An Agent - Based Technique For Network - Wide File Search In

Heterogeneous Peer - To - Peer Systems

An Agent - Based Technique or Network - Wide File Search In
Heterogeneous Peer - To - Peer Systems

T.Amudha’

ABSTRACT

Heterogeneity is a major characteristic of all modern
computer networks, as a consequence of the proliferation
of different types of Operating Systems (OS) acting as
nodes in such an environment. This presents unique
problems to common activities such as locating resources
on a network. Agent computing presents us with several
solutions when combined with the Peer-to-peer
networking to these resource discovery problems. We
approach this issue by presenting the solution to a
seemingly innocuous problem, i.e., locating a particular
file or files that match a given regular expression on the

available network,

Keywords: Agents, peer-to-peer system, multi-agent

system, heterogeneous network

1. InTRODUCTION

Search problem Scenario

To define this probiem, the problem space is defined,
here referred to as its “Search Space”. The search space
when defined with respect to a single node‘ in a network
is called the “Local Search Space” {LSS), which containg
all searchable files and folders on that node for a normal
user. The “Global Search Space” (GSS) is defined as all
files and folders on that network that are search-able by

! Lecturer .2 Research Scholar,School of Computer Science
and Engineering, Bharathiar University, Coimbatore-
641046, Tami! Nadu. E-mail: amudha swamynathan
@gmail.com, manurajan10@yahoo.co.in

1199

Manu Rajan Nair?

a normal user on any node on the network. The LSS and_
GSS may vary from node to node depending on the user
on that node. Further the GSS is an extremely dynamic
environment with varions nodes connecting/
disconnecting from the network and the files/folders on
the nodes varying, as the files/folders are added/
removed/changed. Further there are limitations on the
files/folders accessible from a given node due to security
restrictions imposed on the network. The inherent
dynamism and unpredictability of the problem space
demands a solution that may be well based on Agent

computing and Peer-to-peer networking,

The standard file searching solution available on most
OS is simplistic and assumes that the user has knowled ge
about locating the file and provides a “search term” that
is reliable enough, further it is assumed that the user is
aware about the limitations imposed by the network.
Simply stated, the user knows what search term will help
him to locate a particular file and that the file is located in
an accessible location. This general simplification applied
to the problem may be effective for searching the LSS
but may fail in the larger context of the GSS. This “Goal-
directed” behavior presents us with the opportunity to
select a solution that best reflects the problem, in this

case “Agent Computing”.

Agent Computing Paradigm
Agents can be described as a small program running on
a node tasked with a specific purpose. The ageni is

singularly responsible for finishing the task, with several




Karpagam Jes Vol. 3 Issue § July - Aug. 2009

other agents with other assigned tasks executing
simultaneously on that node. The agent is indéendent,
self-regulating and goal-oriented; it may communicate
with other agents on the node or network. Functional
autonomy being one of the defining features of agent
paradigm, social-communication is another. Agent
autonomy implies that the entity can observe its
environment and act upon it in a fashion to further the
goal assigned to it, without explicit directives from a user,
Here the user is expected to only set the goal to the agent;
the agent by it has to figure out ways to reach that goal.

Agents may be Mobile or Statié, intelligent or dumb.

Peer-to-peer and Agent Based Solutions

Peer-to-peer (P2P) systems are normally characterized by
decentralized control, farge scale and extreme dynamism
of their operating environment. Such P2P networks may
be of several types, such as self-regulating centralized
node tracking based systems with limited intelligence
used in P2P file-sharing tools such as Gnuttella and Bit-
torrent networks, or intelligent distributed node tracking

based systems such as Anthill.

All existing models based on P2P Agents can be broadly
classified along traditional lines as Static or Mobile and
further as intelligent or dumb, but all of them still use the
central-tracking model for locating and tracking the peers
and the publish/subscribe model for exchanging data.
Taken together these provide several advantages such
as lower communication overheads in locating resources
or services and exchanging data. But such systems
compromise on critical Agent-computing features such
as Agent autonomy by stipulating that an Agent shouid
be part of a peer network only after it subscribes to another
published agent on that network. Furthermore such
agents need to be user-pre-configured or pre-programmed

to handle interaction between peers thereby increasing

maintenance requirements for the whole system. Several
solutions have been implemented to solve the above
problems, one of them is the usage of a Client-Server
based peer iracking systent, and another method is the

use of mobile agents.

