joining tree for the CTP algorithm can be

generated recursively.

Algorithm 1. Joining Tree for CTP original
procedure GJOININGTREE(C,C™. f)
let C,C,, ... ,C,be the neighbors of C except C’

let £.f, ... .f be the corresponding rhessages
faddchild(C)
fori < 1kdo k=0if Cis a leaf node

if£.V_ ~Q* ¢ then
GIOININGTREE(C,C,f)
f.addchild(£)

269

To summarize, we have presented the inference
techniques by using the cached views in the current state
clique tree after query Q,. Therefore, in the original clique
tree propagation, the caching strategy is most recently
used (MRU),

V. CTP OPTIMIZATION
TABLE 1

{ Notadions |

Desciption ' 1
Vanables presid in
Variables eiminated In previeus steps belore |
aviables regested by ) 10 be propazated tn |
Varbles cacif 7 of the curine shik

Here the clique tree propagation is optimized by
considering the most frequently queried variables in a
sequence of inference queries However, there might be
some frequeﬁtly queried variables in a sequence of
inference queries. Heuristically, we would like to cache
these frequent query variables in order to maximize the
reuse of cached messages, i.e., the most frequently used
{MFU) caching strategy. In this process, the following
three steps preceded, Such as exploring Workload,
Caching Frequent Variables, and Optimizing CTP Query.
And the caching frequent variables consist of, Message
Updating, Reserving Frequent Variables, and Caching
in Pivot. Then the Optimizing CTP Query consists,
Incremental Updating, Query Algorithm,

In Occurrence frequency, Let A be a query variable.
Occurrence (A) describes the frequency or probability
of variable A appearing in a query in a workload. In Co-
occurrence association), Let A, B be two query variables.
Co-occurrence (A, B) describes the frequency or
probability of two variables appearing together in the
same query. In the original clique tree propagation, the
cached messages with differenf query variable settings

to the current query have to be discarded, even though




Karpagam Jes Vol. 6 Issue 5 Jul. - Aug. 2012

the messages contain the frequent query variayl:es. In
order to reserve the frequent query variables, we intend
to avoid discarding the messages with unused frequent
variables. To illustrate the frequent variable caching
strategies in the messages, we ﬁfst introduce the message
updating operations of variables. In message updating
we have two operations to add or remove variables in
the messages: the message merge operation and purge

operation.

Reserving Frequent Variables we consider the
message whose cached variables are the superset of the
variables requested by the current query. In terms of
inference techniques, we need to identify and eliminate
these irrelevant variables by using message purge
operation. With features of GROUP BY operator, we do
not need to take extra consideration to aggregate these
variables. GROUP BY operation generates the messages
with requested variables and aggregates all the other
vatiables automatically. All the messages passed toward
pivet are collected by a product operation. To reuse this
computation step, we can further cache query variables
in the pivot. Specifically, the probability functions of
frequent queried variables are stored in the pivot
according to the workload statistics. When another query
is conducted on this pivot, if the requested query variables
are already cached in the pivot, the results can be returned
directly without gathering all the propagated messages

again.
Optimizing CTP Query

We discuss the inference query processing of message
propagation, with the consideration of optimization by
caching frequent query variables into both messages and
pivots. We also study strategies of managing the cached
variables incrementally according to variable associations

from the workload statistics.

270

Incremental Updating: According to natural features
of GROUP BY operator, the message purge operation is
already included in message propagating steps. Now, we

discuss the message merge in the message updating. As

mentioned above, the message wiil be recomputed to
include all the variables requested with query f.V,. Then,
the problem is whether or not we should replace the
cached variables by new set f.V in message f. Intuitively,

those variables that are queried frequently in the

workload should be cached in the message. To measure

the priority of caching in the message, we define the

association of two variable sets according to the variable

association in the workload statistics.

Query Algorithm of generating joining trees for
inference queries with our variable caching strategies in
cliques and messages. Traditionally, we should update
all the messages in the propagating path with different
variable settings to the current query, i.e.,, £V_“fV.In
this study, we further prune the joining subtree where
the requested messages are already available, that is the
message purge operation. This property yields an early
termination strategies in the construction of the joining
tree. Consequently, we only need to generate the joining

tree for the message merge operation,

Algorithm 2. Joining Tree for CTP caching
procedure GIOININGTREE(C,C’,f)

let C,C,, ....C, be the neighbors of C except C’
leti,f, ... .f be the corresponding messages
f.addchild(C)

fori ¢«—1,kdo k=01 Cisaleafnode
£V, «(EV, A, QULV,

if .V, @ f.V, then
GJOININGTREE(C,,C,f)

