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ABSTRACT

Medical area produces gradually more voluminous
amounts of electronic data which are becoming intricate.
Tﬁe produced medical data have a certain characteristics
that make their analysis very challenging and sﬁ'iking. In
this study we present an 6verview of medical domain data
mining from different objectives including nature of
medical data, collection of requirements dealing with such
data and the different techniques used for medical data
mining. Among the different methods we underline on the
use of Artificial Neuralﬂ Network Algorithms which is one
of the effective and e;};ﬁcient evaluation method. To
support our argument, empirical comparison of ANN
versus with other méthbds on different medical data sets,
shows thétANN is well sﬁited for medical éj)plication and
has high perforrhance in most of the examined medical

problems.
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I. INTRODUCTION

" Nowadays modern hospitals are well equipped with

monitoring and other data collection devices resulting in
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encrmous data which are collected continuously through
health examination and medical treatment. All this led to

the fact that medical area produces increasingly

voluminous amounts of electronic data which are.

becoming more complicated.

In the past, various statistical methods have been used
for modeling in the area of disease diagnosis. These
methods require prior assumptions and are less capable
of dealing with massive and complicated non linear and
dependant data [37] . However , data mining has proven
to be more powerﬁ:i and effective and it provides
processes for discovering useful patterns from large data
sets. [53] . These data mining techniques are generally
classified., into supervised and unsupervised models.
Clustering techniques which are unsupervised learning,
have emerged as popular téchniques for pattern
recognition and imag:e"processing. [1,55] and have also
been applied to problems with medical data [25]. However
in this paper, we are concerned with predictive methods
{i.e. supervised ] methods which require the data to in;::lude
a special responsé attribute,.known és the class atiribute

and therefore known as classiﬁcation models.

The importance of Medical Data Mining [MDM)] is to
assist the physician to make the final decision without
hesitation, minimizing diagnosis errors [especially from

inexperienced physicians] , improving di#gnostic speed
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and ircreasing the quality of medical treatment {39.5;

37.51].
1. BACKGROUND OF MEDICALDATA MINING
A. Characteristics of medical data

The data gathered in medicine is generally collected as a
result of patient-care activity to benefit the individual
patient and research is only a secondary consideration.
As aresult, medical data contain many features that create
problems for the data mining techniques and they might
be in a format which is not suitable for the direct

application of those techniques [13, 53].

In general, medical collections, diagnoses and treatments
are subject to exror rates, imprecision and uncertainty [43].
As with any large databases and due to the collection
method, medical databases may contain missing values
and can introduce noisy, redundant, incomplete or

inconsistent data [13].
B. Requirements for systems dealing with medical data:

For a data mining system to be useful in solving medical

problems, the following features are desired:

Handling missing values and noisy data: In real medical
data sets, missing values are frequently present and most
patients’ records lack certain data. This can be a result of
certain tests not performed or certain questions that were
not askeﬁ [27,10,6]. Therefore, m‘edical mining systems
have to be able to appropriately deal with such

incompleteness of the data. Some data mining approaches

are robust to missing values while other approaches deal

"with this requirement through preprocessing of the data.

In addition to missing values, medical data are
characterized by their incorrectness, inconsistency,

redundancy, sparseness and inexactness.

For this reason, in most cases, a robust data preprocessing
system is required in order to draw any kind of knowledge

from even medium-sized medical data sets [35,50]

High performance and efficiency of the produced model:
For a medical diagnostic system to be accepted by the
user, its accuracy must be as high as possible. In most
cases several approaches are tested on the available data
and the one with best performance is considered.
However, for small differences in predictive performancé
it might be necessary to take into account other features
for selecting the appropriate method [27;42]. Efficiency of
the data mining method used is also important, because

the final application is a user interactive and for many |

optimal solutions they are usually time consuming [36]

Transparency of the model: Data mining techniques differ
in their degree of transparency, i.e., the users’ ability to
analyze and understand how the paiterns were gener'ated.
For some techniques which are considered as “black
boxes”, their results may not be accepted by the; end user,
especially when producing unexpected solution [35}. In
medical applications the user should be able to use the
model’s logic to explain how the conclusion was reached
which may significantly increase a physician’s confidence

inthe model {6]
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Interpretability and understandability of results:

Interpretability and acceptability by the medical

community intervene in favour of a method that may not

have the highest predictive performance {42]. In general,
users do not care how sophisticated a data mining method
is but they do care how understandable its resuits are
[36]. It is crucial for a medical diagnosis systern to be able
to explain and justify its decisions when diagnosing a

new patient [35]

Reduction of the number of tests and generalization:
Since the collection of medical data is sometimes
expensive and harmful for the patients, it is desirable to
have a system that is able to reliably diagnose with a
small amount of data [27]. However this should not result
in overfitting situations and the produced model must be

able to perform well with unseen cases [6]

Protecting the privacy of data: When dealing with medical
data it is important to protect the privacy and sensitive
information from disclosure and to identify possible ways

to have secure channels for transfering medical data [8,41]
TIL TecuniQues AND MEeTHODS UpED MEDICAL DAt MINING

Soft computing methods have been widely used for
medical data mining and proven to be well suited to cope
with the special characteristics of medical data such as
imprecision and unceri':ainty._For example:; Fuzzy Logic
[24, 7], Rough Sets [54,21], Genetic Algorithms [34, 18]
and Neural Networks [57,38].

Statistical methods have been considered, by many

researchers, less capable of dealing with massive, non-

linear and dependent data [such as the health care data).
However some predictive statistical approaches such aé
the proposed model by Cong and Tsokos {12], the k-
Nearest Neighbour [k-NN] [16], Logistic Regression [LR]
[29] and Bayesian Classifiers [28], have been successfully

applied to medical data.

Decision Tree [DT] algorithm is one of the most popular
classification algorithms used for data mining, It has been
applied to medical data providing competitive
performance as compared to other approaches as

discussed by Delen et al. [13] and Kuo et al. [30].

Agent-based systems and artificial immune systems
[AlSs] have been also applied to medical problems.
Examples of their use for medical applications are given
by Lanzola et al. [32], Hudson and Cohen [22], Polat et al.
{46] and Latifoglu etal. {33].

R-ecently, the need of a hybrid data mining approach is
widely recognized by the data mining community and
much current work in data mining tends to hybridize
diverse methods [20]. In Medical domain there are a lot
of hybrid models which have been proposed, such as
Evolutionary decision tree [44], Polynomial Fuzzy DT [40],
ANN with MARS [Multivariate Adaptive Regression
Splines] {9] and Fuzzy AIS with k-NN [48]. Most of the
above mentioned methods combine two or three methods,
while some researchers have proposed combining more
models, such as Hassan and Verma [2007] which combines
self-organizing map [SOM], k-means and naive Bayes

with a neural network based classifier.
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Apart from improving [or hybridizing] existing data mining-

techniques, other attempts to enhance the final predicted
output are based on improving the quality of the data
itself. Approaches which fall under this category aim to
study the medical data itself and apply different
techniques to the data such as Decomposition using
structured rule-feature mairix [31], discretization [2],

filtering outliers [45] and filtering with over-sampling [53].

- However, among the different approaches and techniques
used for medical applications, in this paper we are
concerned with the use of ANN Algorithms for medical
classification. In the following we discuss its basic

features and how it suits for this domain.
IV, GENETICALGORITHMS

The GA is a type of structured random search algorithm
so-called by most of researchers who used GAs that
mimics the process.of biologicatl evolution. The algorithm
‘begins with a collection of parameter estimateﬁ [called a
chromosome or individual] and each is evaluated for its
fitness in solving the given minimization or maximization
_task. At each generation [algorithm time-step], the most
fit chromosomes are allowed to mate and bear offspring.
The biological analogy suggests that such a procedure
will be likely to lead to workable solution for complex

non-linear problems.

A GA traditionally contains three types of operators:
selection, crossover and mutation. A simple GA executes

as follows:

a] Start with a randomly generated population ofn k-

bit chromosomes.
These are the candidate solutions to the problem.

b] Calculate the fitness F[x] of each chromosome x in

the population.

c] Repeat the following steps until n offspring have

been created.

i Select a pair of chromosome playing the role as
parents. The probability of an individual been
selected is usually a function of fitness. The fitter
the individual is, the more likely it will be seiected

to reproduce.

i With a probability Pc [the crossover rate],
crossover the pair at a randomly chosen point to
form two offspring. If no crossover takes place,
form two offspring that are exact copies of their

respective parents.

iii. ~— Mutate the some worse individuals in the
population at each locus with probability Pm [the
mutation rate] and place the resulting

‘chromosomes in the new population.

d] Replace the current population with the new

populaiion.
¢l Gotostep b,

Random search algerithms have achieved increasing

popularity as researchers recognize the shortcomings of

calculus-based and enumerative schemes. Random walks
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and random schemes that search and save the bést,must
be discounted because of efficiency requirénents.
Random searches, in the long run. can be expected to do
no better than enumerative schemes. Random search

methods are distinct from randomized techniques.