2. METHODOLOGY

In the context of the Search Problem, an agent should
display goal-directed behavior; hence only intelligent,
static agents are considered for the solution, With respect
to the Search problem, generally we assume that a static
agent is available on each node with access to the LSS
on that node; the GSS is made up of all LSS accessible to
all the agents on each of the respective nodes. The
network is assumed to allow some form of datagram

communication among the agenis.

In this Agent computing based solution, the Initializer
agent is set the goal of locating matches to the search
term from the GSS. The Initializer agent communicates
this goal to other Search agents in the network using
datagram broadcasting, the other agenis on receiving
the broadecast can “choose” to execute the search request,

and in doing so actas “Search Executers” or “Executers”.

The user is expected to pass a “search term” which may
be a file name that the user needs to locate or a regular
expression to a pasticular set of files to the Search Agent
on that node defined as the “search manager” or
“Initializer”. The goal of the Initializer is to return a list of
matching locations on the GSS to the user in the smallest
possible time. To define a performance metric, we use the
First Positive Response Time (FPRT) defined as the time
required by an agent to return the first matching location

on the GSS. In these normal search methods, the FPRT

-depends on several factors such as size of GSS,

communication delay between nodes and most critically,

1200




An Agent - Based Technique For Network - Wide File Search In

Heterogencous Peer - To - Peer Systemns

the number of nodes in the GSS. The FPRT is essentially
the sum of all the LSS FPRTs with respect to the Im'tiah'ze{
node. This method ignores the parallelizability of the
problem; the Initializer node has to search the LSS on

each node serially.

3. SreciFic GoaLs
The specific goals of the system are
o Todevelop a File search application that
o Allows searching for specific files/
folders on the entire network
o  Allows searching for files/folders
matching a pattern on the entire
network
o Display results for a given search from
the entire network.
®  Rebustness
©  System is not adversely affected by
network communication
o System is not adversely affected by
individual node breakdown.
e Efficiency
o System gets maximum positive
responses in minimum time
¢ Concise communication (very small
comrmunication overhead)
e  Reliability
©  Results are always correct

o No redundancy

4, FEaTurEs OF THE APPROACH
It is obviovs that any solution to the Search Problem in 2
network must have the following features:

1.Low maintenance overhead

There must be minimum pre-requisites to setup

and install the agents.

1201

2. Low Communication overhead

Inter-agent communication must take up minimum
bandwidth.

3. Best-case FPRT

Search results must be returned to the Initializer

with minimurm delay.

With the above aims, an Agent-based peer-to-peer
application was developed in JAVA. This uses datagram/
UDP protocol for inter-agent communication {ensuring
minimum communication overhead), using features of the
JAVA environment to ensure low maintenance costs and
implemented machine learning based intelligence on the
agents to optimize searching to improve the FPRT.
Datagram based commmunication is the basis for most
modern Agent and P2P based systems, as this allows for
minimum bandwidth usage on a network, Since in the
proposed system, all conimunication between agents is
in the form of single-line text messages, UDP-protocol
based messaging system gives the best solution. The
platform independent JAVA environment provides the
application with a uniform application environment
protecting the agent from wvariations in OS

implementations.

