Karpagam Jes Vol. 7 lssue 5 July - Aug. 2013

AN EFFICIENT ALGORITHM FOR THE AUTOMATIC
CONSTRUCTION OF AVL TREE WITHOUT

ROTATIONS BY SORTING TECHNIQUE

S Muthusundari', R M. Suresh’

ABSTRACT

In this paper we propose a new algorithm for AVL Tree
with Elimination of rotations by using sorting Technique.
The basic idea of this paper is easy to implement and
understand, to increase the performance by elimination

of rotations.

This can be achieved by sorted the given elements, then
épply divide and conquer technique to split the given
elements into subsets. Then construct the binary search
tree iudividuaily and then merge the trees. In this paper
we prove the effectiveness of the AVL tree performance is
achieved by without rotations by using sorting

Technique.

Keywords : divide & conquer, sort, merge, elimination,

rotations
I. INTRODUCTION

Balanced tree structures are efficient way of non linear
data structures for stoging inf!urmation. We know
basically, that binary search is the most efficient method

than any other method [1]. This non linear data structure

IResearch Scholar, Sathyabama University,
Cheruiui,India,
E-mail : nellailath@yahoo.co.in

? Principal, Sti Muthukumaran Institute of Technology,
Chennai,India,
E-mail : rmsuresh@hotmail.com

needs to search an item in the tree with average number
of comparison O (log2n). Searching time in BST is normally
dependent on the height of the tree [8]. The height of the
tree is increased by performing an insertion operation in
the BST. As height increases the scarching time is also
increases, In case of deletion in the BST may decrease
the height and hence it requires less time of requirement.
To make the Binary Search Tree as a height balanced tree
Adelson, Velskii and Landis proposed the concept of AVL
tree. It is well known to us, that every AVL tree is a BST
(Binary Search Tree), where every BST is not an AVL tree
[1]. AVL trees are binary search trees with a balanced
condition [81. The balance condition is “the height of the
left subtree of any node differs from the height of the
right subtree by 1”. To make the BST, asa height balanced
tree, it requires various rotations in case of insertion and
deletion {9]. In order to do the insertion operation in the

tree, we need the following rotations.
I

A. Different Rotations in Inscrtion Operation

To insert the key elements in to the BST tree asa height

balanced [8] , we look into the following rotations [2].

1. Single Rotation
Left rotation
Right rotation
2. Double rotation
Left right rotation

Right left rotation

An Efficient Algorithm For The Automatic Consiruction Of AVL Tree Without Rotations By Sorting Technique

Case 1: Single right rotate

Case 3: Double right rotate

Ais the first unbalanced node

{0)

NodeAVL* right_rot{NodeAVL *p}{

NodeAVL* g;

g=p->left;

p->left=g->right;

g->right=p; h

balancefactor{pj;

bolancefFactor(g);

p=q;

return p;

Cis the first unbalanced node

NodeAVL* left_rot{NodeAVL *pj{ “
NodeAVL* g;
q=p->right;
p->eight=q->left.//{*]
g->left=p,//{**]
balenceFactor(p);
balanceFactor{g);
p=q;
retura p;

o

Doubla right rotation

NodeAVL* d_rol_right{NodeAVL "pjf
p-left« left_ratip->loft) /i)
n P = right_rotfp); /f{**]
return p;

Sirnple right sotation for node A -

279

Karpagam Jes Vol. 7 Issue 5 July - Aug. 2013

Case 4: Double left rotate

Cis the first unbalanced node

Double left rotation

v

return p;

}

#*
Simple right rotation for n:de\A\

NodeAVL* d_rot_left{NodeAVL *p){
p->right = right_rot{p->right);//[*]
p = left_rotlp)//[**]

Simple left rotation for node €

H. RELATED WORK

Rajeev R. Kumar Tripathi [5] proposed a new model of

balancing of the AVL tree using the concept of virtual

node. This virtual is a divinatory node which is inserted:

into the inorder traversal of the BST and by doing the
inorder traversal (left, root, right) they made a BST.

Ultimately this virtual node is deleted to get an avl tree.

Kim S. Larsen [1] introduced the AVL trees with relaxed
balance. The aitn of this paper was improving the runtime

performance by allowing a greater degree of concurrency.

This is obtained by uncoupling updating from rebalancing.
An additional beneath is that rebalancing can be
controlled separately. They made a new collection of
rebalancing operations which allows for a significantly

greater degree of concurrency than the original proposal.

280

An Efficient Algorithm For The Automatic Construction Of AVL Tree Without Rotations By Sorting Technique

Nicholas j. de.Lillo et.al [6] presented the implementation

of AVL rotations in java. They had presented the

IV, ILLUSTRATION WITH EXAMPLE

Case : 1 Subset is only four elements

implementation in java a number of rotation methods that -
Step 1: Get the n elements.

convert original BST into an AVL tree. -
584 3 11 7159

Hussain Abu-Dalbouh! and Norita Md Norwawi2 et. al

[7] have proposed a new clustering algorithm by using

Step 2 : sort the given elements in to ascending order

AVL wee. This paper was about Bidirectional

) by Bubble sort method.
agglomerative hierarchical clustering, to create a hierarchy

bottom-up, by repeatedly merging the closest pair of data- 345789 1115

items into one cluster. The result is a derived in to AVL

tree.

