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Static Analysis of Distributed Systems : An Approach

Awadhesh Kumar Singh’

Abstract

The paper introduces an approach to static analysis of
distributed systems. It is motivated by Dijkstra’s weakest
precondition calculus. Dijkstra developed it originally for
reasoning about the correctness of the sequential
programs. We propose to extend the proof technology
into the realm of distributed systems. Another goal is to
reason formally about the possible behaviors of a system
consisting of distributed components. The contribution
of the paper is the development of a style of modeling
and reasoning about the properties that allows for a
straightforward and thorough analysis of distributed
 systems. The well-known dining philosophers problem

serves as an illustration for the notation.

Keywords: distributed systems, weakest precondition,

weakest co-operation, correctness

1. INTRODUCTION
LI Background

Distributed system is a collection of processor—memory
pairs connected by a local area network or distributed
over a large geographical area. The processors

communicate in various unpredictable ways, because

'Department of Computer Engineering, National Institute
of Technology, Kurukshetra 136119, India
Email: aksinreck@rediffmail.com

Department of Electronics and Communication
Engineering, National Institute of Technology,
Kurukshetra 136119 India,

Email: umesh ghanekar@rediffimail.com

189

Umesh Ghanekar?

distributed systems are inherently concurrent,
asynchronous and non-deterministic. These characteristics
make themn more complex thah sequential systerns [2].
The set of tasks running concurrently make the
environment more complicated. Therefore,
CORRECTNESS is a major consideration in the design
of distributed systems. Normally system specification
depicts operational requirements and it does not include
the properties like liveness, fairmess, deadlock freedom,
mutual exclusion, etc. Implementer’s goal should be to
include these properties in order to achieve the correct
system design. The design of distributed systems is known
to be a complex task, because the behavior of a distributed
system results from interactions between concurrent
processes of which the system consists {17]. Hence, the
modeling tools are needed for helping in specifying the

systems and in reasoning about the correctness of above-

mentioned properties.

In order to guarantee the correct behavior of an
implemented systemy, it is very important to start the system
design with a correct specification. The use of formal
techniques has shown to be highly desirable to aid the
whole process of handling these problems, as they can
produce descriptions without ambiguities, duplicity or
lack of information {13]. The formal techniques are the
applied mathematics of computer systems engineering,
providing a means of calculating and hence predicting
what the behavior of a system will be prior to its
implementation. Moreover, formal verification has long
been promised as a means of reducing the amount of

testing required to ensure correct systems. They can be
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used for proper modeling and thorough analysis of
pioperues of distributed sysiems. Afeempting (0 overcome
these problems. two main categories of formalisms may
be identitied: the static analysis and the dynamic one. The
dynamic analysis relies on the limited number of test runs
1o make observations about the behavior of the systerm. A
couple of tools are available to perform this task. However,
since the dynamic techniques do not take in to
consideration all possible executions, therefore, they are
not sound [15]. Unlike dynamic analysis — where
“confidence” contes from running an arbitrary number
of test cases through a design — static analysis uses
nuathematical techniques to examine a specified design
property. The verification of a property. using static
analysis, is valid under all conditions and there is mo
element of uncertainty whereas dynamic analysis can
guarantee a property only under those test cases for which
it has been verified. Thus, while dynamic analysis is open-
ended and uncertain, static analysis removes uncertainty,
increasing designer confidence and reducing verification
time | 12]. Moreover. static analysis attempts to establish
universal properties independent of any particular set of
inputs. It uses rigorous formalized reasoning to prove
statements [10]. Therefore, we resort {o static analysis,

though it involves considerable amount of human effort.

