JC§ Vol.1 No.2 Sep - Qct 2005

A Source to source Automatic Parallelizing Compiler for a
Cluster of Workstations

S. Sanjeeth

Abstract: The large number of sequential programs that
takes lot of computational time with single processor
needs to be ported onto the cluster of workstations to
harness its computational power and to decrease the
running time of the programs. One way to achieve this is
to rewrite the sequential programs that fit in message-
passiﬁg paradigm, but this is a time consuming and error
prone process. This paper describes a parallelizing
compiler that automatically converts the sequential
programs in to parallel programs for a COW and
distributing the data in such a way that the communication
" between the processors is minimized. Since nested for
loops are the core of scientific and engineering
applications, which access large arrays of data, this paper
deals with paraliclizing the perfectly nested for loops

present in the source

code.

Keywords: Parallelizing compiler, dependence,
Transformations, communication analysis, data

distribution.

1. INTRODUCTION

There exists a lot of sequential programs written for

material science, computational fluid dynamics, Tmage

Department of Mathematics and Computer Science, Sri
Sathya Sai of Higher Learning
PrasanthiNilayam, Anantapur District, Andhra Pradesh,
INDIA -515 134.

Institute

sanjeeths@gmail.com, baruahpk@yahoo.com

179

Pallav Kumar Baruah

processing and many other scientific disciplines, which

takes lot of time when executed in a single processor. In

order to overcome this one can take to parallel processing.
One way is to rewrite the whole program. The major
problem is the difficulty of writing parallel software.

Anyone other than the experts in parallel programming

would have to not only learn parallel programming but
also develop an understanding of the additional

complexities in developing parallel software, e.g. data

distribution or synchronization problerns, that is largely
irrelevant to, and takes valuable time away from, the

actual research issues.

One solution to the above problems lies in tools that can
automatically or semi automatically replace these
efficient sequential programs by equivalent, more
efficient parailel programs, from a library. One such tool
is MPIIMGEN[6], which converts any sequential
program written in C language for Image Processing
applications into a parallel version. But the major
disadvantage of that kind of approach is that they are
confined to a particular domain like image processing as

in the case of MPIIMGEN.

Another approach is to construct an automatic
parallelizing compiler that converts any sequential
program into a parallel program. Most of the existing

parallelizing compilers generate their parallel code for

shared memory or distributed shared memory systems.
There are very few parallelizing compilers, which
generate code for COW. POLARIS [8], is an optimizing

source to source translator, which converts sequential

JCS Vol.T No.2 Sep - Oci 2005

FORTRAN 77 program into a parallel program for shared
memory and distributed shared memory systems.
PARAFRASE-2 [8] is a source to source translator, which
converts sequential FORTRAN 77 or C or CEDAR
FORTRAN programs into a parallel program for
Moultithreaded, Shared Memory, and Distributed Shared
Memory architectures.

THE PARALLELIZING COMPILER [7] is a compiler
constructed using SUIF[8] framework. It generates a

message passing parallel code that canrun in a cluster of

workstations. Here programmer specifies data
decomposition specification and compiler makes use of
these specifications for distribution the data. It will be
difficult for a programmer to specify the best
decomposition specification. Otherwise the generated
parallel program might take longer time than the
corresponding sequential program, due to communication
overhead. Also since this compiler doesn’t support
communication optimization, the performance of the
generated parallel code completely depends on the
programmer specified data decomposition. These draw
backs are overcome in the compiler that we present here.
In our work we aim to automatically convert the
sequential code into a parallel code capable of running
on a cluster of workstations (COWS) and also to
distribute the data automatically that minimizes the
communication, Unlike the above mentioned attempts
we try to achieve parallelism at a higher granularity . The
performance results we present at the end of this paper
speak volumes about the effectiveness of the sirategies
adopted in developing the compiler. In Section 1 we
discuss the structure of our compiler. Section 2 to section
I1 explains our parallelization algorithm, data distribution
strategy, communication optimization method etc. in
brief. Performance analysis of our I compiler is shown

in the section 12,

1: Structure

[Dependency canlvele]

Rovir g Bl

Cormtructing Progrmn
Depend enay graph

Puraile] ocde Meatifplag dsin dantifying
disbibution paraticlism

penerstion
¥

Paruifol

Figure 1. Structure of our Complier
The above figure shows the structure of our parallelizing
compiler. The Input to our compiler is a sequential ¢
program and the outpuf is a message passing paralllel c

code.

