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ABSTRACT
Ifi this paper, we describe a whole-system’ live
”xﬁir:gifﬁtio'n scheme, which transfers the whole system
‘iii-time state, including CPU state, memory data, and
Tocal disk storage, of the virtual machine (VM). To
miniriize the downtime caused by migrating large disk
storage data and keep data integrity and consistency,
we propose a three-phase migration (TPM) algorithm.
To facilitate the migration back to initial source
machine, we use an incremental migration (IM)
algorithm to reduce the amount of the data to be
migrated. Block-bitmap is used to track all the write
accesses to the local disk storage during the migration.
Synchronization of the local disk storage in the
migration is performed according to the block-bitmap.
Experiments show that our algorithms work well even
when I/O-intensive workloads are running in the
migrated VM. The downtime of the migration is around
100 milliseconds, close to shared-storage migration.
Total migration time is greatly reduced using IM. The
block-bitmap based synchronization mechanism is
simple and effective. Performance overhead of

recording all the writes on migrated VM is very low.
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1. INTROPUCTION

VM migration refers to transferring run-time dataof a
VM from one machine (the source) to another machine
(the destination). Afier migration, VM continues to run
on the destination machine. Live migration is a
migration during which the VM seems to be responsive
all the time from clients’ perspective. Most research
focuses on migrating only memory and CPU state
assuming that the source and destination machines use
shared disk storage. But in some scenarios, the source
and destination machines cannot share the disk storage.
So the local disk storage should also be migrated. This
paper describes a whole-system live migration, which
moves atl the VM state to the destination, including
memory data, CPU state, and local disk storage. During
the migration, the VM keeps running with a negligible

downtime.

We propose a Three-Phase Migration (TPM) scheme to
minimize the downtime while maintaining disk storage
data integrity and consistency. The three phases are pre-
copy, freeze-and-copy, and post-copy. The original VM
is only suspended during the freeze-and-copy phase and
then resumes on the destination machine. In the pre-copy
phase, before the local memory is pre-copied, local disk
storage data are iteratively transferred to the destination
while using a block-bitmap to track all the write accesses.

In the freeze-and-copy phase, the block-bitmap, which

contains enough information for later synchronization,

is sent to the destination, In the post-copy phase, we take
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an api)roach that combines pull and push. According to
the block—_bitmap, the destination pulls a dirty block if it
is accessed by a read request, while the source pushes
the dirty blocks continuously to ensure that the
synchronization can be completed in a finite time, A write
request in the destination to a dirty block will overwrite
the whole block and thus does not require pulling the

block from the source VM,

We developed an Incremental Migration (IM) algorithm
to greatly reduce the migration fime. The block-bitmap
continues to track all the write accesses to the disk storage
in the destination after the primal migration and only the
new dirty blocks nead to be synchronized if the VM needs
to migrate back to the source machine latér on, M will
be very useful when the mj gration is used for host
machine maintenance and the migration back and forth
between two places to support telecommuting, for

instance,

In our design and implementation, we intend to minimize
downtime and disruption time such that the clients can
barely notice the service interruption and degradation.
We further control total migration time and amount of
data transferred, These metrics will be explained in detail

in section 3.

The rest of the paper is structured as follows. In section
2 we discuss related work. In section 3 we analyze the

problem requirements and describe the metrics to

evaluate the VM migration performance. In section 4

and section 5 we describe TPM and IM in detail,
inclﬁding their design and some implementation issues,
In sectioﬁ:6 we describe our evaluation ‘methodology
and present the experimental results, Finally we conclude

and outline our future work in section 7.

2. RELATED WORK
In this section, we discuss the existing research on VM .
migration, including live migration with shared disk
storage and whole-system migration with local disk

storage.

A, Live Migration with Shared Disk Storage

Two representative live migration systems, Xen live
migration [I, 11] and VMware VMotion, share similar
implementation strategies. Both of them assume shared
disk storage. Take Xen live migration as an example. It
uses a pre-copy mechanism that iteratively copies
memory to the destination, while recordin g dirty memoary
pages. Then at a right time, it suspends the VM, and
copies the remaining dirty memory pages and CPU state
to the destination. It resumes the VM at the destination
after all the memory has been synchronized. Because
only.a few pages may be transferred dufing VM pausing,
the downtime is usually too short for a client to notice.
Both Xen live migration and VMotion only focus on the
memory state and run-time CPUJ state; So VM can be
migrated only between two physical machines using

shared storage,

B. Whole-System Migration with Local Disk Storage
Whole-system migration will migrate the whole-system
state of a VM, including its CPU State, memory data,
and local disk storage data, from the source to the

destination machine.

A simple way to migrate a VM with its local storage is
freeze-and-copy, which first freezés the VM to copy its
whole-system state to the destination, and then restarts
the VM at the destination. Internet Suspend/Resume [3, .
51 is a mature project using freeze-and-copy to capture
and transfer a whole VM system. A copy and only the

copy of all the VM run-time state are transferred without
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any additional redundancy. It results a severe downgime

due to the large size of the storage data. The Collective

downtime to the shared-storage migration. But it may

cause a long 1/Q block time for the synchronization.