The ctitical aim of the application is to achieve minimum
FPRT for each agent on a given GSS; hence optimizing
the search at both ends, i.e. the Initializer and executor
becomes necessary. Since the OS and file-systems impose
limits on the efficiency of search strategies, other methods
are necessary to improve the FPRT. The executor and
Initializer both implement a simple machine learning based
intelligence, that allows the agent to optimize the “search
termy” based on previous experience for the Initializer and
use optimized search strategy for the executor also based
on learned knowledge. This introduces the concept of

Agent “aging” whereby an agent when installed is an




Karpagam Jcs Vol. 3 Issue 5 July - Aug. 2009

“infant” with no knowledge of its LSS or GSS. As the
agent patticipates in the search process either as ﬁﬁah‘zer
or executor, it gains experience by relating search terms
to search results for its LSS, hence increasing in

“maturity”,

A mature agent executor, in theory can return a search
result to an Initializer agent with an FPRT of nearly zero.
Further we use the concept of “social communication”
among the mature agents to share the knowledge gained
with “younger” agents on its GSS. This allows a G8S to
mature overtime and lowers the FPRT for all searches
which in turn leads to lower bandwidth usage and
maintenance costs. The system consists of a static
intelligent Initializer agent; a static intelligent executor

agent and a UDP based communication protocol.

The executor shows certain qualities of mobile agents as
the various agents exchange experience with each other.
Hence an agent based P2P JAVA application allows the
design of a robust and efficient network-wide search
solution which can then be extended to cover other
functionality such as network resource management and

monitoring.

5. OrERATIONAL PARAMETERS OF THE SysTEM

The environment in which the system operates can be
divided into two levels, Files and Folders on the local
node and Files and Folders on all other accessible nodes.
Local file searches are limited only by node efficiency,
but for searching other nodes, efficiency varies greatly
depending on various uhp_redictable factors such as
network traffic, network security limitations and
communication reliability.

As the agent matures with every search that it participates
in, the search accuracy increases with increasing

maturity. Consequently, even though at the beginning,

search results may not reflect all the matches, it is more
than compensated in later stages by the increased search
efficiency that is far greater than traditional approaches

to the system.

The solution is based on the platform independent JAVA
framework, containing an Agent-based application that
clearly follows the Agent paradigm. The solution consists
of several similar agents installed on various nodes in a
network; each node solution consists of a Search
gateway and Search Agent. A user at any one of these
nodes can use the gateway to search for files on all the
nodes in the solution. A Search-Agent communications
protocol is implemented on top of the UDP Datagram
protocol system in order to achieve maximum efficiency
in data communication. The various agents are completely
autonomous, with each deciding for it how it goes about
efficiently searching its own node. This acts like a
distributed application, but it displays a communal

intelligence by working towards a common aim.

0. AGENT DEeston _

The overall system organization is given in the following
figure:

The main module is the top-most module and acts as the
system initializer. The search agent module represents
the actual agent that executes the search, on initializing it
waits listening for other agents broadcasting search
queries, on receiving a query it evaluates the best
strategy for executing the search. The search gateway
module acts as a gateway to the GSS of the solution,
where all search terms are entered and answers sought.
The gateway on the solution is completely decoupled

from the underlying search agent so as to allow the agent

to be truly independent. The communications module

provides the Listener for both single and multi-casting;

the queries are passed to the Search agent and results to

1202




An Agent - Based Technique For Network - Wide File Search In
Heterogeneous Peer - To - Peer Systems

l Main Module

1

Commumcat ons Module

Search Gateway Module

I

L Intetligent Agent I Search Agent |
intelligence
Module
N
L Intelligent Agent Cutput —' L Search Agent Quiput I

Figurel: System Organization

the Search gateway. The communications module
processes the search information cache and derives
generalizations for search patterns, when the agent is
idle; it tries to share the learned knowledge with other
agents. The Search Agent, Gateway and Intelligence
agents act as the recipients, whereby messages with the
search query tag are passes to the search agent display
result tags to search gateway for dlsp!aymg and Intel

exchange tags to Intelligence module.

7. SEARCH STRATEGIES
The Search Agent class uses Native JAVA file [/O
functions to search the file system or the Local Search
Space LSS for matches to the given search term. It utilizes
the JAVA regular expression model to ascertain matches
with the search term. The LSS search strategies are of
three types

1. Hard Search
Directed Search

o

s

Directed Hard Search
In Hard Search, the entire LSS of the Node is searched in

a Breadth first algorithm for locating matches, i.e., all

1203

directories from the top level onward are searched

recursively going down the directory tree.

In Directed search, only the given directory is searched
for matches. In Directed hard search only the specified
levels starting from the given directory down are

searched.