2. PARALLELIZATION ALGORITHM

Here we are presenting a new step by step approach for

automatic handling of the parallelization. Cur compiler

parallelizes perfect nested for loops present in the source

code. The Parallelization Algorithm involves the

following steps

I Normalization

2. Finding Data dependence and dependence graph
construction 3, Finding Strongly Connected
Components and Statement Re-ordering,

4. Finding Independent components

v

Identifying the hidden parallelism using loop
partitioning and loop skewing
. Finding out a proper schedule for parallelism.

6

7. Communication Analysis

8. Finding out the data distribution .
9

. Code generation

This algorithm parallelizes the nested loops in'the given
program. For a k nested for loop, the innermost for loop
is level 1 and outermost for loop is level k. In the
parallelization algorithm, steps 3 and 3 are perfofmed

for statement at all the levels.

A Source to source Automatic Parallelizing Compiler for a Cluster of Workstations

3. NORMALIZATION

A for loop is said to be in a standard form if it satisfies
all the following conditions:

B The initialization part should always be of the form

a= 0, where a is the loop index.

» The incrementer should be a unit increment ie. the
incrementer should increment its value by 1 only,
normalizing the for loop is nothing but converting the
for loop which is in non-standard form to a standard form.
The main advantage of this conversion is that while doing
program analysis we need not consider any issues due to
other types of for loops (eg. triangular). Also code
generation becomes easier. It also makes implementation

simple.

4. FINDING DATA DEPENDENCE AND
DEPENDENCE GRAPH CONSTRUCTION

- Dependency Analysis is very important step and is
present in all the parallelizing compilers. The dependence
analysis for arrays or matrix are performed using ZIV or
SIV or MIV tests{2] based on the array complexity. Our
algorithm finds the dependence between all the
statements in the for loop and constructs a dependence
graph. Here the edge between the two statements contains
the dependence information which includes

b The Dependent variable.

b It is the variable on which the statements are

dependent.
b Dependent on which loop.
The set of for loops on which the dependency

exists.
Tvpe of Dependency.

b Specifies the type of dependency ie flow or anti or
output.

Dependence distance as explained in [2].

181

5, FINDING STRONGLY CONNECTED COMPO-
NENTS AND STATEMENT RE ORDERING

The Strongly Connected Component(SCC){4] are the
maximal SCRs (SCRs that are not proper subsets of any
other SCR).

One of the important steps in our compiler is loop fissiot.
It partitions independent statements inside a loop into
multiple loops with identical headers. It is used to
separate statements that may be parallelized from those
that must be executed sequentially. For applying loop
fission, we first need to find the cycle in the dependency

graph and place all the vertices involved in the cycle in

the same component. So we use SCC for applying loop

fission.

Only finding SCC is not enough for applying loop fission
since there might be some anti-dependencies between
the SCC’. It is required to remove all the anti-
dependencies between the SCC5. This can be achieved
by ordering the SCCs such that, there is only flow

dependency between the components.

For example in the figure 2, the anti-dependency is shown
by dotted lines and flow dependency by ordinary straight
line. The edge between the component C1 and C2 is anti-
dependent. So interchanging the order of the components
C1 and C2 removes the anti-dependence. After statement

reordering the components

- o
. AN A
forfi=0,iA&;) / ; / i
w2 ! 4 l &

iAo | '=
sl 2Iei i3] W '

}

a 5 ¢

Figure 2: Statement Reordering a) sample for loop
b) scc components with their dependence edges <)
After applying statement Reordering

JCS§ Vol.1 No.2 Sep - Oct 2005

contains only flow dependence, hence all the components
can be placed in separate for loop and now for each

component we can identify the parallelism separately.

6. FINDING INDEPENDENT COMPONENTS

Let C be set of scc components and C, be a subset of C,
C, is said to be a independent component if there exist
no path between C, and v/ c; where i € {2, |C|}. Once
finding SCC’ and statement reordering are performed,
there may be a set of Independent components that can

be executed parallely.

1. for each component c; from set of SCC
components do

a) for each of the component ¢; firom set
of scc components

i) do if there is any path or an edge

between ¢; and c; then place ¢; and ¢; in the
same group.

b} if there is no path between c; and any
other components then place it in a
seperate new group

Flgure 3: Algorithm for Finding Independent
: Components

In the algorithm shown in the figure 3, each component
is checked with all the other components for presence of
a path. If there exists a path between any two components
then, those two components are piaced in the same group.
If two components are independent, then those
- components are placed in two different groups. Here total
number of groups gives the number of independent
components. To achieve parallelism at more granularity
we should extract parallelism from each independent

component.

