A Novel Indexing Method for Vehicular Networks

ANOVEL INDEXING METI@OD FOR VEHICULAR NETWORKS

K. Appathurai ' and M. Anandkumar *

ABSTRACT

Spatiotemporal applications are widely used in the

research area. The Spatiotemporal access methods are

secret into four categories. The BB*index Structure
algorithm is fourth category of Spatiotemporal access
method. The new algorithm is propesed for past, present
and future detection of moving obijects of VANETS. In
this proposed algorithm contains tree construction, object
. insertion, updation and migration. Multidimensional object
data is converted to single dimensional data using Hilbert
curve. This paper precisely focuses on to reduce the
migration process done by the existing BB*index method

and minimized time complexity especially in VANETs.

Keywords: BB* index, Moving Objects , Hilbert Curve and
VANET.

I. INTRODUCTION

Moving objects are changing their locations over time in
Spatio-temporal databases. The moving objects report their
location to the server through devices. Spatiotemporal
access methods are into four categories: (1) Indexing the
past data (2} Indexing the current data (3) Indexing the

future data and (4) Indexing data at all points of time, All

! Associate Professor and Head, Dept. of Information Technology,

Karpagam University, Coimbatore — 21.

? Associate Professor Dept. of Information Technology Karpagam

University, Cotmbatore - 21.

the above categories are having set of indexing structure
algorithms [1, 2, 3, 6, 13]. The server stores all updates
from the moving objects. Some algorithms are answering
queries about the past [4, 5, 9, 10,15] information only.
Some applications need to know current locations of
moving objects only. This case, the server may only store
the current status of the moving objects. In one case
Moving Object Detection Algorithm Based on Variance
Analysis [16]. To predict future positions of moving
objects in VANETS, the spatio-temporal database server
may need to store additional information, e.g., the objects’
speed [8, 17]. A large number of spatio-temporal index
structures have been proposed to support spatio-ternporal
queries efficiently {12, 13]. This paper is based on the
source paper [6]. This proposed algorithm reduces the
migration process, so the total performance is better than

BB* index structure,
I1. REL_ATED WORK
The BBx index Structure

The BB* index is the extension of Btree index [7]. The B
tree index support only for the present and future
positions, but in BB* index [6] if extend to the past
information also. The BB*-index consists of nodes that
consist of entries, each of which is of the form (x _rep;
to L. pointer) For leaf nodes, pointer poinis to the

objects with the equivalent x_rep, where x_rep is obtained

104 -

Karpagam Jes Vol. 9 issue 2 Jan. - Feb. 2015

from the s;-)ace-ﬁl]ing curve; t__ indicate the ﬁ'?f when
the object was inserted into the database {matching to
the tu in the description of the Bx-tree), and t_, indicate
the time that the position was deleted, updated, or
migrated (migration pass on to the update of a position
done by the system automatically). For non-leaf nodes,
pointer points to a (child) node at the next level of the
index:t andt_,are the minimum and maximum¢t_ and
t, , values ofall the entries in the child node, respectively.
In addition, each node contains a pointer to its right sibling
to facilitate query processing. Unlike the B*-tree, the BB*
index is a group of trees, with each tree having an
associated timestamﬁ signature tsg and a lifespan (sec
Figure 3). The timestamp signature parallels the value
tlab from the B*-tree and is obtained by partitioning the
time axis in the same way as for the B*-tree. The lifespan
of each tree corresponds to the minimum and maximum
life spans of objects indexed in the tree. The roots of the
trees are store_d in an array, and they can be accessed
efficiently according to their lifespan. This array is

relatively smaH and can usually be stored in main memory.