II1. ProPOSED METHODOLOGY or four in each subset

3457 |89 1115
In this section we address the efficiency issues regarding

the AVL tree performance by using a Sorting technique, is

composed of the (vllowing steps.

NN, TN,

1. Sort the given elements

2. Apply divide & conquer technique
3. Construct the binary search tree
4. Merge the two subsets

A, Algorithm

Step 3: Apply divide and conquer technique until three

Step 1: Get the n elements

Step 2: Sort the elements in ascending order by Bubbie sort method,

Step 3: Apply divide and conquer technigue to split the given i elements into two subsets.

Step 4: Check the no of elements in the subsct. If the subsct element is 3(n/2 = 3), then construct the
binary search tree by placing the second elemcnt as root node and first element as left child and third
element as right child.

Step 5: if the subset is 4 clements(11/2 4} then, construct the binary search tree by placing the second
element as root node and place the first node as left child to the root, and the third element as right child to
the root and the fourth element as right child to the right child.

Step 6: if the subset élement n/2 > 4, then again apply divide and conquer technique to split the list into
further subset. Then Construct the binary search tree for the subset based on the step 4 and step 5.

Step 5: While merging the first subset needs the pointer assignment of the right most node to become as a
root node, and the root node which brings as a left node to the new root node Then merge the second
subset as it is in the first subset.

Step 6: Then merge the two subsets into single sct

Step 7: The merged set will show the output of the AVL tree.

281

Karpagam Jes Vol. 7 Issue 5 July - Aug. 2013

First subset second subset

3 4 5 7189 1115

Step 4: Construct the BST for the first subset

Step 5: Construct the BST for the second subset

Step 6: Merge the two subsets the first subset needs

the pointer assignment.

Step 6 & step 7 : And join the second subset in the first

subset. Now the result shows the AVL TREE.

AVLTREE

OI0 1™

Case : 2 Subset is more than four elements

If the subset is more than 4 elements then divide into

again two subsefs

12345617 89 17

Then divide in to further subset until it becomes 3 or 4

in each subset.

H

282

456‘78\917

An Efficient Algorithm For The Automatic Construction Of AVL Tree Without Rotations By Sorting Technique

Then construct the binary search tree as per the step 4 and step 5 in the algorithm.

o Now Merge the two subsets then °
> GO
@ 4

@) D

l . : Similarly for the another subset

crge the two subsets /X
é (2) () DG

Conquer the two subsets, now it will give the Avl ree with no rotations

D : (7)

283,

Karpagam Jes Vol, 7 lssue § July - Aug. 2013

V. ResuLTs DISCUSSIONS

We have the measured the performance of the proposed
algorithm, by the implementation in Clanguage. The result

is given in the following figure. In this algorithm, the avl

tree will be automatically constructed w_ithout by any

single rotations. Normally we used to perform the avl tree
by four cases of rotations. The input we have given, for
the sample data : 6 4 3 1 87 1410 13. The following

figures shows the result of the implementation of the

algorithm.

‘JjRight nodaz
Solf: B

Right node:
okt voftles v

. Figure: 2. Merg; & Construct the
" BST for the fyrst syuset

3
TaFt node:

Right nodat
Ealfr &

1: 1

Ralit 4
Right oode?
ﬁ':'.ﬁ' md 5
it npge:
Belrs 14

Figure : 4. Automatic construction of
AVL Tree without any Rotations

VI. ANALYSIS

We have compared the performance of the
ﬁroposed algorithm with the existing coustruction of AVL
algorithm. Normally for the given input, it takes minimum
of .onc rotation and maximum of n number of rotations
based on the data we have considered for the input., But
in tli;e bréposed algorithm, if ninput data is given, there is
no rotation is required, and it constructs automatically
AVL tree form the algorithm. H.encc the performance is
100% achieved by without rotations. While we take up
the rotations [15] , it will lead to confuse to perform
whether single or double rotations [12} tobe applied. Now

this proposed algorithm helps to construcf the AVL tree

284

An Efficient Algorithm For The Automatic Construction Of AVL Tree Without Rotations By Sorting Technique

automatically by without rotations. Hence the efficiency

is derived.
A. PERFORMANCE COMPARISON

The proposed algorithm compares with the existing
method of AVL tree for the given random data, is given in
the following table 1. The table 1 shows the comparisons
of the minimum number of rotations are required to
construct the AVL tree by the existing method [14] and

the proposed algorithm for the random data set.