182

7. IDENTIFY THE HIDDEN PARALLELISM USING
LOOP PARTITIONING AND LOOP SKEWING

Some program may contain parallelisms that are invisible
to us; they are termed as hidden parallelism. These hidden
parallelisms can be exposed-using loop skewing {5} and
loop partitioning {5}. This section explains only the
algorithm of these two transformations.

Loop skewing is a loop transformation, which adjusts
the iteration space of two perfectly nested loops by
shifting the work per iteration in order to expose
parallelism. The figure 4(a) shows the algorithm for loop
skewing. Loop skewing can be applied, only if there is
no cycle between the two selected components. But since
we have removed all the anti-dependence, there won’t
be any cycle. So, we only need to test for presence of

loop skewing.

1. While all the components are analyzed do
a) Take two adjacent components ¢; and
Civy check if loop skewing can be applied if so
then combine the components and record
skew distance.
(a)

1. While all the components are analyzed do

a) Take two adjacent components ¢; and
Ci1 check if ged of their cross-iteration
dependencies is greater than 1 if so then
combine the components and record the type
of parallelization and the ged value.

®)

Figure 4:a) Skewing Algorithm b) Loop

Partitioning Algorithm

The next technique that we used to expose hidden
parallelism is loop partitioning. It works by computing
greatest common divisor {GCD) of the cross iteration
dependence distances. The algorithm for loop partition
1s shown in the figure 4(b). This algorithm is similar to

that of loop skewing. The ged value specifies the number

A Source to source Automatic Paralielizing Compiler for a Cluster of Workstations

of processes that can be used for parallelizing that

component. So it should be more than 1.
8: Finding out a proper schedule for parallelism.

Scheduling is allocating tasks to each process such that
all the processes can execute simmltaneously. Basically,
there are two ways of parallelizing the for loops they are

statement parallelization and fteration parallelization.

Statement parallelization is executing more than one
statement parallely and ireration parallelization is
executing set of iterations of a statement parallely. For
Scheduling we use either statement parallelization or

iteration parallelization,

Before generating the schedule we find out the type of
parallelization (statement or iteration) that can be applied
to the compoients in all the levels of the for loop. The
type of parallelization can be combination of both
statement and iteration, that is, a set of statements can be
executed simultaneously and each statement in that set
can be executed parallely using iteration parallelism. Also
statement or iteration parallelism can be combined with
loop skewing and loop partition. In our algorithm,
statement Parallelization takes precedence over iteration
paralielization, since executing different statements in
different processes parallely yields more effective
parallelization than executing a statement parallely. The

algorithm for scheduling is given in the figure 5.

1. for each component ¢; from the set of
components af level j
a) If the type of parallelization jor
component < is “not parailelizable” then
"go fo next level and get the set of
components in th-t level from where the
component <; is derived and do step with
i=j-L
) else based on the type of
parallelization find out the ranks for
executing the companents.
¢) do data distribution.
g} do code generation.

Figure 5: Algorithm for finding a proper schedule
In this algorithm we will start from level k, that is, the

outermost loop. We visit all the components one by one.

183

Each component Ci is checked for the type of
parallelization. If the component cannot be parallelized
then go to next level, find out the set of components from
where the component Ci is derived, that is, we find out
the set of components that contain the statements present
in Ci. Do the same process for the derived components.
This process continues till we reach Jevel L. If the
component is parailelizable, then number of ranks
(processor numbers) that are allocated to the component
depends on the type of parallelization and available
number of processors. Also Ranks will be allocated based
on the communication cost. Next section deals with

allocation of ranks.

9. COMMUNICATION ANALYSIS

In this section, we will discuss about our communication
algorithm. This algorithm eliminates redundant
communication and also resolves unnecessary

comrnunication.
Eliminating Redundant Copmunication:

Root process should hold all the data in the beginning
and after completion of the computation. Once all the
operations that is performed on the data is completed,
the modified data has to be returned back to the root
process. Sending the modified data can be performed at
the end or after executing each component. Sending data
at the end will make improper use of the processor time
and also at the end of the computation, there will be lot
of communication between root process and other
processes. This will lead to some processes becoming
idle for long time and also there is a chance of data being
lost in the network because of improper buffering. So,
we adopt the view that it is necessary to send the modified
data after executing each component. But there is a
chance that redundant data might be sent by the processes,

which occurs due to output dependencies. So, our

JCS Vol.1 No.2 Sep - Oct 2005

algorithm does the following: if there is any output
dependencies between two components, the variable
involved in the output dependencies will not be sent to
the root processes, because the component which was
the cause for the output dependency will anyway modify

the data and send it to root process.
Resolving Unnecessary Communication:

To resolve unnecessary corrmunication, a component will

be executed by a process, where the communication cost

required is the minimum. Executing in some other process
will lead to more and frequent communication between
the processes. Allocation of the ranks to the components
depends on the communication cost, To handle this we
maintain a “processor status” structure that specifies the
set of valid data, it is holding. The Structure of the

“processor status” is shown in the figure 6.

| Varable Name: -
{LowerBomd
|UpperBound

Figure 6. Processor Status Structure

Each entry of Processor Status contains the variable name,

lower bound and upper bound. There is one entry which

points to the same structure. This entry is to handle
matrices, where it specifies the lower bound, upper bound
of 2nd dimension in 2D matrix and so on. Each processor
will have lot of entries specifying the chunks of data it is
holding. While allocation of ranks, we will find out the
communication required by each processor (which was
not allocated) for executing the component, then we will

allocate those ranks whose communication cost is less.

1. for each processor status do

aj for each use in the component do

b)if the use is present, then find out which
portion of the data is unavailable and no. of
data required.

" ¢) if the use is not present, then whole
data is required, calculate the no. of data
required. Update the no. of data required.

2. Return the processor number that has the
minimum no. of components.

Figure 7. Algorithm for communicatien
optimization

The algorithm is given in the figure 7. Here the no. of
data is number of data required multiplied by bytes
occupied by each data. The three steps, namely,
Scheduling, Data distribution and Code generation are
done simultaneously for each component. That is, as soon
as the data distribution strategy is found for a component,

the code is generated for that component.
10: Finding out the data distribution Strategy

Once the proper paralielization schedule is identified, the
next step is to distribute the data that are required by
individual process. The algorithm is given in the figure 8.
Here for each of the components we find their
corresponding “def” and “use”. Then for each use, check
whether the required data is present. If it is not present,
find out the segment that is not available and generate the
MPI calls, The distribution for array or matrix can be block
or block cyclic, it depends on the way the given component

1s parallelized.

1. for each of the USE in the component

a) if the all the required data is present
locaily,then there s no communication
required

b) else find out the portion of the data that
is required and generate the send and recv
calls. '

Figure 8. Algorithm for data Distribution

A Source 1o source Automatic Parallelizing Compiler for a Cluster of Workstations

In the example shown in the figure 9, data distribution
for b is decided by parallelized loop, that is, if the outer
most loop is parallelized then we use block distribution
(set of rows from array b are sent to different processes)

and if the inner loop is parallelized we use block cyclic

distribution (set of columns from array b are sent to -

different processes). Figure 10 shows the mpi code
generated for the serial code given in the figure 9. In both
the cases the block size depends on the number of
processes that are used for parallelizing the component.
Here for block distribution we use MPI send and MPI
Recv and for block cyclic we use MFI Type Vector for
constructing the data type and we use that data type in

the send and recv calls.

Toc Gmthismi
to=0yerp(
Lol

} i)

i |w fro |— io

(b) (©)

Figure 9: Array Data Distribution a)sample for loop
b} array distribution for array b if inner loop is
parallellze c) 1f auter loop is parallelxzed

I!‘(rank“—_-O){
MP1_Send(b{50][0],500,MPI_INT,1,0, MPL_COMM_WORLD);
for(i=0i<50; H+}{
Tor(=0j<100;j++){
afif1=bla0] .

)]
Hirank=1){)
MPL_Recv(b{$0}{0],500,MPL_INT,0,0, MPI_COMM_WORLD,
&status),
for(i=50;i<1 00;i++){
for(=0;j<100j++)7 - : -
, afiflfi=blil{i

(=)

“Hrank==f)— - - - - - - e oo
MPL_Type_vector(100,50, 100 MPI ENT&cﬂiumn}
MPI_Send(bf0}[50],1,column I, OMPL COMM WORLD),

Hfsame for loop .

}

Mrank=1{. - . ____._ _)
MPI_Type_vector(100,50,100, MP} IN'I‘&,colm'nn)
MPI_Recv(b[0}[50],1,column,0,0,MP1_COMM WORLD \&status);
{/same for loop

}

()
Figure 10 : Sample generated mpi code a) Block
Distribution b) Block Cyclic Distribution

11. CODE GENERATION

This is the last phase in our compiler. We generate a SPMD
message passing code. As soon as data distribution is

identified for the component, code is generated for that

component with MPI calls added to it. Scalar variables
are replicated in all the processors. So, we use MPI Beast
for broadcasting any scalar variables to all the processors.
We also use MPI calls for sending and receiving the data.
The mpicalls that are used by our compiler are MPI Send;
MPI Recv, MPI Beast, MPI Type Vector, MPI Reduce.