1.2 Motivation

Although, a large number of static analysis techniques
are available in the literature for specification and
verification of concurrent/distributed systems. The static
analysis is difficult to carry out even for a simple
distributed system. If we consider a complex system, the
complicacy of the task is enhanced further, in absence of
some formal and precise method for reasoning [3].
Hesselink [16] regards Hoare triples as the most adequate

way to specify the systems. He adds further, one can use
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Hoare logic to define derivability of Hoare triples, but
weakest preconditions form a more convenient semantic
formalism that is sufficiently close to Hoare triples. With
this in mind we fee] that weakest precondition logic with
suitably designed predicates would be a suitable scheme

for system specifications.
1.3 The objective

Dijkstra’s weakest precondition logic {4] uses first order
predicate logic that is very easy to use and apply. it is
elegant because its syntax and semantics are well defined.
Therefare, the objective of the present work is to extend
the Dijkstra’s weakest precondition logic for assertional
reasoning of distributed systems. As. the weakest
precondition logic was developed by Dijkstra. originally,

for reasoning about the correctness of sequential systems.

2. THE MATHEMATICAL MODEL

A system § is defined by a set S.P of processes. which
can interact among themselves only through message
transactions. A process P is defined by a set 2.X of states
and a set PR of state transition rules. Assertion that a
proces P is in state Px is made by the predicate expression
in(Px). Each process has a predefined initial state denoted
by initial(Px,). The state set SX of the system S is the

collection of states of all the processes belonging to 5.P.

A process can move from one state to the other by the
action of a state transition rule. For a transition rule Pr
and a post condition Q there exist a weakest precondition
wp(Pr, Q) such that if the system state satisfies this
condition then the execution of Pr will eventually
establish the truth of Q. This guarantee however cannot
be given unless wp(Pr, 0) is true before the execution of
Pr. We divide this condition into two parts. The first part
is related to the process P itself, where the second part

includes the co-operation requirements from other
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processes. With this idea we define two parts, viz., (1}
weakest self pre-condition denoted by wsp(£r, Q) and
(ii) weakest co-operation requirements, denoted by
wer Pr, (). The total weakest pre-condition is then given

wp(P.r, Q) = wsp(P.r, Q) nwer(P.r, Q)

The post-condition  and the weakest pre-condition

by

wp(Pr, Q) is used to describe a transition rule Pr.

A non-deterministic state transition rule Pr may include
number of different sub-rules each of which requires a
definite pre-condition to be satisfied for its execution.
These preconditions will be called guards. Execution of
a sub-rule will change the state of P as well as the state of
one of the co-operating processes whose active co-
operation is necessary for this execution. State transition
in the co-operating process will be achieved by
simultaneous execution of a state transition rule. If the
pre-condition for more than one sub-rule are satisfied then
one of them is selected for execution. Selection procedure
1s non-deterministic and therefore, it is necessary to pass
this information to the relevant co-operating process to
produce the required state transition. The weakest pre-
condition for a non-deternnistic transition rule Pr is

obtained as follows.

Let there be # number of sub-rules denoted by Pr': i =
1....a1. On top of these sub-rules we assume a selector
procedure, denoted by select, which makes the required
non-deterministic selection . The post condition space for
this procedure should therefore include a number of

boolean variables denoted by

s00= Lo At each invocation the selector makes or.e

such variable true. If a sub-rule Pri has a post condition

Qi then
5 = wp(P.ri, [on)

Let B/ denotes the required guard for Pri, and then the

truth of this condition should ensure the selectability of
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5p ie.,
B; =wr(select, s;)
Where, wr{select, si) is the weakest requirement that the

procedure select may produce 5. Using equations for s,

and B, the rule Pr is described as follows:

Pru
O=3i:0;;
wp(P.r, 0)=3k: By~

(Vi e B;= wrselect, 57)) »

(Vjes;= wp(P.fJ, QJ—)) :

end of P.r;

3. THE PROPERTY OF A SYSTEM

The operational model of 2 system can be described by
state transition rules. These rules can be described
completely by their weakest pre-condition, post condition
pairs. However, only operational specification may not
be sufficient to describe the system requirements. In order
to specify a system completely, along with the state
transition rules the system properties must also be
explicitly described. Best way to do this is to define a
system invariant, which must remain true before and after
the execution of each state transition rule. That is, there

must exist a condition O such that

Q)