(4, 10} project also uses the freeze-and-copy method. It

introduces a set of enhancements to decrease the size of
transmitted data. All the updates are captured in a Copy-
on-Write disk. So only the differences of the disk storage
need to be migratéd. HoWever, gven transferring disk

updates could causes significant downtimes.

Another method is on-demand fetching [5], which first
migrates memory and CPU staie only with delayed
storage migration, The VM immediately resumes on the
destination after the memory and CPU state migration.
It then fetches storage data on-demand over network.
The downtime is the same to the shared-storage migration
downtime. But it will incur residual dependence on
source machine, gven an irremovable dependence. So
on-demand fetching can’t be utilized for source machine
maintenance, load-balance migration, or other federated
disconnected platforms such as. Grids and PlanetLab.
Furthermore, it actually decreases system availability,
for its dependency on two machines. Let p (p<1) stand
for a machine’s availability, then the migrated VM
system’s availability is pz, which is less than p.
Considering the netWork conhection failure, the actual

availability must be less than p.

Bradford et al. propose. to pre-copy local storage state to
the destination while VM still running on the source f6].
During the migration all the write accesses to the local
storage are recorded and forwarded to the destination,
to _eﬁéljre consistency. They use a delta, aunit consisting
of the written data, the location of the write, and the size
of the written dﬁté, to record and forward the write access
for synchronization. After the VM resumes on the
destination, ali the write accesses must be bloc_ked before

all forwarded deltas are apf)lied. It shows.the same

Furthermore there may be some redundancy in the delfa
queue, which can frequently happen because of locality

of storage accesses

In conclusion, there is still much to do to find out how to
migrate large-size local storage inan endurable migration
time while remaining a short downtime, how to
synchronize sfdrage state using as less fedundant
information as possible, and how to keep a finite '
dependency on the source machine. This paper addresses

these questions.

3. PROBLEM ANALYSIS AND DEFINITION

The goal of our system is to migrate the whole-system
state of a VM from the source to the destination machine,
including its CPU state, memory data, and local disk
storage data. During the migration time the VM keeps

running. This section describes the key metrics and

requirements for a whole-system live migration.

A. Definition of the Metrics
The following metrics are usually used to measure the

effectiveness of a live migration scheme:

« Downtime is the time interval during which services
are entirely unavailable [1]. Itis the time from when VM
pauses on the source machine to when it resumes on the
destination. Synchronization is usually performed in
downtime. So the synchronization mechanism impacts

on downtime.

« Disruption time is the time interval during which

clients connecting to the services running in the migrated

VM observe degradation of service responsiveness—

1371

requests by the client take longer response time [6]. Itis

the time during which the services on the VM show lower
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performance due to the migration from a cheg( s
perspective. The transfer rates and methods for

synchronization have influence on disruption time.

= Total migration time is the duration from when
the migration starts to when the states on both
machines are fully synchronized [1]. Decrease the
size of transferred data, e.g. to compress the
transferred data before sending it, will show a
reduction in total migration time.-

* Amount of migrated data is the amount of data
transmitted during the whole migration time. The
minir_nal. amount is the size of the run-time states,
including the memory size, storage size, CPU state
size, etc. Usually it will be larger than the actual
run-time state size, except for the freeze-and-copy
method, because there must be same redundancy
for syrichronization and protocols.

®  Performance overhead is the decrement of the

| service performance caused by mrgratmn It is
-evaluated by the comparison of the-servi_ce
throuéhput during the migration and without
migration, '

A high-bandwidth network connection between the

source and the destination will decrease downtime,

disruption time, and migration time to a certain extent.

B. Requirements for a Whele—Systeml Live Migration
Based on the metrics discussed in sectlon ITI-A, an ideal
VM mlgration isa whole system mlcratlon with short
downtlme m1n1mlzed dlSI’LlptIOl‘l time, endurable
migration time, and neulicrible performance overhead.
And it only transfers the run-time states without any
redundancy But this ideal whole-system live migration
is hard to implement. Transferring 1arge—\_fofume local
storage incurs a long ﬁigration time. It is difficult to

maintain the consistency of the storage between the

-source and destination during such a long migration time

while retaining a short downtime. The design of our

system focuses on the following requirements:

u Live migration: VM keeps running du_ring most time
of the migration procees. In other words, clients can’t
notice that the services on the VM are interrupted
during the migration. o 7 '

@ Minimal downtime: An ingenions synchronization
method is required t'o minimize the size of the data
transmitted in the downtime. |

# Consistency: The VM's file system is consistent and
identical during migration except downtime. -

¥ Minimizing performance overhead: A non-
redundant synchronization method and a sct of simpfe
protocols must be designed. And the bandwidth used
by the migration process should be limited to ensure
the performance of the services on the migrated VM.

