JCS Vol. 1 No. 6 May - June 2006

A Three Tire Architecture Model for A Computational Grid

J. Karthik Prashanth!, Pallav Kumar Baruah’

ABSTRACT
The past few years hax-fe beeniwimess to a growing
interest in grid computing as a means of realizing the
-need for scientific computing capabilities. The grid
envirbnment has one severe setback i.c. the requirement
~of a very steep learning curve. In this work we propose a
model, the SMCG (Simple Model for Computational
-Grid), which is much simpler in c.omparison to the
conventional grid model, for a robust environment that
caters to the needs of scientific computation. The major
zoal of this model is the ease of using this environment
for creating applications as well as for programming. This
“work was motivated by the latest trend in integrating grid

.computing and cluster computing.

Keywords: SMCG, MPISAJ, PARALIB, MPIIMGEN,
NOW -

1. INTRODUCTION

Over the years the scientific community have come to
place greater demands on hardware and software
infrastructure that provide dependable, consistent,
‘pervasive, and inexpensive access to high-end
computational cababilities. Inrespouse to these demands,
_there have been many levels of innovation on the
supercomputing front,

The past few. years have been witness fo a growing

interest in grid computing as a means of realizing this

Department of Mathematics and Computer Science-
‘S_ri' Sathya Sai Institute of Higher Learning, Prashanthi
. Nilayam.

need for scientific computing capabilities. The grid
community defines the grid as é distributed computing
environment that operates as a uniform service, which -
looks after resource management and security
management independent of the individual technology
choice. Typiczlly the grid infrastructure must include
knowledge management resources, an integrator such as
OGSA, and the appropriate network to accommodate the'_ _

various interactions.

The major implementation questions that any new -
technology, especially one such as the grid, which is
proposed to largely replace established and tested
technologies, must answer are:

o Will this new technology require a massive learning
curve just to erﬁploy it?

Will the user loose significant time from present
efforts, implementing this technology?

Will the transition to this new technology be smooth -

and painless?

. 2, Tue CURRENT SCENARIO

However, in spite of this burgeoning wide spfcad
acceptance, the grid environment has one se{feré setback :;
i.e. the requirement of a very steep learning curve._To'
begin with, the grid administrator is faced with the task .
of choosing the appropriate grid middleware [Globus
Toolkit {1}, Sun Grid, AIcherﬁi, and many more]

. depending on a proper assessment of the future needs of

539

the computing environment. This is often followed by
the daunting procedure of configuring the chosen

middleware as per the drawn up requirements. Often it

JCS Vol. 1 No. 6 May - June 2006

becomes a herculean task to get familiarized with the
programming model that is employed. Whole new
“protocols [3,4,5] like the GSI, GRAM, MDS, GridFTP
and others have to be adopted. Adding on to these not-
so-favorable conditions, the application programmer
must consciously program so as to make effective use of
the grid infrastructure. It is quite obvious from these facts
that the grid technology, as it staﬁds today, requires a
-steep learning curve and further demands a greater
investment of time and effort. Another very intimidating
scenario that wé have to come in terms with is the large
‘:éﬁository of aiready éxisting sequential code, which
élmﬁst turn unacceptably archaic in the grid environment.
%or it is widely acknowledged that these sequential codes
‘will have to be rewritten to enable them to make full

. utilization of the various facilities provided by the grid.

Apphications
[Lanmmiages & Framew
¥

Figure 1. Regular Grid Model

Applications

Service Manager

MPI Implementation

Key : DSCT - Domala Specific Code Transformer

Figure 2. SMCG Model

540

3. SimpLE MopEL FOR COMPUTATIONAL GRID

In this work of ours we propose a much simpler model,
in comparison to the grid model, for a robust environment
that caters to the needs of scientific computaﬁon. This
work is inspired by the latest trend in the integration of _
the grid and cluster computing. The major goal of this
model is the ease of using this environment for creating
applications as well as for programming. During the
course of this paper it will be made explicit how this
proposed technology presents itself as a promising
solution to the above discussed problems. We begin by
making a structural comparison of the two models i.c.
the grid and the one we propose, the SMCG model
(Simple Model for Computational Grid).