The selection of the strategy for locating a file depends
on the result of evaluation conducted on the search term
by the agent. The SearchAgent first trics to match the
search term with any axioms in the Axiom database, on
locating a match; it uses the directed or directed hard
search strategy. If no matches are found, it resorts to the
hard search strategy. If the axiom corresponds to an earlier
successful search, then the directed search strategy is
used to validate the location, else if the axiom corresponds
to a search directive, then directed hard search is used

to search the directories below it.

When a “Hit” is achieved, i.e., a positive match is located
during search, the Search Agent or executor sends this
information back to the Initializer agent using a uni-

casted packet. This forms the heart of the implementation




Karpagam Jcs Vol. 3 Issue 5 Juli{ - Aug. 2009

model used by this solution. The query from another
agent is the trigger that initializes the search; ea‘{h hit is

then sent back to the Initializer for display.

The intelligent agent based solution for locating files on
an enterprise-wide network is developed using JAVA. It
leverages JAVA technologies to develop a datagram
protocol implemented on top of JAVA UDP protocol
communication. It also uses the XML file format as the
backend for structured data storage, analysis and
retrieval, The XML file format based backend is required
as it allows the developer to define a database-like format
for data storage and refrieval, separating the database
logic from the program logic. This thin-database allows
user to store cencise amounts of data without
redundancy. JAVA provides user with functions that allow
the developer to easily add, remove or ﬁpdate information

inan XML file,

The Search Strategy Database is physically an XML file
containing structured data, each node is made up of an
axiom, and each axiom is a valid association between a
search term and a location on thé LSS. Each axiom also
contains a value describing its strength as an integer,
greater than or equal to zero. All axioms have an initial
value of 1, every time a positive validation of the axiom is
done; the current value is multipiied by 2, Every negative
validation decrements the value by 1. When an axiom
value on validation is found to be zero, it is deleted from

the database.

8. Resurys From TESTING AND ANaLYsis OF GSS Using
FPRT |

The various agents together form a Global Search Space

(GSS) that can be searched from any agent on that GSS.

The agents allow search execution in a distributed

manner, where each agent is tasked with searching its

own LSS, The main aim of the system is the reduction of
the time required to locate the minimum amount of
matches, i.e., the solution is designed for maximum
sensitivity and responsiveness. The peer-to-peer system
allows the solution to act in a one-to-one communication
model, where no other intermediates are involved. This
allows the solution to provide an interactive search system
where a user can directly be aware of the goings on in the
GSS. This further allows the minimum overhead in

communication within the GSS.

Intelligent or “smart” agents display an Artificial
Intelligence (AI), which is used to increase the efficiency
of the solution. Searching can be made more efficient by
using smart agents, which can interpret the cache to
derive axioms. This derivation of axioms allows the
creation of a much smaller search database, which does
not depend on the number of searches. This also implies
that axioms can grow in strength with increasing number
of searches conducted on the GSS. The agents are allowed
to share this information with other willing agents, thereby
allowing a new agent that becomes a part of the GSS to
quickly build up its search database without having to

wait to take part in search execution.

The problem space dealt with by the solution is extremely
dynamic and unstable; it consists of various nodes, each
with its own local terrain defining its LSS. The sum of all
these LSS form the GSS, the solution acting as a system
that allows the user to locate any file that belongs in the
GSS from any node attached to the GSS. Since the
structure of the LSS and the search term that is being
used are a subjective criterion, i.e., they may vary from
system to system and network-to-network, any

performance metrics based on them may provide values

* that cannot be replicated at another location. Hence a

new metrics based on the FPRTs suggested as an

1204




An Agent - Based Technigue For Network - Wide File Search In

Heterogeneous Peer - To - Peer Systems

objective criterion for evaluating the behavior and

performance of this solution. @{

The Search Gateway calculates the First Positive
Response Time where the search is initialized. The FPRT
for each agent on the GSS is calculated and displayed at
the end of the search. Initially, The FPRT values for a
GSS made up of infant agents is very high, as all of them
have to resort to searching the entire system in order to
locate a match. Once the search is completed and the
information indexed by the respective agents, firther
searches using the same search term is lowered

dramatically.