@ Finite dependency on the source machine: The

source machine can Ee shutdown after migration.
That means synchronization must be completed in
a finite period of time.

" Transparencyé Applications running on the

migrated VM don’t need to be reconfigured.

@ Minimizing migration time: This can be achieved

if a part of the state data need not be transmitted. -

Our TPM and IM aigorithms are designed to satis{y these

requirements. The following two sec.tions will describe

TPM and IM in detail.

4. THrEE-PHASE MIGRATION

The TPM algorithm aims at whole-system live migration.

This section describes its design and implementation.

A. Design Migration is a process to synchronize VM
state between the source and the destination machine.
Live migration requires the synchronization compleie

with a short downtime, while whole-system migration
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requires a large amount of state data be synchrg,ﬂized.
TPM is designed to migrate the whole system state of

VM while keeping a short downtime.

1) Three Phases of TPM: The three phases of TPM are
| pfé-copy, Ifreeze-an'd‘copy, and post-copy. Most of the

run-time data are traﬁsferred in pre-copy phase. The VM

service is not available only in freeze-and-copy phase.
* And local disk storage data needs to be synchronized in
post-copy phase. The process of TPM is illustrated in
Figure 1. '

In the pre-copy phase, the storage data are pre-copied
iteratively. During thé first iteration, all the storage data
should be copied to the destination. For the later iterations
only the latest dirtied data during last iteration need to
be sent. We limit the maximum number of iterations to
avoid endless migration. In addition, if the dirty rate is
higher than the transfer rate, the storage pre-copy must

be stopped proactively.

In the freeze-and-copy phase, the migrated VM is
suspended on the source machine. Dirty memory pages
and CPU states are transferred to the destination. All
inconsistent blocks that have been modified during the
last iteration of storage pre-copy are marked in the

bitmap. So only the bitmap needs to be transferred.

In the post-copy phase, the migrated VM is resumed on
the destination machine. The source begins to push dirty
blocks to the destination according to the bitmap, while
the destination uses the same block-bitmap to pull the
dirty blocks requested by the migrated VM. The pulling
occurs and only occurs when the VM submits a read
access to a dirty block. So the destination must intercept
all /O requests from VM and check if a block must be
pulled.

The VM is romning oa the source maching

!
2 : ~
S| liratvely ransfer Y'M inconsTsfent rumine daa to the destnations
9 [ ' " d dn 'edda
3 | Mositor VM wite operation fo record new dirtied data. - -/
£

-"'*"— T g o

Suspend VM onthe source machine;

Synehronize memary data and trnsfer CPU statey
Send  bitmvap of tnconsisteni disk stomape duta to the demiinaton,

Freemm-and:
Caopy

B SO S PO
¥
g Resume VM o the destination taching
O | Intercept VMEHO operaiors
B | Pushinconsistent disk storage dafa o he desination;
i Pl dirty daia accessed by read operations fram the saurce.

Y
"The VM s runmong e i destlation machine
The source machiee can be shutdown

Figure 1: Three-Phase Whole-System Live
Migration

2) Block-bitmap: A bitmap is used to record the location
of dirty disk storage data during migration. A bit in the
bitmap corresponds to a unit in disk storage. 0 denotes

that the unit is clean and | means it is dirty.

Bit Granularity

Bit granularity means the size of a unit in disk storage
described by a bit. Though 512B sector is the basic unit
on which physical disk performs reading and writing,
modern OS often reads from or writes io disk b;; a group
of sectors as a block, usually a 4KB block. So we prefer
to choose the bit granularity at block level rather than at
sector level, that is, to map a bit to a block rather than to
a sector. For a 32GB disk, a 4KB-block bitmap cosis
only IMB memory, but a 512B-sector bitmap will use
up to 8MB. When disk size is not too large, a 4KB-block

bitmap works very well.
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Layered-Bitmap

For each iteration in the pre-copy phase, the bitmap mﬁst
be scanned through to find out ail the dirty blocks. If the
bitmap is large, the overhead is severe, /O operation
often show high locality, so bit 1’s are often clustered
together, and the overall bitmap remains sparse. A
layered bitmap can be used to decrease the overhead.
That is, a bitmap is divided into several parts and
organized as two layers. The upper layer records whether
these parts are dirty. If the bitmap must be checked
through, the top layer is checked first, and then only the
parts marked dirty need to be checked further. When
using layered-bitmap, the lower parts are allocated only
when there is a write access to this part, which can reduce

bitmap size and save memory space.

Bradford et al. [6] use a forward and replay method to
synchronize disk storage data. During pre-copy phase,
all the write operations are intercepted and forwarded to
the destination. On the destination all these writes are
queued and will apply to the migrated disk after disk
storage pre-copy is completed. Write throttling must be
used to ensure that the network bandwidth can catch up
with the disk /O throughput in some disk /O intensive
workloads. And after migrated VM is resumed on the
destination, its disk /O must be blocked until all the
records in the queue have been replayed. Furthermore,
there will be some redundant records which write to a
same block. It will increase the amount of migrated data
so as to enlarge the total migration time and I/O blocked
time. We have checked the storage write locality using
some benéhmarks. When we make a Linux kernel, about
11% of the write operations rewrite those blocks written
before. The percentage is 25.2% in SPECweb Banking

Server, and 35.6% while Bonnic++ is running.