In an earnest effort to simplify and enhance the
performance of the computational environment, the
SMCG model strive hard to incorporate in it the bare
necessities that prove sufficient, from the various popular
grid technologies for computational sciences. Just
managing to encompass components that aid in making
this model effortlessly pervasive, the SMCG model is
fundamentally designed for speed and efficiency of the

compuiations involved.

4. Tur Grip MoDEL Vs SMCG

In figure 1 .we have the regular grid model as in [2,4].
Though it offers a greaf level of flexibility, most of it is
not of much use for scientific computing. A very small
subset of it would suffice for achieving what is needed.
The complexity of the model, though it brings about the
flexibility, proves to be a hindrance for a novice. On the
other h_and SMCG model presents a simpler yet effective
solution, calling for no additional knowledge of new
protocols. This model is to employ GUIs for the various’

components, with the intent to be self explanatory and

A Three Tire Architecture Model for A Computationat Grid-

“user friendly. They would abstract the underlying
architeqture providing the end user an easy to use front
end. Architecﬁue wise too, SMCG model places very
less demand, and hence can be made pervasive with little

effort.

_Here we present the SMCG model, figure 2, for scienfific
c'rompu.ting. The lower most layer is any reliable
izhplementatiori of the MPI standard. This layer will allow
the proper utilization of the computing resources. It must
be noted that we have not explicitly presented the
distributed communication layer on which the MPI would
be built, for we believe, given this model the end user
would seldom need to access this layer. Moreover most
MP! implementations are built over existing distributed

technologies like Sockets, CORBA, DCOM, Java, etc.

On top of the MPI implementation layer sits the service
anager. It is the role of the service manager to offer the
ease of building distributed services and to play the part
of an UDDI in web services, to provide the user’s
application the information on the location of the various
-sér{fices on the network. However this mformation will
be logically abstracted from the end user once the
applications afe built using the service manager. For
~ example, the application’ progrémmer can build a
distributed library of the various services_offered at the
different computing resources, using the service manager.
And the end user of this library can access the services
in the library without having to know on which node of
the network the service is hosted. The service manager
also sets up the distributed computiﬁg environment i.e.
‘the MPI environment, for parallel execution for any
application that is built using the service manager. Thus
the end user can write normal sequential programs in
,which,- cails to the various services included in the
distribuited library can be made, like simple procedural

-calls. The programmer need not set up the MPI

541

environment or even be acquainted with the knowledge
of MPI programming.

In addition to these two layers which by themselves
provide good support for the majority of computations,
we have introduced the third layer, which is composed
of a set of domain specific code transformers{DSCT)
with the capability to parallelize domain specific
sequential code. It is a well studied fact that constructing
a generic parallélizing compiler for any programming
language is a humongous task. Since most scientific
computations pertain to a specific domain, we can instead
build a domain specific code generator. For instance, if
we consider a DSCT for the linear algebra domain, then
this tool will help us to parallelize any sequential code,
that has in it any calls to matrix functions. This layer
will throw open a large repository of already existing
sequential code to be parallelized. Depe_nding on the
domains of the applications handled, the corresponding
DSCTs can be employed. Then the sequential codes from
this domain can be effortlessly parallelized. Not only can
these sequential codes be parallelized, they can be used
as stand alone applications or even better, can form a
part of a distributed parallel library, which can be created

using the service manager.

In any computation oriented environment load balancing
and fault tolerance, are two indispensable features. They
must be either included in the MPI implemeniatioil layer
or the service manager layer. Ideally, it would be
preferable to include it in the MPI implementaﬁon layer..-

This will offer these features for a wider variety of users.

MPISAI - SMCG

As an instance of the proposed model, we have the
MPISAI - SMCG. This tool kit cc;mprises of three main
components : MPISAT—a cross platform implementation
of MPI {6], PARALIB —a parallel library generation tool
and MPIIMGEN - a code transformer for image

JC§ Vol. 1 No. 6 May - June 2006

lprocessing domain[10]. Each one of these three
'coﬁnponents has been designed to be stand alone parts.
The service they offer can be made use of, individually
in the absence of the other components. This is a very
essential attribute of the compon'ent for a modular

structuring.
MPISAK
MPISAT[6] is an implementation of MPI - 1.1 standard,

Cross platform execution and fault tolerance are key

aspects added to this implementation, which is enabled

due to its design. The primary goal of MPISAI is to use
a heterogeneous cluster. The tool chosen for this, in this

regard is DCOM (Distributed Component Object Model).
Components of MPISAI |
MPIRUN : A graphical user interface for setting up the

[
‘execution environment for any MPI program to run.