if $(EV,£.V) > $(LV, £.V,) then

£V, <LV




Processing of Inference Queries in Probabilisfic Databases

. fchild=¢ £ |

Pivor selection © To minimize the time cost, we study
the heuristics for selecting the pivet. In the inference
propagation, all the messages are passed toward the pivot.
In order to reduce the propagation cost, the selected pivot
is expected to contain more query variables. Note that
there might not exist any clique that covers all the query
variables. Traditionally, in this case, we select the clique
node that has the most query variables as the pivot. How-
ever, since we cache the frequent query variables in the
messages, the messages with some of the current query
variables might already be available in the clique tree.
Therefore, the number of query variables in a pivot clique
node is no longer a good criterion for estimating the query
plan cost. For instance, consider a query Q = {X, T,L} in
the example in Fig. 4. Suppose that message f; caches
variables T and L in the previous queries, while £, does
not contain X. According to the traditional criterion, node
(TLR} contains most guery variables and can be selected
as the pivot.

Thus, message f, needs to be recomputed to propagate
the query variable X. However, since f, contains the query
variables T and L, we can reuse f, directly without
updating the message if the clique (RX) is selected as
the pivot, In other words, the time cost of the query plan
also depends on the number of query variables that are
already cached in the corresponding propagating path.
The challenge now is how to evaluate the reuse capability
of selecting different pivots, in order to maximize the
sharing among queries. Therefore, weé study the following
query plan estimation strategies to evaluate a query plan

with a specific pivot.

VI. EXPERIMENAL EVALUATION

This section reports the experimental evaluation of

the proposed approach. A probabilistic inference query

271

as clique tree propagation is developed with the
materialized view provided by the Oracle. We use a
Bayesian network as database schema with totally 5
relational tables such as details, x-ray details, cancer,
smoker, patient. Each of these table is a factor in the
Bayesian network. The tables contain the necessary fields
according to their description. The dataset that we have
considered consisis of 10,000 records to diagnose the
probabilistic value of how many persons are affected by
cancer. We need not want the details on how many are
affected by cancer but we need to calcuniate the extent to
which one record depends on the other and how far we
can derive inferences from the details that are present. In
the dataset we stimulate probability distribution for each
relation following the normal distribution. We simulate
the workload data of query inpus.

We read the set of input queries from different text-
pads and calculate the time period for variable elimination
and clique tree propagation. In VE first we display the
elimination result and query result, Elimination result
consists of those variables that are not present in the query
and the query resuit consists of the probabilistic values
of the query that is being proposed to the system. Here
we note down the execution time for the query result in
VE. Then, on executing the CTP for the same set of
queries and we see for the execution time of the results.
First CTP with original is calculated then followed by
that we calculate the CTP with caching, The CTP applied
to original set of query will have lesser execution time
compared to VE. This is because in CTP we generate a
set of materialized views according to the query that is
being asked. Materialized views are formed for each of
the guery that is passed from textpad. If suppose
successive queries contain the same fields of the previous
query along with other new fields, then the materialized

view is updated from the previous one. Successively on




Karpogam Jes Vol 6 Issue 5 Jul. - Aug. 2012

considering the CTP with caching, the executlél time
results obtained will be lesser compared to the CTP with
original.

The CTP with caching is calculated using the
materialised views obtained from the previous results of
CTP with original. Finally on analysing these we derive
that CTP with caching processes the queries and displays
the results with least execution time compared to other
two approaches. For example, we consider the following

Bayesian network :

Visif o Asia?

Hax
Bropchitis

Has
Tubercilasis

Mas Leag
vunier

Tabriruinsis
4F Lareer

Postlive
X-vuiv?

Fig.7.Bayesian Network for Cancer

Here we read a set of queries from a textpad and
perform VE as the initial step. The output obtained is
eliminated result which contains variables that are not
present in the query and query result which is the result
for the set of queries that have been passed as input to
the system. Next, CTP is performed for the same set of
queries. Since CTP employs clique tree propagation, the
execution time of CTP will be lesser compared to the
variable elimination. As the next step, CTP with caching
is performed. This is executed on the original set of
materialized views formed preﬁiousiy.

On analysing the execution time of VE and original
CTP we derive at a conclusion that CTP original

consumnes execution time for the same set of queries

272

passed in VE. Again, on analysing CTP original and CTP
with inference, the second one consumes less time for
execution which is comparably lesser than other two.
This is because CTP caching is based on the materialized
views, Since the results of previous queries are reused,
this consumes a lesser time compared to the CTP without
caching. On plotting a graph for VE, CTP and CTP with
caching we can easily analyse the efficiency of our work
as it reduces the execution time and memory for the

probabilistic inference queries.

VII. FUTURE WORK
Belief Propagation for Frequent Probabilistic
Inference Queries

Belief Network is defined. BN is a compact
representation of a joint distribution over a set of random
variables X, ABN is structured as a directed acyclic graph
(DAG) whose vertices are the random variables and the
directed edges represent dependency relationship among
the random variables. The evidence in a Bayesian
network consists of variables that have been instantiated.
The junction tree algorithm propagates beliefs .(or
posteriors) over a derived graph called a junction tree. A
junction tree is generated from a BN by means of
moralization and triangulation.