Vi, Vme {wp(Pi- 1y, O )= A Qi m =
Similarly for a guarded command we have

Vie(B; =0) A (B =wpP.r,0;)) r (Q;=0Q)

4. ILLUSTRATION

The complete scheme is being illustrated with the help of
a well-known prototypical resource allocation problem
involving allocation of pair wise shared resources in a

ring of processors, that is — dining philosophers problem.
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The reason for selecting the dining philosophers problem
for iltustration is many folds. The dining philosophers
problem has become a paradigm for large class of
concurrency control problems. It has achieved the status
df a legend, since it captures the essence of many
synchronization and resource allocation problems [8]. In
faet, it.provides a benchmark of the expressive power of
new primitives of concurrent programming [11]. Also,
the dining philosophers soletions are a basic building
block for higher order synchronization problems {14] such
as the drinking philosophers [8), job scheduling [1], and
committee coordination [7]. Following is the problem
statement for the dining philosophers problem.

1. Consider a system consisting of » number of
philosopher processes and same » number of fork
processes.

. A philosopher can pick up a fork if it is already lying
on the table.

. Any philosopher will pick up first the fork lying on

the table towards his left and then the right counterpart.

A philosopher will put down the forks in the same

above sequence after finishing the eating.
5. The system should ensure the deadlock-freedom.
4.1 Formal System Specification
We first specify the system by considering only the first

four conditions.

Viei=1.n PHIL;

FORK;

philosopher processes

Viei=1l.n fork processes

(a) States for PHIL, :

PHIL, . idle philosopher is sitting idle in the
chair in the dining room
PHIL .. riplf philosopher is ready to pick left

fork
PHIL, . picked-ulf  philosopher has picked up left fork
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PHIL, . riprf philosopher is ready to pick right
. fork

PHIL,. picked-urf  philosopher has picked up right
fork

PHIL, . eating philosopher is eating

PHIL. . ripdlf philosopher is ready to put down
left fork

PHIL, . pdif philosopher has put down left fork

PHIL, . rtpdrf philosopher is ready to put down
right fork

PHIL, . pdrf philosopher has put down right
fork

(b} States for FORK, :
FORK, lying fork is lying on the dining table
FORK, . picked-up  fork has been picked up by any

one of the philosophers sitting on
either side of fork

With reference to above states we can describe the

processes as follows :

Process PHIL, ; identified by PHIL ;

States - PHIL,. idle, PHIL .riplf, PHIL,. picked-ulf, PHIL,
riprf, PHIL, . picked-urf, PHIL, . eating, PHIL, . ripdlf,
PHIL,. pdlf, PHIL, . ripdrf, PHIL, . pdif

Transition Rules for PHIL : Viei=l.n

(PHIL, | is the philosopher sitting on the left (clockwise)
of PHIL, and PHIL,, is the philosopher sitting on the
right (anticlockwise} of PHIL. Similarly for the FORK.
also )

phil_.rl

wsp(phil,. 1, in(PHIL,. riplf)) = in(PHIL_ . idle)
wer(phil, . 11, in(PHIL, . riplf)) = true

phil 2

def Q1 = in(PHIL, . picked-ulf }a

in(FORK, . picked up )

wsp(phil,. 12, Q1) = m(PHIL, riplf')

wer(phil.. 12, Q1) = in(FORK, . lying) A

in(FORK . r1.s1)

phil, 13

wsp(phil, . 13, in(PHIL, . riprf)) = in(PHIL, . picked-ulf)
wer(phil, . r3, in(PHIL, . riprf)) = true
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phil . ¥4 :

def Q2 =in(PHIL, . picked-urf) A
in{(FORK, . picked up )

wsp(phil, . rd , Q2) = in(PHIL,. riprf)

wer(phil, . rd , Q2) = in{(FORK, _ . lying) A
in{FORK,,, .71 .52}

phil.r5 .