DAEMON : The DCOM object which form the core
of the implementation and is responsible for

Interprocess commumnication,

INTERMEDEATE : A library, linked statically to the
‘user proéess, which acts as an interfice between the

“uger process and the daemon

PARALIB : The Service Manager

Developing a library of sequential codes is not a very
difficult task. But Building even a modest paralle] library
do‘f{s not present itself to be an easy undertaking. Going
one step ahead, to develop a ﬁbrar_y of parallel codes
‘written in MPI and to incorporate the facility that the
- hbrary routines may be called froman orﬁnaw sequential
C/C++ code, calls for a tremendous amount of work. To
make one such library the MPI programmer not only has
to dévelop the Hbrary but also must_d'well &eep into the
‘underlying implementation details. Understanding the

code of any MPI implementation, if it is available, is a

542

very tedious job for any parallel library developer. To
overcome this difficulty of a parallel library creator,

“PARALIB” has been developed over MPISAL
PARALIB is a GUI based tool that helps the library

creator in histher endeavor, keeping the implementation
details transparent. It is a resourceful generation tool that
assists any MPI programmer to build his/her own paraliel
library over MPISAL It provides a user friendly interface
to help in building the library. The motivation for

developing such a tool is as follows:

@ A conventional sequential C/C++ programmer must
have native access to a library of parallel routines,
for use in his/her code i.e. the programmer must be
able to make use of these parallel routines, that are
part of the parallel library, as simple function call in
his/her programs.

A large onus lies on the library creator to understand
the implementation of the underlying MPI protocol.
The library creator must take care of setting up of the
parallel execution environment, thus providing an
abstraction of a sequential environment for the end

user of the library.

As mentioned earlier, an effortless and efficient means
of creating a library of parallel routines is needed.
However, a library on distributed environment to be
effectively made use oﬁ must itselfbe distributed across
the nodes of the environnent. If the paraltel library
generator could further include this feature of building
a distributed library, it would be much appreciated.

Ofien in a NOW, the routines for creating such a library
would already exist, on the various nodes that constitute
the netwotk. It would save great effort on the part of the
library creator if the library generation tool could provide
for including these routines in the new distributed library

it creates.

A Three Tire Architecture Model for A Computational Grid

End user

Location Independsnt
Service Atcess

D,

Computing)
Resource

Camputing
Resource

Figure 3. MPISAI-SMCG Environment.

The Parallel Library Auto Generation Tool - “PARALIB”
. includes all the above desir_cd features and in addition
provides a user friendly GUI for the library creator. These
features make PARALIB an efficient service manager in

: the"comﬁutationai grid MPISAL-SMCG.
MPIIMGEN : The DSCT

Most of the image processing operations are highly
: _c_omputation intensive. Not much effort has been directed
in adopting a parallel approach, for these applications
- often involve complex sequential algorithms whose

parallelization is found inﬁnli&ating. However, they have

a tremendous potential for parallelism. As an answer to
' this ptobIem, we have described a code ﬁausformer, that

_is. built using the pattern driven approach [7,8] to

' subsﬁtute parts of the sequential code that are identified

. to be bottle necks for faster coniputaﬁons, with calls to

7 their ;-)araljel counter part that are themselves part of a
paraltel library. o

_ MEHMGEN[IO] is a tool that can automatically replace
th‘le_se $equential image processing programs by

‘ equivalent; efficient parallel programs, from a library,
that are capable of running on a cluster of workstations.
Th_i.s tool uses a pattern driven approach to parallelize

the sequential codes.