In our solution all the inconsistent blocks are marked in
the block-bitmap, and can be lazily synchronized until
VM resumed on the destination. It works well in /O
intensive workloads, avoiding I/O block time on the
destination and essentially solving the redundancy
problem in recording ahd replaying all the write
operations. Our solution may increase the downtime
slightly due to transferring the block-bitmap. But in most
scenarios, the block-bitmap is smali {IMB-bitmap per
32GB-disk, and smaller if layered-bitmap is used) and

the overhead is negligible.

3) Local Disk Storage Synchronization: We use a
block-bitmap based method to synchronize local disk
storage. In the pre-copy phase, a block-bitmap is used to
track write operations during each iteration. At the
beginning of each iteration, the block-bitmap is reset to
record all the writes in the new iteration, during which
all the data marked dirty in the previous iteration must

be transferred.

In the freeze-and-copy phase, the source sends a copy
of the block-bitmap, which marks all the inconsistent
blocks, to the destination. So at the beginning of the post-
copy phase, the source and the destination both have 2
block-bitmap with the same content. The post-copy
synchronizes ail the inconsistent blocks according to
these two block-bitmaps. At the same time, a new block-
bitmap is created to record the disk storage updates on-
the destination, which will be used in IM described in
section V. The source pushes the marked blocks
continuously and sends the pulled block preferentially
if a pull request has been received, while the destination

performs as follows:
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DEFINE: ' :

< An VO 1equest R<O, N, VM>, where 0 ifthe

operation, WRITE or READ, Nis the operated block

number, and VM is the . ID of the domain which -

submits the request. L

> Transferred block b:.tmap Ablock -

bitmap marks all the blocks inconsistent with the

source at the beginning of the post-copy.

-> New block :bitmap:Ablock -bitmap marks

the new dirtied blocks on the destmatlon

1. An I/0. reguest _R<Q‘,. N, VM> is
intercepted; -

2. Queue R in the pending list P;

3. IF R.VM 1= migrated VM

4, "THEN goto 14;

5. I¥ R.0 == WRITE // mno. pulling
needed
6. THEN{

7. new_ block~ b:Ltmap N} = 1;
8. transferred block bitmap [N] =

0;
9. goto 14;
10. }
11. IF transferred block-bitmap [N]

== 0 //clean block

12. THEN goto 14;

13. Send a pulling regquest to the
source machine for block N,
goto 16; '

14. Remove R from P;

15. Submit R to the
driver:;

16. End;

physical

The destination intercepts each I/O request. If the request -

is from other domain than the migrated VM (line 3},
submit it directly. Otherwise, if the request is a write
(lines 5-10), we use a new block bitmap to track this
update (line 7) and reset the corresponding state in the
bitmap for synchronization (ling 8). If the request is a
read (lines 11-13),a puIling request is sent to the source

machine only when the accessed block is dirty {line 13}.

Finally the destination must check each received block

to determine if it is a pushed block or a pulled one:

The pushed block is dropped if there was a write in the

destination that reset the bitmap (lines 2-3). If it is a pulled

1.2 block M is received;:

2.IF transferred b}.ock bltmap [M]
3. THEN gote 12; :
4. Update block M in the local

T disk;

5. transferred block- bitmap [M]= 0
6. For each request R _11;__13“ K
7.IF R .N == '

8. THEN{

9. :R_emove'Ri from P;

10.  Submit Ri;

11. }
12. End;

block, the pulling request is removed from the pending
request queue (lines 6-11) and local disk will be updated

accordingly (line 10).

4) Effectiveness Analysis on TPM: TPM is a whole-
system live migration, which satisfies the requirements

listed in section III.

= Live migration and minimal downtime: In the
freeze-and-copy phase, only dfrty memory pages and the
block-bitmap need to be transferred. So the downtime
depends on the block-bitmap transfer time and memory

synchronization time, In most scenarios, the dirty bitrﬁap

is small. The size can be even reduced greatly if we use

the layered block-bitmap as analyzed in section IV-A-2.
And memory synchronization time is very short as

indicated in the Xen live migration research [1].

> To keep consistency: In the post-copy phase, all the

/O requests from the migrated VM are intercepted and
synchronization is necessary only if it is a read to dirty

data.

- To minimize performance overhead: The

performance overhead can be limited if we limit the

bandwidth used by migration, which will increase total

migration time correspondingly (see section VI-C-3).
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Another approach is to use a secondary NIC (Network
Interface Card) for the migration, which can help limit
the overhead on network /O performance, but it has no

effect on releasing the stress on disk during migration.