A test-bed is setup and the performance of the systern is
analyzed to determine performance parameters of the
Global Search Space (GSS) under real life environments.
The GSS consists of three nodes NODEI, NODE2 and
NODE3. Each node is made up of three entities, the
SearchAgent (SA), the SearchGateway {8G) and the
IntelligenceAgent (IA). They are represented node-wise

respectively as follows-

OnNODE] - SA1, SG1 and1A1, OnNODE2 - SA2,8G2
and IA2 and On NODE3 — SA3,8G3 and IA3

The First Positive Response Time is determined at the
Initializer and is calculated for each node on the GGSS that
has an executor. For a given GSS with “N” nodes, there
will be a maximum of “N” FPRTs as well for each search.
The FPRT thus represents the time taken in seconds for
the first positive response from an executor node reaches
the Initializer node and is calculated at the Initializer end

of the GSS.

The Testing procedure is as follows, the Test Battery
consists of five search terms $1, S2, S3, S4 and S5, Three

searches “First-Search”, “Second-Search” and “Third-

1205

Search” are conducted for each search term, one each of
the searches are initialized from each of the different

nodes on the GSS.

81 ="“*gif
52 =+
S3 = Hgyed
S4 ="*tmp”
S5=“*{¢cg”

NODE1 - SYSTEM32 with ip 10.0.0.32, LSS size = 28411
files

NODE2 - SYSTEM30 with ip 10.0.0.30, LSS size =42173
files

NODE3 - SYSTEM27 withip 10.0.0.27, LSS size = 15149
files

First-Search is initialized from SG1 on NODE!1
Second-Search is initialized from SG2 on NODE2
Third-Search is initialized from SG3 on NODE3

FPRTs for search 51 from SG1

FPRT [N SEG

SA1 SA2 SA3

SoarchAgenis

Figure 2: FPRT: for search S1 from SG1

FPRTs for search S1 from $G2

FPRY INSEC
W & th o
QO o o o

h
<

=y
(=]

o

SA1 SA2 SA3

SearchAgents

Figure 3: FPRTs for search S1from SC2




Karpagam Jes Vol. 3 Issue § July - Aug. 2009

Search Gateway 100,053 . 51

Searchifor  jnqif

Broatdeasbng Search e g
Firsi Search-Responsefrom: SYSTEM30 IPAddress: (0.0.030FPRTis 16 seconds

S2arch-Responsa o, SYSTEM30 IPAddress: 10.8:8.30 4 Time 15 speonds-

CiDocuments and Satfinysiddministralontotal SetingatTermporan Inteime! FilesiSantentiERSY
first Search-Respanse fram: syslem32 Paddress: 10.0.032FPRTIS 15 seconds

Clnetoub aif

Search Respnnserram ::YST“M?D tPAdess: 10.0.0.30 In Time 30 seconds

Search-Response from: system3? (PAddress: 10.0.0.32:n Tima 3¢ sezonds
Angtpubli \sdidasp s
First Search-Response from: SYSTEM2T IPAddress: 10.0.8.27 FPRY Is 45 seconds
Cotuments and Setfingsiadiministraton,otal SeltingsiTemporary Infemet FllesiContent G5BT
Search-Respanse ko SYSTEMR? 1PAddress: 10.0.0.27 inTime 43 seconds
CADocuments and SettingsiAdministratoiLocal SetingstTemporary ntemet Fifes¥C ontentIESBT

Cpagh R £ SXATEMAZ IRAddnnss £A0 A7 4 Tl d 6.4 ”

CiDocuments and SettngsiAgministratonl eal Setﬁni;_s\Temﬁntawlniemat FileleunlentiES‘ﬁUj :

CiDocuments and SettingstAtministratontocat Setting siTamaorary Infamet Fllaa\ContentiESISUR)

o

Figured: First-Search results on SG1 for ternf]