In many applications belief propagation over the
junction tree is used, this is a two-phase procedure:
evidence collection and evidence distribution. For the
evidence collection phase, messages are collected from
the leaf vertices ail the way up to a designated root vertex.
For the evidence distribution phase, messages are
distributed from the root vertex to the leaf vertices.
Message passing can be viewed as the atomic operation

for belief propagation, both for evidence collection and




Minimizing Credit Card False Aletis Using Genetic Algorithm

distribution. This produces the more reliable answering »

Frequent Probabilistic Inference Queries in Databases.

VI, ConcLusion

We study the frequent probability inference queries
in relational databases. Rather than reconstructing the
joining tree for each query, we focus on the approaches
that enable the caching and computation sharing among
the frequent queries in relational databases. First, we
transform the inference query of clique tree propagation

(CTP) to the relational query of joining tree. Moreover,

to further maximize the sharing among a sequence of

queries, a variable caching optimization scheme is also
proposed to cache those frequent query variables in both
the cliques and messages. Our CTP caching optimization
approach not only shares the messages when the query
matches the cached frequent variables, but also reduces
the times of discarding the messages with frequent
vartables during the message updating. The experimental

results demonstrate the effectiveness of our caching and

sharing sirategies among the frequent queries.

REFERENCES

[1] 8. Chaudhuri and K. Shim, “Including Group-By
in Query Optimization”, Proc. Int’l Conf. Very
Large Databases (VLDB) pp. 354-366, 2000,

[2] 8. Chaudhuri and K. Shim, “Optimizing Queries
with Aggregate Views"”, Proc. Int'l Conf.
Extending Database Technology (EDBT),pp. 167-
182, 2000.

[3] H.C. Bravo and R. Ramakrighnan, “Optimizing
MPF Queries Decision Support and Probabilistic
Inference”, Proc. ACM SIGMOD, pp. 701-712,
2007. ‘

[4]  S.Chaudhuri, R. Krishnamurthy, S. Potamianos,

and K. Shim, “Optimizing Queries with

Materialized Views”, Proc. Int'l Conf. Data Eng.

({CDE), pp. 190-200, 2003.

[5] J.Goldsteinand P.-_A. Larson, “Scalable Selution
in Optimizing Queries Using Materialized Views”,
Proc. ACM SIGMOD, pp. 331-342, 2001.

[6] FV Jensen, Infroduction fo Bayesian Networks,
Springer-Verlag, 2000,

171

PPKarde and Dr. V.M.Thakare, “Selection of
Materialized View Using Query Optimization in
An Efficient

Methodelogy”, International Journal of Database

Management Systems, Vol.2,No.4,November 2010,
{8] S.K.M. Wong, C.J. Butz, and Y. Xiang, “A Method
for Implementing a Probabilistic Model as a

Database Management

Relational Database”, Proc. Conf. Uncertainty in
Artificial Intelligence (UAI), pp. 556-564, 2002.

[97 SXK.M.Wong, D. Wu, and C.J. Butz, “Probabilistic
Reasoning in Bayesian Networks: A Relational
Patabase Approach”, Proc. Conf Artificial
Intelligence (Al), pp. 583-590, 2003.

[10] N.L. Zhang and L. Yan, “Independence of Causal
Influence and Clique Tree Propagation,” Jnr'l J.
Approximate Reasoning, vol. 19,n0s. 3/4, pp. 335-
349, 1998,

[11] C.I. Butz, H. Yao, and S. Hua, “A Join Tree
Probability Propagation Archifecture for Semantic
Modeling”, J. Intelligent Information Systems, vol.
33, pp. 145-178, 2008.

[12] F.V. Jensen and F. Jensen, “Optimal Junction
Trees”, Proc. Conf. Uncertainty in Artificial
Intelligence (UAI}, pp. 360-366,2008.

[13] R.D. Shachter, B. D’Ambrosio, and B.D. Favero,
“Symbolic Probabilistic Inference in Belief
Networks,” Proc. Nat'l Conf Artificial Intelligence
{(A4AD, pp. 126-131,2000,

[14] W.X. Wen, “From Relational Databases to Belief
Networks,” Proc.Conf. Uncertainty in Artificial
Intelligence (UAI}, pp. 406-413, 2003,

[15] J. Goldstein and B.-_A, Larson, “Optimizing
Queries Using Materialized Views: A Practical,
Scalable Solution,” Proc. ACM SIGMOD, pp. 331-
342, 2001.

Author’s Profile :

=+ V.P.Sumathi is currently working as an
Assistant Professor in Computer Science
4 Department at Kumaraguru College of
: Technology, Coimbatore. Sheis pursuing
her Ph.D. Her area of interest is Query
Optimization in Data Mining,