< To make a finite dependency on the source
machine: We use push-and-pull to make the post
migration convergent, avoiding a long residual
dependency on the source by the pure on-demand

fetching approach.

=2 To be transparent: Storage migration occurs at the

block level. The file systemn cannot observe the migration.

B. Implementation

We expand Xen live migration to implementa prototype
of TPM. To make our description easy-/ to follow, we
first introduce some notations in Xen. A running VM is
ﬁarﬁed Domain. There ére two kinds of domains. One is
privileged and cén handle the physicai devices, referred
to as DomamO The other is unprwﬂeged and referred
to as DomamU Split drivers are used for DomamU disk
VO. A frontend driver in DomamU acts as a proxy to a
backend drlver which works in DomamO and can
1ntercept all the I/O requests from DomamU VBD is
the abbre\rl_ation of Virtual Block D_evice acting as a

physical block device of a Domain.

The process of our implementation of TPM is illustrated
in Figure 2. The white boxes show Xen live migration

process, and the grey boxes shows our extension,

Disk storage data are pre-copied before memory copying
because memory dirty rate is much higher than disk
storage and the disk storage pre-copy lasts very long. A
large amount of dirty memory can be produced during
the disk storage pre-copy. Simultaneous or premature

MEMNOry pre-copy is useless:

1376

We design a user process named blkd to do most work
of storage migration. Xen’s original functions
x¢_linux_save and xc_linux_restore are modified to
direct blkd what to do at certain time. We modify the
block backend driver, blkback, to intercept all the write
accesses in the migrated VM and record the location of
dirtied blocks.into the block-bitmap. All the

modifications are described as follows.

? ( alization ]
Pre-copy Jocal disk storage dala- 1 |

!
l Pre-copy memory

S|

]

=
p I Resume the VM op the destination,
é
z v
[=]
=

315 The soirce continnies to PUSH dirty blacks 1o the dcsunnuon.

Figure 2: Process of TPM Implemented Based On
Xen Live Migration

@ Modify initialization of migration to ask the

destination to prepare a VBD for the migrated VM.

Modify xc_linux_save. Before the memory pre-
copy starts, it will signal blkback to start monitoring
write accesses, and then signal blkd to start pre-
copying local disk storage and block itself until the
disk storage pre-copy completes. After the pre-copy
phase, it will signal blkd 1o send the block-bitmap

" and enter the post-copy phase.

Modify x¢_linux_restore. Before receiving pre-
copied memory bages, it will signal-blkd to handle
local disk storage pre-copy, and block itself untit
disk storage pre-copy; completes. After the migratéd
Domain is suspended, it will signal the bikd to
receive the block- -bitmap and enter the post—copy

phase before resuming the migrated Domain.
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@ Modify blkback to register a Proc file and implgment
its read and write functions to export céntrol
interface to blkd for communication. Then blkd can
write the Proc file to configure blkback and read the
file for the block-bitmap. Blkback maintains a block-
bitmap and intercepts and records all the writes from
the migrated domain, The block-bitmap is initialized
when the migration starts. At the beginning of each
iteration of pre-copy, after the block-bitmap is
copied to blkd, it is reset for recording dirty blocks
in the next iteration. If the blkback intercepts a write
request, it will split the requested area into 4K blocks

and set corresponding bits in the block-bitmap.

The user process blkd acts according to the signals from
xc_linux_save and xc_linux_restore. When it receives
a local disk storage pre-copy signal, it starts iterative
pre-copy. During each iteration, it first reads the block-
bitmap from the backend driver, blkback. Then it sends

the blocks which are marked dirty in the block-bitmap.

In the freeze-and-copy phase, xc_linux_save signals blk

to send the block-bitmap to the destination.

In the post-copy phase, as illustrated by Figure 3, the
blkd on the source machine pushes (action 1) the dirty
blocks to the destination according to block-bitmap
BM_1, while it listens to the pull requirements (action
3) and sends the pulled block preferentially. On the
destination, the blkback intercepts the requests from the
migrated VM and forward them to blkd (action 2). Blkd
checks if the blocks accessed by a request must be pulled
according to the block-bitmap BM_2 and the rules
described in section TV-A-3. It will send the source a
request if the block must be pulled (action 3). And bikd
will tell blkback (action 4) which requests can be
submitted to the physical disk driver after a pulled block

has been received and write into the local disk (action

5). All the writes in DomU are intercepted in bikback
and marked in block-bitmap BM_3, which will be used

in IM described in section V.

Destination Sowece

DomU Dom{ Tomo o
B . - g
' Bl S || T R l
R EERCL K] ST | | 2
! AN a
el - LI ol 4 - R APV I NV NS § NP1 SN
S _@Mmm R LEED D ?':
A ‘3
&
——— T :5:‘:4. ‘?3:
VMM : 3 A 5
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= =

oel Digk ool ik

Figure 3: The Implementation of Post-Copy

5. INCREMENTAL MIGRATION

Our experiments show that the TPM can also result a
long migration time, due to the large size of the local
storage data, Fortunately, in many scenarios, migration
is used to maintain the source machine, or to relocate
the working environment from office to home, for
instance. A VM migrated to another machine may be
migrated back again later, e.g.. aftér the maintenance is
done on the source machine, or the user need to move
the environment back to his/her office. In these scenarios,
if the difference between the source and the destination

is maintained, only the difference needs to be migrated.

