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Reduction of Linear Dynamic Systems using Dominant Pole Retention
Method and Modified Cauer Centinued Fraction

G. Parmar’, Dr. R. Prasad?, Dr. S. Mukherjee >

ABSTRACT

The authors present an algorithm for obtaining stable
reduced order models using the combined advantages of
the dominant pole retention method and the modified
Cauer continued fraction. The reduction procedure. is
simple and computer oriented. It is shown that the method
has several advantages, e.g. the reduced order models
'rétain the steady-state value and stability of the original
system. The proposed method has also been extended
for the order reduction of linear multivariable systems.
Three numerical examples are solved to iflustrate the
superiority of the method over some existing ones

including one example of multivariable system.

Keywords: Cauer continued fraction, Dominant pole,
Integral square error, Multivariable system, Order

reduction, Stability.

1. INTRODUCTION

The exact analysis of complex systems is difficult and

possibly not desirable on economic and computational
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considerations. This makes apparent the need for using -
reduced order models which constitute a good
approximation of the original system. Numerous
methods are available in the literature for order-reduction
of linear continuous systems in time domain as well as
in frequency domain [1—6}. Some trivial extensions of
single input single output (SISO) methods to reduce
nuitiinput multioutput (MIMO) systems have also been
carried out in [7-10]. Each of these methods has both
advantages and disadvantages when tried on a particular
system. In spite of several methods available, no approach

always gives the best results for all systems.

The problem of overcoming the instability of reduced
order models derived through continued fraction
technique has been investigated in {11-13]. In [11], the
denominator of the reduced order model is formed by
Routh array, while in [12, 13]. the stability equatioﬁ
method is used for the same purpose. Then the numerator
dynamics is chosen .to fit a given number of continued

fraction quotients.

In this paper, the authors present a new algorithm for
order reduction, which combines the advantages of the
dominant pole retention method and modiﬁed Cauer
continued fraction technique. The proposed method
consists of retaining the dominant poles of the original
system, where zeros are synthesized by using the

modified Cauer continued fraction method (MCF). The

_ method has also been extended for order reduction of
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linear multivariable systems. In the following sections,
the method is described in detail with the help of three

numerical examples.
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2. DescripTioN OF TE METHOD
Let, the n" high order system (HOS) G, (s)and its
low order system (LOS) be represented by :

2
b, +b,s+b,s" +

G (s) = =
Gls) a, +a,5+a,;5 +... +a, 5" +s" (1)
- F G, St et g, ST

Gr (S) — qll qu q].r (2)
(+2) G+4) s +4,)

where, A, &3, ..., A, are the dominant poles of the HOS.

or,

G+ G5+ tg, 5"

G, (s) = —=—= = 3)

Pyt PoStetp s s

Fufther, the method consists of following steps :

: Steﬁ»l: “ '
Retention of dominant poles of HOS in LOS [14, 15]:
Depending on the order to beteduced to, the poles nearest
to the origin are retained. This implies that the over all
behavior of the reduced system will be very similar to
the original system, since the contribution of the
unrefained eigen values to the system response are
important only at the beginning of the response, where
as the eigen values retained are irnpoﬂant throughout the
whole of the response, and, infact, determine the type of
fhe response of the system.
Therefore, the denominator pelynomial in (2) is now
known, which is given by

4@

Step-2:
By applying the algorithm given in [16], the first r’
_ quotients of modified Cauer form of continued fraction,

viz. h, I, h, H,,....are evaluated,

Step-3: ‘
Nowr a modified Routh array forr =6 is built as given'

‘below :

Py P2 Py Py P P 7
3 l
ay 90 413 T4 95 G5
FTVE T 5
By Py :[ . i Py Py 1 .
hy g i ’
) $ Pl
9 ! V9 O '
1 1
|| ; Il >Hz .
P | PP 1
Ay :
I
. . Y
]
ot
1
1
i

where, the first two rows are formed from the
denominator and numerator coefficients of G(s) in (3)
and the remaining entries in the array are obtained by

the algorithm given in [11]. The sequence of computation

_ is indicated by the arrows.
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3. ExtensioNn To MULTIVARIABLE SYSTEMS _
Let, the transfer matrix of the HOS of order ‘n’ having -

‘p’ inputs and ‘m’ outputs is :

a() @al) ap(s) . a()
1 fay {-5') au(s)  ay(s) &, (S)
[G(s)] —.m . : s
aml (S) am2 (S) am! (S) amp (S)
or, (G =[g; ()], =12, ey j=1,2, e p.