A GA is an example of a search procedure that uses random
choice as a tool to guide a highly exploitative search
through a coding of a parameter spacé. Many search
techniques require auxiliary information in order to work
properly. GAs has no need for all this auxiliary
information; they are blind. They only require payoff
values associated with individual strings in performing
an effective search for better and better structures. This
characteristic makes a GA a more canonical method than
many search schemes. Many researchers have tried to
" improve the GAs performance by handling some
modifications on the genetic operators and analyzing
chromosomes space properties:_dealing with genotype-
phenotype mapping {3, 11], analyzing scﬁema theory at
aim of catchihg some idea for improving GAs
performance [14, 59]. Some researchers investigated the
effects of GAs operators and tried to modify GAs operators
[23,25,55]. Some people defined tlhe new version of GAs
{19, 26, 59-62]. In noisy environment, fitness of an
individual cannot be evaluated precisely, but its fitness
has to be estimated [25]. Most of researchers used GAs
applied modifications on fh'e GA operators to improve
the performance of GAs. However, there are some
problems related to GAs such as to be trapped in local

solution/solutions or diverging from best or sub-best

solution. These are important points for improving the

performance of GAs.
V. ARTIFICAL NEURAL NETWORK

ANN Structure i.e., the graph representing the network.
The vettices of lthe graph represent the neurons, while
the edges of the graph represent the connections. In the
most general form any graph can be evolved. From a
global perspective learning in ANNs is equivalent to
adjusting its internal parameters, e.g., weights and biases,
Evolution of network parameters, e.g., weights, biases,
and activation functions, is the most direct approach to
ANN learning, hence it could be termed Evolutionary
Training of ANNs [63]. In order to improve ANN teaching,
we could generate data sets for training, validation, and
testing by simply evolving data subsets of all available
data. We could also evolve data “from-scratch” within

restrictions given by the specific task the ANN is us_éd
for{64].

V1. EMPIRICAL COMPARISION

Here we present an empirical comparison of Artificial

. Neural Network with popular algerithms on different

medical data sets (Table 1). The selected algorithms are:
Decision Tree [DT], Genetic Alg‘orithm and a simple rule-
based algorithm [ZeroR]. These algorithms were chosen
because they represent quite different approaches to
learning and they have been used in medical data mining

applications as discussed earlier.
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TABLE I: Medical‘?ata sets used for the experiment

No. of Attributes

Medical Instance Numeri Nomina Classes
Problem s ¢ 1
Dermatology 366 1 33 6
Echocardiogram 132 8 8 2
Lever Disorders 345 6 [/ 2
Pima 768 8 0 2
Diabetes{Indians

7

Haberman 306 2 g 2
Heart - c | 303 [ 7 2
[Cleveland]

Hearr Stalog 270 5 8 2
Hepatitis 155 6 13 2
Lung Cancer 32 o 56 3

TABLE II: Comparative analysis based on predictive accuracy

Problem ANN DT GA ZeroR
' Dermatology 97.43 94.10* 926.45 30.60%
Echocardiogram 95.77 96.41 93.64 67.86*
Lever Disorders 54.89 65.84 68.737 57.98
Pima pia‘be!‘es 75.75 74.49 74.75 65.11*
[Indian.s]-'

Haberman 75.36 72.16 T70.32 * 73.53
Heart — ¢ 83.34 77.I13% 80.99 Sd.45%
I Clevelan&] !

Heart Stalog 84.85 | 75.39* 31.78 55.56%
Hepatitis. . 83.81 79.22 80.78 79.38
Lung Cancer 53.25 40.83 . 44.08 40.00
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VII. CoNcCLUSION

/

This study reviewed the current state of medical data '

mining from different perspectives. ANN with other
Algorithms classification approach has been discussed
and its main features are highlighted based on the medical
mining requirements. Based on various experiments study
we prove empirically its suitability to the medical domain
problems as compared to other approaches. The
experimental results show that ANN is better than the
compared approaches on most of the used medical data

sets.
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