~Even in those I/O intensive scenarios, the storage data

to be transferred can be decreased significantly using
this Incremental Migration (IM) scheme. Figure 4

illustrates the process of IM.

The grey box shows that in the pre-copy phase, the block-
bitmap should be checked to find out all the dirty blocks
after last migration. Only those dirty blocks need to be
transferred back in the first iteration. So after the VM is

resumed on the destination all the newly dirtied blocks
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of the migrated VM must be marked in a block-bi jp
as mentioned in section IV-A. So in the post-copy phase
of TPM, two block-bitmaps are used. One is transferred
from the source and records all the unsynchronized
blocks; the other is initialized when the migrated VM is
resumegd on the destination, and is used for recording
the newly dirtied blocks on the destination. When the
migrated VM needs to be migrated back to the source,
only the blocks marked in the new block-bitmap need to

be transferred.
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Figure 4: Process Of IM
The implementation is a minor modification to the TPM,
We check if the bitmap exists before the first iteration. If
itdoes, only the blocks marked dirty in the block-bitmap
need to be migrated. Otherwise an all-set block-bitmap
is generated, suggesting that all the blocks need to be
transmitted.

6. EVALUATION

In this section we evaluate our TPM and IM
implementation using various workloads. We first
describe the experimental environment and list the
workloads. We then present the experimental results
including downtime, disruption time, total migration
time, amount of migrated data, and performance

overhead.
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A. Experimental Environment

We use three machines for the experiments. Two of them
share the same hardware configuration, which is Core 2
Duo 6320 CPU, 2GB memory, SATA?Z disk. The
software configuration is also the same: Xen-3.0.3 with
XenoLinux-2.6.16.29 running on the VM. Two deains
run concurrently on each physical machine. One is an
unprivileged VM configured with 512MB of memory
and 40GB VBD. The other is Domain0, which consumes
all the remaining memory. To reduce the context switches
between VMs, the two VMs are pinned to different CPU
cores. The unprivileged VM is migrated from one
machine to the other to evaluate TPM and migrated back
to evaluate IM. The third machine emulates the clients
to access the services on the migrated VM. They are

connected by a Gigabit LAN,

B. Workloads for Migration Evaluation

Our system focuses on local storage migration, so we
choose some typical workloads with different /O loads.
They are a web server serving dynamic web application,
which generates a lot of writes in bursts, a video stream
server performing continuous reads and only a few writes
for logs to represent latency-sensitive streaming
applications, and a diabolical server which is I/O-
intensive, producing a large number of reads and writes
all the time. These workloads are typical for evaluating

the VM migration performance in the past research.

C. Experimental Results

In all the experiments, services on the migrated VM seem
to keep running during the whole migration time from
clients’ perspective. Table I shows experimental results
of our prototype of TPM. From the results, we can see
that it achieves the goal of live migration with very short
downtime. The migration can be completed in a limited

period of time. The amount of migrated data is just-a
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little larger than the size of the VBD (39070MB), which
means that the block-bitmap based synchronization

mechanism is efficient.

Table 1: Results for Different Workloads

“Total migration‘time (s) [ 796 708 957
Downtime (ms).. .. 60 62 110

Amount of migrated 139097 | 39072 | 40934
data'(MB)*

1) Pynamic web server: We configure the VM as a
SPECweb2005 [12] server that serves as 2 banking
server. 100 connections are configured to produce
workloads for the server. Figure 5 illustrates the
throughput during the migration. We can see that during
the migration time using our TPM, no noticeable drop

can be observed in terms of throughput.
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Figure 5: Throughput Of The Specweb_Banking
Server While Migration

In this experiment, three iterations are performed in the
pre-copy phase. 6680 blocks have been retransferred.
And 62 blocks are left dirty to be synchronized in the
post-copy phase which lasts only 349 milliseconds. Only
one block is pulled, the others are pushed by the source.

The downtime is only 60ms.

2) Low latency server: We configure the VM as a
Samba [13] server. It shares a 210MB video file (.rmvb)
with a Windows client. The VM is migrated from the
source to the destination, while the shared video is played

on the client with a standard video player. During the

whole migration time, the video is played fluently,
without any observable intermission by the viewer. The
write rate is very low in video server, so only two
iterations are performed and only 610 blocks have been
retransferred in the second iteration of the pre-copy phase
which lasted for about 796 seconds. Five blocks are left
unsynchronized which are pushed to the destination in
the post-copy phase in 380 milliseconds. The downtime
is only 62 milliseconds. The video stream is transferred
at a rate less than 500kbps. The server works well even
when the bandwidth used by the migration process is

not limited at all.