Any sequential image processing code can be converted
into its corresponding parallel version using MPIIMGEN
tool and can be added to the parallel library using the
PARALIBR tool. Thus, a distributed parallel library of

image processing routines can be built. This can be used

_ by the service provider and made available to be invoked

- 543

by the application developers.
MPISAI-SMCG ENVIRONMENT

The features that are predominantly looked for in any
environment that provides for scientific computations aré
dependability, consistency, pervasive and inexpensive
access to high-end computatioﬁal capabilities. The
MPISALI tool kit provides this and much more on any
LAN, WAN or even across the Internet, The ease of
programming, when using our tool kit is an added
incentive for the end user. Unlike the conventional grid,'
there are no new protocols to come in terms with. Since,
most of the scientific environment is over a private
scalable network of well identified workstations, we can
often do with minimum security setups. What on the other
hand is of greater importance is a fault tolerant aﬂd_load
balanced setuﬁ for computation intensive operations that

need to run for long periods of time.

In the MPISAI environment, the Daemon running on the
individual nodes of the cluster, provide the distributed
scientific setup. The huge wealth of already existing
sequential code can be easily and efficiently converted
into their parallel counter parts. These can then be used
to construct a distributed parallel library making use of
PARALIB, the parallel library generator. Once this is
achieved, a user who has little or no expeértise in parallel
programming can write applications that can execute
parallely, making dexterous use of the cluster employed.
Thus conventional programmers can, without

compromising their never

JCS Vol. 1 No. 6. May - June 2006

w508 filiar

——T7"7 flllar

mechee- D49 filler
—e— 1111 filler
ser—e- 45715 fillar
=18'19 liko e
121 fille s

Speed

3 4 5 =4
No ofProcessors

Figure 4. Graph for Median Operation.

programming environment, make adroit use of the nodes
of the network. This indeed presents itself as an attractive
alternative for many of the recent cluster solutions, from

which the end user has to make his/her choice.

5. RESuLTS
We created a parallel image processing Hbrary using the

'PARALIB tool. It has the following four components:

@ Sequential Image Procéssing Operations : This
| c'omponent contains a large set of sequential
operations typically used in image processing.
Parallel Extension: This component consists of
-Toutines that introduce pgrallelism into the library and
are implemented using the MPI 1.1 standard. These
roufines can be classified into two classes namely,
Toutines for image distribution and redistribution and
routines for overlapping communications.

Paralle} Image Processing Operatidns: To reduce the
code redundancy as much as possible,' much of the

code for the sequential generic algorithms is reused

in the implementation of their respective parallel

count;rparté. To that end, for each genéric algorithm

‘a parallelizable pattern is defined. Each such pattern

544

represents the maximum amount of work in a generic
algorithm that can be performed both sequentially and
in parallel. In the latter case without having to
communicate to obtain non-local data. All the parallel
image processing operations follow the master-slave
paradigm. This paradigm is implemented using the
SPMD approach provided by the MPI standard.

Single Uniform APL: The parallel library is provided
with an application programming interface that is
similar to that ofa seduential image processing library.
The only parallel feature that the user needs to specify
in this API is the number of processes to run the

operation oxn.

Each of these library routines can be invoked as a service

by the application programmer using the grid resources.

Performance Results Of Paralib

This section gives a comparison of parallel vs sequential
algorithms implemented in PARALIB. The machine
conﬁ_gurations of the nodes in the cluster of workstations,

on which the paraIIél programs were tested are as follows:

@ Each node in the cluster is a 2.4ghz intel processor
with 512MB RAM. ‘

The LAN speed was 100mbps witha 10/100 Ethernet
switch .

Median Operation- The timing analysis was done for a
1024*1024 image with different filter sizes. All the
algorithms assume that the images were read from files.

The Speedup obtained is also shown in Figure 4.

Performance Results Of Mpiimgen

The MPIIMGEN tool has been tested for various
programs and it gives good performance results. For eg
consider the program with the following operations

o Histogram equalization on a 256*256 image.

& Sum of two 256%256 images. _

o A vertical sobel filter of size 3*3 ona 256%256 image.

A Three Tire Archifecture Model for A Computational Grid

A median filter of size 27%27 ona 1024*¥1024 image.
A template matching operation of an image of size
128%128 in an image of size 1024*1024.

A morphological operation dilate on a 256%256
image.

e A translate operation on a 256*256 image.

_The time taken by MPIIMGEN for converting this

 program into a parallel program is 4.12 seconds. The
timing analysis for the generafed parallel program on a

cluster of workstations is shown in Table 1.