In query processing based on the timestamp signature it

expand either backward for past information and expand

forward for future information.
[1I. STATEMENT OF PROBLEM

In BB*index structure in certain cases half objects are
updated and half objects are forced to update. This causes
more work to the entire process and automatically it take
more time for indexing and it take more memory space for

VANETS. In addition, in tree the node insertion, deletion

also complex process when the number of moving objects

is high.
1V. PROPOSED ALGORITHM

The main aim ef the proposed algorithm is to decreases

.- the complexity of BB* index structuré in VANETS, Besides

the overall performance of the proposed algorithm is good
than BB* index about 50% for Vehicular Networks. The
proposed algorithm is called VOBB*index (Vehicular

Optimized Broad B¥). The scalability is considered as

 twice for the better result. The scalability is try to make it

as thrice or fours the total performance is not good,
because the depth of the tree is more so the searching
time is high while the nodes are inserted or deleted. So,
the scalability is make it as twice we get the optimum
result and the performance also good than BB~ It is

proved by MATLAB implementation.

The VOBB*-index the nodes consist of the form (x ,_fep;
tstart; tend; pointer.) where x_rep is nothing but one
dimensional data obtained from the space-filling curve;
t ., denotes the time when the object was mserted into
the database and tend denotes the time that the position
was deleted, updated, or migrated (migration refers to
the update of a location done by the system). an AN T
are the minimurﬁ and maximum t__ and t_ values of all
the entries in the child node, respectively. In addition,
each node contains a pointer to its right sibling to
facilitate query processing. The VOBB*index is a forest
of trees, with each tree having an associated timestamp

signature tsg and a lifespan. The timestamp signature

105 .

e

A Novel Indexing Method for Vehicular Networks

- paraliels the value tlab from the B*tree and is obta?éd
' by partitioning the time axis in the same way as for the
Br-tree. The lifespan of eacﬁ tree correéponds to the
minimum and maximum life spans of objects indexed in

the tree. The roots of the trees are stored in an array, and

they can be accessed efficiently according to their
lifespan. This array is fairly small and can usually be
stored. in main memory. Initially the maximum update
interval is foﬁnd out among all the moving objecfs.

Objects inserted between timestamps 0 and 0:5tmu are

- stored in tree T1 with their positions as of time 0:5tmuy;
those inserted between timestamp 0:5tmu and tmu are
stored in tree T2 with their positions as of time tmu; and
s0 on. Each tree has a maximum lifespan: T1’s lifespan is
from 0 to 1:5tmu because objects-are inserted starting at

~ timestamp 0 and because those inserted at timestamp
' 0:Stmu ﬁlay be alive throughout the maximum update
“interval tmu, which is thus until 1:5tmu; the sémé applies

' to the other trees.

1 Find out the maximum update interval for each
object and the maximum interval value is stored in

uk.

2 The maximum u;ﬁdate interval Uiis multiplied by

two and then based on this écalability the linear

array is formed for ts1,ts2,ts3, etc.,

3. Array of n equal intervals of ts1, ts2, ts3, etc

4. Each object lifespan are find out that is stored in

LE

K Based on the lifespan the data are stored in the

tree,

106

6. If the insertion node C is lesser than the node N
then the node C inserted on left else inserted on
right. If already the nodes are there the same way
created and stored. The insertion time for each ‘
object is stored in tﬁe variable Arr and total object

is inserted is stored in the variable Tot

7. For each move from one tree to another, While Arr
not equal to Null, it is checked whether all the
moving objects are reached to the new tree or not,
if it is reached call the function update or else all

the function migration.

Figure 1: Algorithm to Tree Conétruction, Object

Insertien, Updation and Migration

All trees have lifespan after that the tree values are
updated to next tree. So initiaily check whether ali the
objects are reached or not if it is reached then update all

the objects to next tree and then the objects are removed

‘or deleted from the existing old tree because to avoid

"duplication of index. The below algorithm shows how

the updation takes place in VOBB*. Ini this algorithm first

identify the tree where the update object is located and

then find out the position of the object in that tree and

then the object is removed and updated in new tree from

" old tree.