3) Diabeolical server: We migrate the VM while
Bonnie++ [14] is running on it. Bonnie++ is a benchmark
suite that performs a number of simple tests for hard
disk drive and file system performance, including
sequential output, sequential input, random seeks,
sequential create, and random create [14]. Bonnie++
writes the disk at a very fast rate. Many blocks have been
dirtied and must be resent during migration. During the
pre-copy phase which lasts for 947 seconds, 4 iterations
are performed and about 1464 MB dirtied blocks are
retransferred. So the total migration time seems a little
longer. But the block-bitmap is small. The downtime is
still kept very short. The migration process reads the disk
at a high rate. The Bonnie++ shows a low performance
in terms of throughput during migration as iliustrated

by Figure 6.
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Figure 6: Impact On Bonnie++ Throughput
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If we limit the migration transfer rate, the impact canéb'e
reduced about 50%. We just simply limit the network
bandwidth used by the migration process in the pre-copy
phase. Correspondingly, the disk bandwidth used by the
migration will be decreased. The results show that the
Bonnie++ works much better. But the migration time

rose significantly. The pre-copy phase is about 37%

longer than the unlimited one. It suggests that the disk I/
O throughput is the bottleneck of the whole system

performance.

4) Incremental migration: We perform migration from
the destination back to the source after the primary
migration using our IM algorithm. Table 2 show the

results,

Table 2 : IM Results Compared with TPM

Dynamic web server Low-latency server Diabolical server
Migration Amount of inigrated Migration | Amount of migrated | Migration | Amount of migrated
time () datz (MB} time {5) data (MB) time (5) data (MB)
Primary TPM 796.1 39097 798.0 30072 957 40934
M 1.0 52.5 0.6 33 17 o114

The amount of data that must be migrated using IM is
much smaller than the primary TPM migration. So the

total migration time is decreased substantially.

5) I/O performance overhead of synchronization
mechanism based on block-bitmap: We configure
Bonnie++ to run in the VM where all the writes are
intercepted and marked in the block-bitmap. Table III
shows the results compared with Bonnie++ running in
the same VM without writes tracked,

Table 3 : 1/O performance Comparison (Kb/s)

pute write(2) | rewtite
Normal 47740 96122 26125
With writes tracked 47604 95569 25887

The results show that the performance overhead is less
than ] percent. So performance won’t drop notably when
all the writes are tracked and recorded in the block-
bitmap preparing for IM after the VM has been migrated

to the destination.

7. V-MorioN NETworkiNG

VMotion is the method used by ESX Server to migrate
powered-on VMs within an ESX farm/datacenter {in
VMware Viriual Center terminology) from one physical

ESX host to another. VMotion is perhaps the most
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powerful feature of an ESX virtual environment,
allowing the movement of active VMs With minimal
downtime. Server administrators may schedule or initiate
the VMotion process manually through the VMware

Virtual Center management tool.

The VMotion process occurs in the folowing steps:
Step 1:- Virtual Center verifies the state of the VM
and target ESX host. Virtual Center determines the
availability of resources necessary to support the VM
on the target host.

Step 2:- If the target host is compatible (e.g., CPU of
same vendor and family), a copy of the active VMs
state is sent from the source ESX host to the target
ESX host. The state information includes memory,
registers, network connections, and configuration
information. Note that the memory state is copied
during the pre-copy state and the all device state is
moved only after the VM is stunned.

Step 3:- The source ESX Server VM is suspended.
Step 4:- The .vindk file (virtual disk) lock is released
by the source ESX host.

Step 5:- The remaining copy of state information is

sent to the target ESX host.
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Step 6:- The target ESX host activates the new resident
VM and simultaneously locks its associated .vmdk'?ﬁle.
Step 7:- The vSwitch on the target ESX host is notified,
vSwitch generates a RARP for the MAC address of
the VM. This updates the Layer 2 forwarding tables
on the Cisco Catalyst switches. No Gratuitous ARF is
needed as the MAC address of the VM does not change

during the VMotion process.

Virtual
Canter
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(Sourcs) !@ SAN {Tw‘gat)
‘E Vivotion Network E
Production Network §

Figure 7: VMotion Process

Figure3 shows the VMotion process and the key
components in the system: the SAN-based VMFS
volume accessible by both ESX hosts and the VLAN
segments, the one used to synchronize memory
information (VMotion network, which is the network
connecting the VMkernels), and the production network
which is the network used for tfxc client-access to the

application running on the VMs.

VMotion is not a full copy of a virtual disk from one
ESX host to another but rather a copy of “state”. The
.vmdk file resides in the SAN on a VMFS partition and
is stationary; the ESX source and target servers simply
swap control of the file lock after the VM state

information synchronizes.