wsp(phil, . ¥5 , in(PHIL,. eating)} = in(PHIL_. picked-

urf}

wer(phil, . r5 , in(PHIL,. eating)) = true
phil . 16 :
wsp(phil,. r6 , in(PHIL,. ripdif')) = in(PHIL,. eating)
wer(phil . v6 , in(PHIL,. ripdlf')) = true
phil. ¥ 7 o
def 03 = in(PHIL,. pdif) ~ in(FORK.. lying)
wsp(phil.. r1, 03} = in(PHIL,. ripdif)
wer(phil . 17, 03) = true
phil . 18 . _
wsp(phil.. r8 , in(PHIL,. ripdrf}) = in(PHIL.. pdif)
wer(phil,. ¥8 . in(PHIL.. ripdrf)) = true
phil . ¥9 -
def Q4 = in(PHIL . pdrf) ~ in(FORK,_, . lving)
wsp(phil.. ¥9 , 04) = in(PHIL, . ripdrf)
wer(phil . 19, 04} = true
phil . r10 ::
" wsp(phil. r10 , in(PHIL,. idle )) = in(PHIL,. pdrf)

wer(phil . v10, in(PHIL. idle)) = true
Process FORK,; identified by F ORK.;
States - FORK, . lying, FORK, . picked-up

Transition Rules for FORK, - Viei=l.n
fork,. r1::
def 05 = in(FORK.,. picked-up) A

in(PHIL,. picked-ulf )
Q6 = in{fFORK, . picked-up)
in(PHIL_ . picked-urf')
R1=05v {6
Bl = in(FORK, . lying) ~ in(PHIL_. riplf
B2 = in(FORK, . lying) ~ in{lPHIL_ .riprf)
wp(fork,. rl , R1)=(Bl v B2) A
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(Bl = wriselect, in(FORK,. 71 .51)))} A
(B2 = wr(select, in(FORK,. 11 .s2)}) ~
(in(FORK; . ¥1 . s1) = wp(FORK; . r1*, 05)) A
(in{FORK; . 11 . 52) = wp(FORK; . r1*, 06))
fork;. ¥2 . :
def O7= in(FORK;. lying) ~ in(PHIL;. pdlf)
08 = in(FORK; . lving} ~ in(PHIL,,. pdrf)
R2= OJ7v Q8
B3 = in(FORK, . picked-up) ~ in(PHIL;. rtpdif}
B4 = in(FORK, . picked-up) ~ in(PHIL.,.rtpdrf)
wplfork;. r2 , RY) = (B3 v B4) A
(B3 = wr{select , in(FORK;. r2 .51))) A
(B4 = wriselect , in(FORK;. v2 . s2))) A
(i(FORK,. 12 . 51} = wp(FORK, . r2', Q7)) A
(in(FORK; . 12 . s2) = wp(FORK; . 12*, 08))

4.2 The Correct System Construction

If the system state satisfies pre-condition of at least one
of the rules then system under test is said to be running.
If system is in a state where none of the rules can be
applied, no process will be able to proceed or change state.
In other words, the system is said to be under deadlock.
If pre-conditions of all the rules are negated and
conjuncted, it will generate the combination of states of
processes, which will lead to deadlock. The Occumrence
of this condition shows deadlock in the system. Following
is the derived deadlock condition. (In order to restrict the
length of presentation, the detailed logical manipulation
steps are not showi.)