Search Gateway 10.0,0.30

Searchifor. g

First Saarch-Response from: syslem38 1PAddrass: 10.0.0.30 FPRT s O seconds

SearchRespanse from. system30 [PAddress: 10.0.030 inTima 0 seconds
CDocumants ang Setings'adminlshraloiLocal SettingsiTamporary Infemat FligsiGantent ERSUE
Flrst Search-Response from: SYSTEM2Z IPAddress: 10.0.8.27 FPRT Is 15 seconds

Search-Response from: SYSTEMIT 1PAddress: 10.0.0.27 in Time 15 ¢econds

Search-Resnons? from: SVSIem:Iﬂ 1Padiass: 10.0.030 In Time 15 saconds

First SearshRaaponse!rum BYSTEM3? IPAddress’ 10.0.0.32 FPRTis 30 seconds:
Clnatoublissampleslsakiasplzomponentsie,oif
Search- Easponse rmm 3 fSTEM!! Paddtese: 16.0.8.32 InTime 30 seconds

Broaduasting Search e %.gif i
CDosuments and SetingstédministralonLocat SeltingstTermorary infermat Fllaleunlent\EﬁlﬁUal ;
CADocuments and b inlstralenLocal SettingstT, Inlsmet FitasiContentIERBTH ™

<D and Seltingstagmini ocal SettingsiTermporary Intemet FilesiContent IESBTE -

CDeevmenls and SettingstAdmin ' peal Seftings\Temaorary intemet FiesiContent IESSLS;

ts_jts.gif

angeh Mtantod >

[2t

FigureS: First-Search results on $G2 for termS1

For a given search term S1 input from the SearchGateway

SG1, the FPRTSs calculated from the Initializer SG1 for each

of the three SearchAgent SA1, SA2 and SA3 is 15,

15

and 45 respectively in seconds. The test is repeated with

the same search term from SG2 on the second node yields

FPR_TS of 30, 0 and 15 seconds respectively from SAl,

SAZ2 and SA3 respectively. These results clearly indicates
to two factors, one is the reduction in FPRTs for NODE2
and NODE3, which translates to faster results for the

above search term on all searches on the GSS. The second

factor is the inherent dynamism of the GSS, which has

caused a rise in FPRT for Nodel. It is further clear that
there is an overall significant improvement in the
searching speed on the GSS indicated by the drop in
average FPRT for the search from 25 seconds to 15

seconds, an improvement of nearly 40%.

9, CoNCLUSION

The dynamic nature of the networked environment
demands that any solution for locating network resources
such as files and folders be able to inherently deal with
the unpredictable nature of its operating environment.
The peer-to-peer agent based system suggests a remedy
in the form of independent agents located at each node

with complete autonomy of action.

This research work clearly proves that unlike the
commonly used solutions for achieving improved search
throughputs such as indexing and caching, this solution
achieves even higher performance with much lower
communication and processing overheads. The solution
can demonstrate thai by using the suitable paradigm to
solve the problem, in this context, Intelligent Agents, a
dramatic increase in selution efficiency can be achieved.
A learning based artificial intelligence (AI) is used to
increase the efficiency of the solution. The AI analyses'
the performance of the attached search agent and derives

ways to make future searches more efficient,

REFERENCES

1] Andrew Garland and Richard Alterman,
“Autonomous Agents and Multi-Agent Systems ",
Actapress, Vol. 8, PP, 267-301, 2004.

(2] Andrej Lucny, “Computing and Informatics ", Vol.
26,2004

[3] Caroline C. Hayes,Agenis in a4 Nutshlell, “4 Very
Brief Imtroduction IEEE Tramsactions on
knowledge and data engineering”, Vol. 11, No. 1,
Jamuary/February, 1999.




An Agent - Based Technique For Network - Wide File Search In

Heterogeneous Peer - To - Peer Systems

{4] Erika Horn, Mario Kupries and Thomas Reinke s
“Properties and Models of Software Agents aré
“Prefabrication for Agent Application Systems”,
Proceedings of the 32nd Hawaii International
Conference on System Sciences— 1999,

[5] Georgakarakou, C. E. and Economides, “4 Software
Agent Technology: An Overview, Agent and Web
Service Technologies in Virtual Enterprises”, N.
Protogeros (ed.), 2006.