Table 1. Comparisons of Minimum no. of rotations in

AVL Tree
Data Minimum number of Rotations
Existing Method Proposed algorithm
8 4 0
15 8 0
20 10 g
25 13 0
50 25 0
60 34 0

From the above table 1. The results were compared and
analyzed, minimum we need the 1/2 rotations for the given
random set of data for the construction of AVL tree. But in
the proposed algorithm, even though we have given 100
input of random data also, there is no rotation is required.
Based on the sorted data and with the divide and conquer
technique the algorithm is achieved 100% efficiency for

the construction of AVL tree without using any rotaions.
VI1. CoNCLUSIONS

In this paper, we have presented a new algorithm for
constructing the AVL tree without any rotations. For the
n given input data, there is { rotations. For the worst case

input data of 8 elements, we need 5 rotations to construct

AVL tree. Normally if n elements are given, then minimum
n/2 rotation is required by the normal method. Tn our |
proposed algorithm, the size may be immatter. If we are
giving tile input size is 100 also, there is 0 rotations,
Without any rotations, based on the sorting concept, and
with divide and conquer technique, the individual subset
constructs the Binary search tree, and merging the subsets
with one pointer adjustment it constructs automaticaily
the AVL tree without any rotations. Hence the
performance is achieved by the proposed algorithm. The

efficiency is improved by 100 % in the proposed algorithm,
REFERENCES

{1]. Kim S. Larsen, "AVL Trees With Relaxed

Balance’: November 1992 .

2. G M. Adel’son-Vel'ski * and E. M. Landis, “4n
Algorithm for the Organisation of Information ",
Dokl Akad. Nauk SSSR, 146:263-266, 1962. In
Russian. English translation in Sovier Math.

Dokl., 3:1259-1263, 1962,

[3] J.E. Boyarand X. S, Larsen. Excient Rebalancing
of Chromatic Search Trees. In O. Nurmi and E.
Ukkonen, editors, LNCS 621: Algorithm Theory
- SWAT'92, pages 151-164. Springer-Verlag, 1992.

[4] L. J. Guibas and R. Sedgewick. A Dichromatic
Framework for Balanced Trees. In JEEE FOCS,
pages 8-21, 1978,

[5] Rajeev R Kumar Tripathi, “ Balancing of AVL Tiee

- Using Virtual Node”, International Journal of

Computer Applications (0975 —8387) Volume 7—
No.14, October 2010.

Karpagam Jes Yol. 7 tssue 5 July - Aug. 2013

6]

{7

(8]

%]

(10]

[11]

[12]

(13]

Nicholus et al., Implementations of AVL

Rotations in Java”,

Hussain Abu Dalbouh and Norita Md NorwawiF
aculty of Science & Tt echnology University Sains
Islam Malaysia (USIM) Bandar Baru Nilai, 71800
Nilai Negeri Sembilan, “Bidirectional
Agglomerative H ierarchical Clustering using
AVL Tree Algorithm”, 1 CS1 International Journal

of Computer Science Issues, Vol. 8, Issue 5, No 1,

September 2011 ISSN (Online): 1694-0814.

D. E. Knuth. Fundamental Algorithms, volume 1
of The Art of Computer Programming. Addison-
Wesley, 1968.

Kicardo Baeza et.al, “ fmproved bounds for the
expected behavior of AVL Trees ", Jowrnal BIT
32(1992),297-315.

Bayer, R., 1972, Symmetric Binary B-Trees: Data
Structure and Maintenance Algorithms. Acta

Informatica, 1, pp. 290-306.

Chang, H., and Iyengar S.S., July 1984, Efficient
Algorithms To Globally Balance a Binary Search
Tree, Conneunication ufthe ACM 27,8, pp- 695-

702.

Day, A. C,, 1976, Balancing a Binary Tree,
Computer Journal , XIX, pp. 360-361.

Martin, W.A., and Ness, D.N., Feb 1972, Optimal
Binary Trees Grown with a Sorting Algorithm .
Communicatiog of the ACM 15,2, pp. 88-93

[14] Sleator, D.D,, and Tarjon R. E., July 1985, Self-
Adjusting Binary Search Trees. Journal of The
ACM, 32(3), pp. 652-686.

[15] Ahmed S. Zaki, “4 comparative Study of 2 — 3
trees and AVL Trees”, International Journal of
Computer & Information Science”, 1983, vol 12,

Nol.

AUTHOR’S BIOGRAPHY

7§, Muthusundari received her

M.Sc ., M.Phil and M.E., Degrees in
i Madurai Kamaraj University, Mother
% Teresa University and Sathyabama Uni-
- versity respectively. She is pursuing her
Ph.D at Sathyabama University. She has got 18 years of
teaching Experience in Computer Science. She hag pre-
sented papers in 4 National Conferences and 2 Interna-
tionat Conferences. She has published 2 papers in the

International Journals. Her area of interest includes Data

Structures, Design of Algorithms and Cryptography.

Dr R. M. Suresh has completed
B.E., M.Techin CSE, Ph.D CSE inthe
year 2000. He had received the best

.~ . engineering college teacher Award from

i

O

13

&

 JSTE 2009 both National and State. He
has got 23 yeats hands of experience. e is currently
working as a Principal in Sti Muthukumaran lastitute of
Technology(SMIT). His area of interest includes Web

mining, Fuzzy logic, Data mining & image Processing.