Vi e {in{PHIL,. riplf ) A — in(FORK; . bying)} v

{in(PHIL;. rtprf) n — in{(FORK,,, . lying)}
First disjunct in the result represents a not achievable
system state. Since we have defined that each philosopher
will try to ﬁick up left fork first. So it is not at all feasible
that all philosophers are ready to pick up left fork and no
left fork is lying on the dining table. Thus system will
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never be in that state. Hence we conclude at the second
disjunct.
Vie {in(PHIL;. riprf) A — in{FORK,.; . Iying)}

It represents the system state, which leads to deadlock. In
other words, it represents “all the philoéophers are ready
to pick up right fork and no right fork is lying on the
dining table” which is a deadlock condition. Thus, if the
specification of a system is not correct, our approach,

using the weakest precondition logic, can indicate that.

On negating the above derived deadlock condition and
manipulating further, using the first order predicate logic
fules (details omitted), we get the following condition

for deadlock freedon.
3 i e in{PHIL;. idle) v 3 i o {in(PHIL, . picked-urf) A
in(FORK;. lying}}

We conclude that our approach is not only capable of
indicating faults, if any, in the initial system specifications;
but it is powerful enough to derive the correct system
specifications form the existing system specifications.
Therefore, it can be effectively used for construction of
correct distributed systems. The condition for deadlock
freedom, derived above, must be incorporated in the
system specifications as the system invariant, This
approach is similar to the constraint satisfaction [3] where
the system specifications can easily be updated when the

verified system is further modified depending on needs.

5. SCOPE FOR THE MODEL VALIDATION

The approach, presented in this paper, suggests how one
can be used it to handle a class of distributed algorithms
in which process communication follows message passing
baradigm. Though the strength of our modeling technique
is simplicity, accuracy has not been compromised for the

sake of simplicity. Nevertheless, our approach needs
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careful human effort. However, in our logic, the
correctness is ensured by proving assertions that are
formulas in predicate logic. These formnlas must be
embedded into the system during its design phase. Dijkstra
[4] also mentioned this in connection with the loop
invariants. The proof of these formulas requires standard
predicate logic rules and also the transition rules of the
system in question. Since we propose to specify a system
by its transition rules, this formalization is available to
us. It should therefore be possibie to develop arule-based
system to evaluate the correciness of the assertions. One
can also think of a proof system that may be intelligent

enough to consult with the user and update its rule base.

6. WHERE THE MODEL CAN FIT ?

The proposed méthodology can successfully be used to
model either a component of a distributed system or an
entire distributed system, using weakest preconditions.
This decision is also favored by the following facts about

the proposed approach,

1. The weakest precondition approach uses predicate
transformer wp which transforms a post condition
predicate characterizing the set of final states to a
precondition predicate characterizing the set of initial
states, this backward formulation in terms of
preconditions from post conditions is preferable being

goal oriented [9].

In our approach, we can start from the specification
of the system using weakest precondition logic and
work backwards to verify the existing system
specifications or synthesize the correct system
specifications. Therefore, it is possible to augment the
specifications considerably. Using this augmentation
scheme recursively, final system design, suiting to

needs, can be found.
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3. The weakest precondition have been divided in to two
parts namely, weakest self precondition (wsp) and
weakest co-operation requirement (wer). In this
approach, the co-operation requirements have been
directly included in the weakest precondition.
Therefore, separate proof of co-operation is not

necessary, which was required in [6].

7. CONCLUSION

We ha.ve shown how our notation, which is based on
weakest pre-condition logic, may represent a resource
allocation problem involving communicating processes.
Any distributed system consists of 2 collection of
communicating processes, and these can be modeled in
this notation. Thus any distributed systemmay be modeled
in the notation. Finally, the approach, presented in this
article, suggests how our logic can be used to handle a
class of distributed systems in which processes
communicate through message passing. On the similar
lines one can model the other type of distributed systems
in which processes communicate through shared
variables. We believe that it is a rigorous and elegant
means of modeling the distributed systems. The strength
of our model is its simplicity. Although, the complete
schemé has been illustrated by considering a well-known
problem, the major contribution of this work is the

methodological issue it raised and not the individual result.
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