isa mx p transfer matrix,

The general form of g,(s) of [G(s)] i (6) is taken as

9 (s)
“9706
_ by +b,5 +B,5" + .t By
a taps+ast +.ta s 45" 0
by +h,s+ 857+ B 5

(5} = :
80 =) G ) 1+4,) “here
~A <A, <....<— 4, are poles of the HOS. -
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Let, the transfer matrix of the LOS of order ‘r’ having

‘p’ inputs and ‘m’ outputs to be synthesized is :

, by(s) bu(s) Buls) by, (s)
_L by (s)  by(s) byu(s) .. bzp(S)

' [R(S;)]_D,(s) : ; P
| Bu(5) Bra(s) Bus(s) o b5
or [-R(s)]=[ry_(s)],i=1,2,.- ..... 1 =12 e P

isa mx p transfer matrix.

The génerél form of 1;(s) of [R(s)] in (9) is taken as

' -1
gy +GS+ et g8

TErA) (5tA) s )
- .where, -4 < =4, <
poles of the HOS,

The proposed method consists of retaining the dominant

(10)

< -2, are the dominant

------

poles of the original system, where zeros are synthesized
by using the modified Cauer continued fraction method
(MCF). | |
Basically; the method starts | \v;rith fixation of the
denominator of the LOS by dorrﬁnant poie retention
method followed by the determination of coefficients of
the numerator polynomials of each element of the LOS
‘transfer matrix by matching the quotients of modified

Cauer cdntinued fraction method.

4. NUMERICAL EXAMPLES
" Three numerical examples are chosen from the literature
fbr the comparison of the reduced order models (LOS)
with the original system (HOS). The proposed method
is described in detail for one example while only the
results of the other examples. are given. .
An error index LS. E. [5] known as integral square error
in between the transient parts of original and reduced

order systems is calculated to measure the goodness of

the LOS (i.e. the smaller the ISE, the closer is G (s) to

~ G(s)), which is given by :
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ISE. = |, ®)-» 01 d (11)

where, v(t)and y,(f)are the tm_it step responses of
original and reduced order systems.

Example-1, Consider a 4% order system previously '
tackled by Parthasarathy et al. [13] :

248 s* + 9005 +1200

G, (s)=
=5 +185% +1025% +1805 +120

The poles of the above system are given By :

«1.1967 +0.6934i, ~7.8033 £1.35767.

If a 2™ order model is desired, then the steps to be
followed are as under :

Step-1: Selection of dominant poles to be retained :

A, =-1.1967 + 0.6934i, A, = -1.1967 - 0.69341 are the
poles to be retained. Therefore,

D,(s) = 5% +2.39345 +1.9129 {12)
Step-2 : Evaluate the MCF quotients by forming the array

120 180 102 18 1
=01 | |
1200 900 248 0
H=0
90 772 18 1
h,=0.075 PP
) 200 ¢ | 248
i E H,=248
ol
IR
Step-3 : Construct the modified Routh array as in (5)
19120 23934 1
01
19.129 0
------- v > H,=0 (19)
|
L e e e mams
Therefore, the reduced 2™ order model is given by :
19.129 :
G, (s) = (15)

s* +239345+1.9129
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with an LS.E. of 11.448115,
The step response of original and reduced order models
is shown in Figure 1 and a comparison of the proposed

method with Parthasarathy et al. [13] is given in Table I.
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L
2 ..f*'f /.
B o / ! : 7
& I — Originet Systaen :(4th Order}
i ’I = 2nd Crder Modet ;(By Proposed Mathog}
__f ! ==« 2nd Order Model ;(By Parthaserathy o a1[13])
4F :' I’ ]
H ’
[
H I
LE Sy .
ik
! L4
ijr
A
% 1 ‘ 3 4 5 5 7
model§ Time {secs) .
Table I
Comparison of reduced order models
Method of order Reduced models,
. LS.E.
reduction [G,(5)]
19.129
Proposed method m 11.448115
Parthasarathy et al. 11.9 22.419383
[13} ' 57 +1.785s5 +1.19 A1938

Example-2. Consider a 4% order system previously
tackied by Mukheljee etal {15]:

S +7s 4245424
st 4105 +3552 +5054+24

G,(s) =

_The poies of the above system are all real and given by :
A =LA, =2, A, =23, 4, =4, _
| By using the proposed method, the following 2 and 3%
Ord_ef approximants are obtained : |
5+ 2
s 435 + 2

Gy(s) = (16)

with an LS.E. of 3.57135 x 10°,
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52 +455+6
s +652 +11546