Updafe_Node[i] to ts{Pos-1]

Algorithm Updaté{Eo; En)

L Here Eo and En are old and new objects

respectively Input:

Karpagam Jes Vol. ¢ Issue 2 Jan. - Feb. 2015

tindex ~time Eo is indexed in the tree #(' Algorithm Migrate(Eo; £r)

find tree Tx whose lifespan contain tindex L Here Eo and En are old and new objects

respectively find tree Tx whose lifespan contain

2. Find the position of the object in the tree) A
_ tindex tindex —time Eo is indexed in the tree

posindex — position of Eo at tindex , ..)
2 Based on tindex the position of the object is find ¢

3 locate Eo in Tx according to keyo out posindex — position of Eo at tindex

keyo — x-value of the posindex 3 locate Eo in Tx according to keyo keyo -~ x-value

of the posindex

SPREY s

4. Modify the end time of Eo’s lifespan to current :

Ly

time 4. modify the end time of Eo’s lifespan to current -

time
t"index — time En will be indexed

Figure 3 : Algorithm for Migrate
pos’index —~positior of En at t’index '

V. PERFORMANCE ANALYSIS
keyn — x-vatue of the pos’index

The below figure 4 shows how the objects moving

s '.: S 5. insert En into the latest tree according to ke; -
IR . ' ramg o randomly in un specified path and it describes the clear

Figure 2: Algorithm for Update g path of the every moving objects. In thisrexam_ple 9 moving

R : , - objects are consider for indexing. The starting time is 32 &
L Each tree has lifespan after that the tree values are

ms and the ending time is 210.79660866 ms, this is cléarly

updated to next tree. So first check whether all the objects

shown in the figure 4. In this ﬁgure 4 the ‘x’ axis is time

are reached or not if any object is not reached then that]] o
- Yo : ~and ‘y’ axis is point’s i.e. by Hilbert curve the

object is identified and then migrated to next free, Next , sy . . . N
multidimensional data is converted as points (single

that objects are removed or deleted from the existing old .] :

_ ‘ dimensional data).
tree because to avoid duplication of index. The following ;
algorithm shows how the migration process takes place

in VOBB*, In this algorithm first identify the tree where

" the niigrate object is located: and then find out the
position of the object in that tree and then the object is

removed and migrated in new tree from old tree.

Migrate Nodeli] to ts[Pos-1]

107 | -

Figure 4: This figure shows how the objects moving-

randomly in un specified path. And It describes the clear

path of the every moving object.

- In figure 5 shows the total indexing time for both the

methods like BB* index and VOBB* index. The total
processing time for BB Indexing is 1 .059695_e+001and
the total processing time for VOBB* Indexing is
6.200636e+000, so it clearly says the VOBB* method is
much better than BB*method.

Figure 5: Comparisbu of BBX and VOBB¥ indexing in

terms of Processing Speed

In figure 6 indicates thé number of migration hits occur in
both the techniques. As per this concern also the VOBB*
index techniques is much better than BB* index
techniques. The migration hits for BB* Indexing is 68 and
the migration hits for VOBBX Indexing is 34. Thisteducing
of migration hit in VOBB* index method improves the
fotal peffonnance of VOBB* index_method, reducing the

processor utilization time and it decreases the total cost.

Figure 6: Comparison between BBX and VOBBX
V1. RESULTS

In this section both techniques results are mentioned.

This is reported by MATLAB.

The number of Moving Objects considers is: 9
Starting Time: 32.00000000

Ending Time; 210.79660866

For BB¥, Maximum Anticipated Time Interval:

10.79877393

For VOBB¥, Maximum Anticipated Time Interval:

21.59754786

Processing Time for BB* Indexing: 1.059695¢+001
Processing Time for VOBB." Indexin.g? 6.200636e+000
Migratiun Hits for BB* Indexing: 68 |

Migration Hits for VOBB* Indexing: 34

‘108 | .

Karpagam Jes Vol, ¢ Issue 2 Jan. - Feb. 2015

VII. CONCLUSION

/

This paper proposed a new indexing algorithm, the
VOBB*-index (Vehicular Optimized BB*-index), which can

answer queries about the past, the present and the future.

(4]

(51

This indexing techniques based on the concepts

underlying the BB*-tree index structure. Like the BB’f:-i-_

index, the indexing of historical information, it avoids

duplicating objects and thus achieves significant space
saving and efficient query processing. Also it reduces
almost half of the number of trees used in BB*index. So
the energy efficiency is very good than BB~ index and
barely reduces time complexity. Extensive performance
studies were conducted that indicate that the VOBB*-
index outperforms the existing state of-the-art method,
with respect of historical, present and predictive queries.