[6] Henry Lieberman, “Autonomous Interface Agents,
Massachusetts Institute of Technology,” 1999,

{7] Hyacinth 8. Nwana, “oftware Agents: An Overview”,
Knowledge Engineering Review, 1996,

[8] Hyacinth S, Nwana and Divine T. Ndumu,
“Perspective on Software Agents Research
Research Report No. 97-03, Commerce Net, 1997.

(91 James Odell, “gents: Technology and Usage, (Part
1) Distributed computing architecture/e-business
advisory service Executive Report”, Vol. 3, No. 4,
2000.

{10} Jeffrey M. Bradshaw, “In Introduction 1o Software
Agents”, An introduction to agent technology PP
44, Chapter 1,1998.

[11] N. R. Jennings and M. Wooldridge, “Applications
of Intelligent Agents”, IEEE Transactions on
knowledge and data engineering, 1997.

~ [12] Nicholas R Jennings and Michael J Wooldridge,
“dgemt Technology Foundations applications and
markets ", Springer, 1998.

{13] Michael Luck and Peter McBurney , “"Challenges
for Agent Technology Moviné towards 20107,
UPGRADE Vol. V, No. 4, August 2004,

[14] Michae! Luck, Peter McBumey, “Onn Shehory. and
Steven Willmozt”, AgentLink I11, September 2005.

[I5} Marina Roesler and Donald T, Hawkins, “Intelligent
agents”, Online, Vol. 18, No. 4, PP, 18-32, 1994,

1207

[16] Pattie Maes, “dgents that reduce work and
information overload”, Communications of the
ACM, Vol. 37, No. 7, PP. 30-40, 1994,

[17] Ralf Steinmetz, Klaus Wehrle (Eds), “Peer-to-Peer
Systems and Applications”, Lecture Notes in
Computer Science, Vol. 3485, September 2005.

[18] “Foundation of Peer-to-Peer Computing ", Special
Issue, Elsevier Journal of Computer Commurication,
(Ed) Javed I. Khan and Adam Wierzbicki, Vol. 31,
Issue . 2, February 2008.

(191 Stephanos Androutsellis-Theotokis & Diomidis
Spinellis, “4 survey of peer-to-peer content
distribution technologies”, ACM Computing
Surveys, 36(4%:335-371, Decemnber 2004,

[20] Detlef Schoder and Kai Fischbach, “Core Concepts
in Peer-to-Peer (P2P) Networking”, In:
Subramanian, R.; Goodman, B. (eds.): P2P
Computing: The Evolution of a Disruptive

Technology, Idea Group In, Hershey, 2005.

Author’s Biggraphy

Ms T Amudha received her B.Sc Degree
in Physics, Masters Degree (MCA} in
Computer Applications and M.Phil in
Computer Science in 1995, 1999, and
2003 respectively, from Bharathidasan

University, India. She has qualified
UGC-NET for Lectureship in 2003. She has 10 years of
academic experience and is currently serving as Lecturer,
School of Computer Science and Engineering, Bharathiar
University; India. She is currently pursuing her doctoral
research at Bharathiar University in the area of Agent
Based Computing. She is engaged in active research
guiding MPhil research scholars and has successfitlly
produced 8 MPhil so far. Her research interests include

Object Technologies, Distributed Systems and Agent




Karpagam Jes Vol 3 Issue 5 July - Aug. 2009

Based _Compuﬁng. She has for his credit more than 15
publications in International/National Confq‘{enccs/
Journals. She is member of Computer Society of
india{CSI], International Association of
Engineers[fIAENG], International Association of

Computer Science and Information Technology[IACSIT].

Mr Manu Rajan Nair received the B.Sc¢ Degree and M.Sc
Degree in Computer Science from University of Kerala,
India. He pursued his MPhil in Computer Science under
the gnidance of Ms T Amudha, during 2007-2008 in the
School of Computer Science and Engineering, Bharathiar
University, India. His reseaich interests include agent

technologies and Computer networks.

1208