G,(s) = a7n

with an 1.S.E. 0of 0.892614 x 107,

The step response of original and reduced order models
is shown in Figure 2 and a comparison of the proposed
method with other methods, for 2 2™ order reduced
maodel, ( G,(s) ) is given in Table IT,

1

+X:1 3 4
08} E
/ .
07 e Origingl systen ;(4th Order Model)
2 ~——2nd Qrder Model ;(By Proposed method)
.%’ 08 === 3rd Order Model ;(By Proposed Method)
E
<405 4
04 _
03
g2 K E
01 i,
0 f : . \
0 1 2 : 3 4 5 6
Time(secs)

Figure 2. Step responses of original and reduced

erder models,

Table II

Comparisen of reduced order models

Method of Reduced 2™ order LSE.
order models, [G, ()]
reduction
Proposed s+ 2
method 5P+ 35 + 2 3.57135 x 107
Shieh & Wei s+2.3014 .
[17] S + 565 + 23014 | 142.5607x 107
Krishnamurthy 20.5714s +24 .
et al. [18] 05 + 4s + 24 9.5891 x 10°°
L Pal[19] 16.00085 +24

305 + 425 + 24 1.1688 x 10?
Gutman et al, 2[485+144]
[20] 705 + 3005 + 288 | 4.5593x 107
Prasad et al. 5 +34.2465 _
[21] s+ 23080825 + 32465 | 1.53427
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Example-3. Consider a 6" order two input two output

system [9] described by the transfer matrix :

2(s+5) (s+4)
: (5+D{s+10) (s+2)(s+5)
[GE1= (10 (s+6)
(s+D(s+20) (s+2)(s+3)
1 a, (5} a,(s)
T Dy Lanls) @ (18)

where, the common denominator Dg(s) is given by :
Dy (s) = (s +1){s +2)(s + 3)(s + 5)(s +10)(s +20)
= 6000 +13100s +10060s* +3491s*
+571s% + 415" +5°
and
-, (s) = 6000+ 77005 +36105” +7625° + 705" + 2s°
a,(s) = 2400 + 41605 + 2182 5> +4595" +38s" +°
a,,(s) = 3000 + 37005 + 16505 +331s° +305* +5°
0, (s) = 6000+ 9100 + 3660 s> + 601s° +425" +5°
The proposed method is successively applied to each
element of the transfer matrix of above multivariable
system and the reduced order models 7; (S) of the LOS
[R(Q)} are obtained, The general form of second order

‘model is taken as :

_ 1 b”(s) b]Z(S)

BT, (s)[bu ) bu(s)} (18)
where, D,(s) = 5" +3s+2. .

and  B,(s) = 25+2, B,(s) = s+ 0.8

© by (s) = s+1, b,(s) = 5+2
The step responses of original and reduced order models
are compared in Figure3 (a-d) and a commparison of the

proposed method with Prasad et al. [9] is given in Table 1T,

Table III
L.S.E. for Reduced Order Models
[ [SE ISE.
(By Proposed Method) {(By Prasad & Pal [9] )
in, l00s1618 0.135505
n, |0.001986 "~ lo.037593
|7y (0016543 0.040013
n, (0032249 0.067897

Method and Modified Cauer Continued Fraction
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Figure 3(2) Comparison of Step Responses;
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045

03 / k
§ 025 | I, sravens Original Systen, [6th Ondes) N
E §

I i w—2nd Order System; (By Proposed Mathod)

0z ¢ !-" == —2nd Order Systeny (By Prasad & Pl (8})
05|

0.1
005 H

0 . : . \ .
0 05 1 15 z 25 3
Time(secs)

Figure 3(b) Comparison of Step Responses;

u, =0,u,=1
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Figure 3((:).Comparison of Step Responses;

u=1u=0
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Figure 3(d). Comparison of Step Responses;
u=0,u=1

5, ConcCLUSIONS

An algorithm, which combines the advantages of the
dominant pole retention method and the modified Cauer
_continued fraction, hag been presented, to derive stable

reduced order models for linear dynamic systems,

. In this method the dominant poles are retained according
to the order to be reduced to, and zeros are synthesized
by using the modified Cauner continuned fraction
technique. The method has also been extended for order
reduction of linear multivariable systems. The method is
simple, rugged and computer oriented. The matching of
the step response is assured reasomably well in the
method. The LS.E. in between the transient parts of
~ original and reduced order systems is calculated from

which it is clear that the proposed method compares well

with the other techniques of model order reduction as

shown in_'Tables L, IT and I@I. The method preserves model
's_taﬁility and avoids any error in between the initial or
final values of the responses of original and reduced order

. models.

[2]
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