This proposed work is best suited for Vehicular Networks.
References

[1] Long-Van Nguyen-Dinh, Walid G. Aref, Mohamed

F. Mokbel 2010. Spatio-Temporal Access
Methods: Part 2 (2003 - 2010). Bulletin of the IEEE
Cbmputer SocietyTechnical Committee on Data

Engineering .

[2] M. Pelanis, S. ; Saltenis, and C. Jensen. Indexing
the past, present, and anticipated future positions

ofmoving objects. TODS, 31¢1):255-298, 2006.

B3] * Z-H. Liv, X-L. Liu, J-W. Ge, and H.-Y. Bac,
Indexing large moving objects from past to future
with PCFI+-index. In COMAD, pages 131-137,
2005.

[6]

g

3]

]

{10]

(1]

[12]

109

V. Chakka, A. Everspaugh, and J. Patel, Indexing
large trajectory data sets with SETI. In CIDR, 2003

Y. Tao, D.-Papadias, and I. Sun. The TPR*-free:
An optimized spatio-temporal access method for

predictive queries. In VLDB, 2003,

D, Lin, C. Jensen, B. Ooi, and S. Saltenis. Efficient
indexing of the historical, present, and future
positions of moving objects. In MDM, pages 59—
66,2005.

C. Jensen, D. Lin, and B. Ooi. Query and update
efficient B+-tree based indexing of moving

objects. In VLDB, 2004.

M. Mokbel, T. Ghanem, andW. G. Aref, Spatio-
témporal access methods, IEEE Data Eng. Bull.,
26(2):40-49, 2003,

J. Niand C. V. Ravishankar. PA-tree: A parametric
indexing scheme for spatio-temporal trajectories.

In SSTD, 2005.

P. Zhou, D. Zhang, B. Salzberg, G. Cooperman,
and G. Kollios. Close pair queries in moving object

databases, In GIS, pages 2—11, 2005,

P. K. Agarwal and C. M. Procopiuc. Advances in
Indexing for Mobile Objects, IEEE Data Eng, Bull.,
25(2):25-34,2002.

G. Kollios, D. Gunopulos, V. J. Tsotras. On
Indexing Mobile Objects. In Proc. PODS, pp. 261-
272,1999. '

A Novel Indexing Method for Vehicuiar Networks

(131
Spatiotemporal Access Methods. International
Journal of Computer Appliations. Volume 18, No

4,2011,

[14] Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa
A. Hammad, and Walid G. Aref, Continuous Query
Processing of Spatio-temporal Data Streams in
PLACE, 2004 Kluwer Academic Publishers.
Printed in the Netherlands

[15] Su Chen - Beng Chin Ooi - Zhenjie Zhang, An
Adaptive Updating Protocol for Reducing Moving
QObject Database Workload.

[16] Yongquan Xia, Wéiii Li , and Shaohui Ning,
Moving Object Detection Algorithm Based on
Variance Analysis, 2009, Second International
Workshop on Computer Science and Engineering

Qingdao, China

[17] Arash Gholami Rad, Abbas Dehghani and
Mohamed Rehan Karim, Vehicle speed detection
in video image sequences using CVS method, 2010,
International Journal of the Pﬁysicai Sciences Vol.

5(17), pp. 2555-2563.

AUTHORS” BIGGRAPHY

Associate professor and Head
department of Information
Technology in Karpagam University,

. having 15 years experience in

K Appathurai, Dr. S. Karthikeyan, A Survey pi

pr. K.Abpathurai working as .

teachiﬁg. His area of interest is spatial’databasé. He has

i)ublished 12 papers in fhe reputed journals. He is the

.. Editorial member in several international and national

journals. He has presented twenty papers in national

conferences and four papers in international conferences.

Dr. M. Anand Kumar has completed
M.Sc and M. Phil in computer science
from Bharathiar University. He has

Completed Ph.D in Karpagam

University and currently working as
an Associate Professor in karpagam University having
ten years experience in teaching. His area of research
includes network security and information security. He
has presented twenty pa_.pelrszin national conferences and
four papers in international conferences. He has published

twelve papers in international journals.