Deploying a VMotion-enabled ESX Server farm requires

the following:

a. Virtual Center management software with the
VMotion module.

b. ESX farm/datacenter (VMotion only works with
ESX hosts that are part of the same data center in
the Virtual Center configuration). Each host in the

farm should have almost-identical hardware
processors to avoid errors after migration (check the
compatibility information from VMware).

¢. Shared SAN, granting access to the same VMFS
volumes (.vmdk file) for source and target ESX

hosts.

. d. Volume names used when referencing VMFS

volumes to avoid WWN issues between ESX hosts.

VMotion “connectivity” {i.e. reachability of

[]
»

VMkernels from originating to target ESX host and
vice versa). It may be desirable to have Gigabit
Ethernet network for state information exchange,
although ¥Motion will work just fine on a VLAN.
f. The ESX orzgmatmg host and the ESX target host
need to have the same Network Label confngured

with the same Security Policy configuration.

One of the noticeable points here is that” Regular
migration (i.e., non-VMotion migration) is the migration.
of a powered off VMs. This type of migration does not
presént any special challenge in that there is no memory
replication, and if a SAN is present the VMFS volumes
are already visible by the ESX hosts in the same data
center. In case a relocation is involved (i.e., in the case
where the .vmdk disk file needs to be moved to a
different data store) the MAC address of the powered-

on VM may change.

A) VMotion Migration on the same Subnet (Flat
Networks)
The most common deployment of VM migration requires

Layer 2 adjacency between the machines involved (see
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Figure 4). The scope of the Layer 2 domain is for
most part limited to the access layer hanging off of g:'
same pair of aggregation switches, or in other words
typically either within the same facility (building) or at
a maximum across buildings in a campus, and typically
involves 10 to 20 ESX hosts at a maximum due to the
requirements of the host to be part of the same datq center
for migration purposes and of the same cluster for DRS

purposes.

A Layer 2 solution for a VMware cluster satisfies the
requirements of being able to turn on a machine anywhere
within the cluster as well as migrating an active machine

from an ESX Server to a different one without noticeable

disruption from.the user (VMotion).
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Figure 8: VMware Layer 2 Domain Requirements

VMotion is better _explained starting from a real example,
Imaginé aserver farm deployment such as the one shown
in Figure 5. ESX Server Host 1 is in Rack 1 in the data
center. ESX Server Host 2 is in Rack 10 in the same data
_center. Each rack provides Layer 2 connectivity to the
servers (de_sign approach referred to as top of the rack
design). A pair of Layer 3 switches interconnects the
racks which may very well be several rows away from
each other. The goal of the implementation is to be able

to move VM4 from ESX Server Host 2 in Rack 10 to
ESX Server Host 1 in Rack 1.
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Figure 9: VMotion Migration on a Layer 2 Network

For this to-happen, you need to provision the network to

 carry VMkernel traffic from ESX Server Host 2 to ESX

Server Host 1 and you need to make sure that VM4 can
be reached by clients when running in ESX Server Host
L

A solution that meets these requirements is the

following:
1. Provisioning a VLAN for the VMkernel.

2. Trunking this VLAN from ESX Server Host 2 all
across the LAN network to ESX Server Host 1.

3.  Provisioning a VLAN for VM public access.

4. Trunking this VAN from ESX Server Host 2 ail
across the LAN network to BSX Server Host 1.

5. Making sure that the VMkernel VLAN and the VM
VLANS are separate (although they may share the

same physical links).

The ESX host configuration would lock like Figure 6.
The ESX host would have a vSwitch with its own
dedicated NIC for the VMkerne!l. The VMkernel VLAN
would be trunked from the aggregation switch to the
access switches in Rack 1 all the way to the vSwitch in
ESX Server Host 2. Similarly, the VM4 VLAN and the
Nenwork Label would be identical on vSwitch2/ESX
Server Host 2 as in vSwitchZ/EéX'Servcr Host1.
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Figure 10: VM Mobility and VLAN Assignment

8. ConcLusioNn AND Future WORK

This paper describes a Three-Phase Migration algorithm,
which can migrate the whoEe—sysfem state of a VM while
achieving a negligible downtime and finite dependency

on the source machine. It uses a block-bitmap based

approach to synchronize the local disk storage data

between the source and the destination. We also propose
an Incremental Migration algorithm, which is able to
migrate the migrated VM back to the source machine in
a very short total migration time. The experiments show
that both algorithms are efficient to satisfy those
requireméﬁts described in section III for an effective live

migration.

These two algorithms take the migrated VM as a black-
box, all the data in VBD must be transmitted including
unused blocks. If the Guest OS running on the migrated
VM can take part in and tel] the migration process which
part is not used, the amount of migrated data can be
réduced further. Another approach is to track all the
writes since the Guest OS installation. Then all the dirty
blocks are marked in the block-bitmap. Only these dirty
blocks need to be transferred to a VM using the same

OS-image.

Our implementation of IM can only act between the
primary destination and the source machine. The future
work will focus on local disk storage version maintenance
to facilitate IM to decrease the total migration time of a
VM migrated among any recently used physical

machines.
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