Image |Noof | 5*5 Speed

Size Nodes | filter up
. ‘ {in secs] = 5*5
1024*1024 1 7.015 1
1024*1024 2 1 3.64 1.92
1024%1024 3 2.484 2.82
1024*1024 4 2078 |.3.37
1024*1024 5 1.723 407
1024*1024 6 1.486 4.72
1024*1024 7 1.53 4.57
1024%1024 8 1.579 4.44

Table 1. Results of MPIIMGEN

Coﬁclusion .

‘We have explained our proposed SMCG (Simple Model
for Cornputational Grids). As an implementation of this
model, we have described the MPISAI — SMCG that
- compnses of the three components, MPISAIL, PARALIB
- and MPIIMGEN In an effort to overcome the difficulty
| in constructing an efficient parallelizing compiler, we
have- introduced the idea of domain specific code
. transformers. MPIIMGEN is an instance 6f this for image
proc_:essing applications. We would also like to make a
tmention of our on going efforts. We. are extending
© - MPISAIL our implementation 0£ the MPI standard, to
inblﬁde MPI — 2. We have also found much

encouragement in an endeavor to build a generic

545

parallelizing compiler that can in due course of time
enhance the DSCT layer. We believe, that SMCG offers
an efficient and user friendly environment for the end’

USEL.

Acknnwledgement: Authors dedicate this work to the
Chancellor of Sti Sathys Sai Institute of Higher Learning,
Bhagawan Sri Sathya Sai Baba, '

6. REFERENCES

[1] Foster, I and Kesselman, C., “Globus: A Toolkit-

Based Grid Architecture”. In The Grid: Blueprint

for a New Computing Infrastructure, (Foster, I. and

Kesselman, C. eds.) Morgan Kaufmann, 1999, 259-
278.

Foster, 1., Kesselman, C. and Tuecke, S., “The

Anatomy of the Grid: Enabling Scalable Virtual
Organizations”. International Journal of High

Performance Computing Applications, 15 (3).200-
222. 2001

[3] Foster, L and Kesselman, C. (eds.). “The Grid:

Blueprint for é New Computing Infrastructure.”

Morgan Kaufmann, 1999,

[4] I Foster, C. Kesselman, J. Nick, S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed. Systems Integration,
Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002,

W. Allcock, 1. Bester, J. Bresnahan, A. Chervenak,
L. Liming, S. Meder, 8. Tuecke, GridFTP Protocol
‘ Spec1f1cat1on GGF GridFTP Working Group

(3]

Document, September 2002.

Bhaskaran .V, Vijay Krishna .P, Sai Swarﬁinathan. ;
G and Baruagh PK.
of MPISAL”, Web Proceedings, HiPC 2003,
Hyderabad, 2003.) -

6]

“Design and implementation

JCS Vol. 1 No. 6 May - June 2006

[7] Christeph W Kessler, “Pattern-Driven Automatic
program transformation and Paralleization”, IEEE
3rd Euromicro Workshop on Parallel and Distributed
Processing.

[8] B.DiMartino and G lanello, “PAP Recognizer: 4

Tool for Automatic Recognition of Parallelizable

patterns”, IEEE 4th International Workshop on

Program Comprehension (WPC "96), 1996, p.164.

[9] S.Bhansali, J.R. Hagemeister, "4 Pattern-matching

Approach for Reusing Sofiware Libraries in Parallel

Systems "

[10] Vinod Verma and Pallav Kumar Baruah,
"MPIIMGEN-A code transformer that parallelizes
Image processing codes to run on a cluster of

workstations” Proceedings of IEEE CLUSTER
2004,San Diago California USA.

546

Author’s Biography

Karthik Prashanth J completed his
Bachelors and Masters in Mathematics
from Sri Sathya Sai Institute of Higher
learning, Prasanthinilayam, INDIA, He

then went on to do his Masters in
Technology in Computer Science from the same
University, in the year 20035, His current areas of interest
are parallel and grid computing.

Dr.P.K.Baruah completed his Ph.D. in Mathematics
from Sti Sathya Sai Institute of Higher learning,
Prasanthinilayam, INDIA, in the year 1994 and is serving
in the department of Mathematics and Computer Science
since then. He has published number of articles in
international journals. Current areas of research interest

includes High Performance Computing,