12, PERFORMANCE ANALYSIS

In this section we discuss the performance of the compiler
and the communication algorithm we used. For identifying
the performance of our compiler, we take a Matrix
multiplication benchmark program. Also we take a
sequential program containing operations, that are most
commonly used in various fields (Mathematics, physics
and ImageProcessing) for discussing the effectiveness of
our communication analysis algorithm. The associated
speed up for the generated parailel program with respect
to the serial program, that was given as input to the
compiler is determined. Also we compared the predicted
or theoretical speed up with the actual speed up. The
machine configurations of the nodes in the cluster of
workstations, on which the parallel programs were tested,

are as follows:

P Eachnode in the cluster is a 2.4 GHz Intel Pentium
4 processor with 256MB RAM with a 100 mbps LAN
Programme 1 : Matrix Multiplication

Programming analysis was done for matrix with different
sizes. The timing on different number processing nodes
is given in Table 1.

Figure 11 shows a plot of the speed obtained vs number

of processors, for node with different sizes. The speed

JCS Vol.1 No.2 Sep - Oct 2005

up predicted is almost linear for 4 processors only. Behind
is very large for 500%500 matrix and 800*800 matrix.
The reason for the deviation 1is because the
communication cost increases with the processors in
. number of processes. Therefore the speed up. The figure
12 shows the plot between actual and predicted speed up
for a 500*500 matrix multiplication. Here actual speed
up is found to be greater than the predicted speed up.

This is because, predicted value gives an approximate

Proc Speed up
no 500*500 1600*1G00
Predicted | Actual | Predicted i Actual

1 1 1 1 1

2 1.97 1.6 1,97 1.97

3 2.70 2N 2.89 2.87
4 3.47 3.53 3.78 3.80

5 375 3.8 4.63 4.68

8 412 4.34 5.42 5.51

Table 1 : Speed up for Matrix Multiplication
speed up, and it doesn’t take care of the communication

overlap. Communication overlap reduces the execution

time. Hence the speed up increases,

Matrix Multtptication Speed Up Vs No Ot
Processors

=t UpeRe U B00CY
4 SR8 U BOOTEO0

e x GGG LID
10001050

Figure 11: Plot of Speed Up Vs No Of Processors for
Solving Matrix Multiplication

Matrix Mutlipication Pradicted Vs Aotusd
Speed up

[
B i

i P e
| speeditsuosng
b | A gpead o
LB

e

w
w bhog
A1 |
im 1':
‘:

PR HER

Forra un

o
Nk
I

AERELE

2

ESRIRHENRY
v,
11 1}

M
“
+
o

Ho Of Processors

- Figure 12: Plot of Predicted Vs Actual Speed Up for
500%500 Matrix

Program 2: Two-Dimensional Convolution
The plot for speed up vs no of processors and comparision
of predicted and actual speed up for convolution is shown

below

corvoluiion Speed up Vs No 6T Processors

[~+=metasl Spond Up;
. afer

1 2 3 4 3 8
No of Proceasors

Figure 13: Plot of Speed Up Vs No Of Processors

for convolution.

Coenusiution Prodisted Vo Actuldl Bposdup

T Procicied
Specdup 3°3

o Actuo) Speead Lip
33 tiher

Spend Hp

2 3 - 5 [
Na of Processirs

Figure 14: Plot of Predicted Vs Actual Speed Up for

convolution.

Program 3

For identifying the performance of our cominunication
algorithm, we will consider two versions of the parallel
program generated by our compiler. One using our
optimized communication algorithm (with resolving
unnecessary cominunication and Eliminating Redundant
Communication) and the other with an unoptimized

communication alogrithm. This Program consists of the

following operation.

A Source to source Automatic Parallelizing Compiler for a Cluster of Workstations

Finding the numerical integration for three different
functions

P Matrix Multiplication

B Convolution

P Solving Wave Equation
b Solving Heat Equation
P Solving Flow Equation

The timing analysis for the generated parallel program
with optimized communication and without optimized

communication on a cluster of workstations is shown in

Table 2.

Proc No | Speed up
Without optimized | With optimized
communicatign communication

1 1 1

3 2.91 2.95

14 3.88 3.83

5 4.62 4.81

[3 5.27 5.59

7 5.78 6.28

8 5.13 6.716

Table 2 : Speed up for Program 2

Figure 14 shows a plot of speed up obtained vs number
of processors for the sequential program. From the graph
we can see that the speed up obtained by an optimized
version of the parallel program is far better than an

unoptimized one.

| o B b
| Frogransy
Speed Up Vi Ny QfProcessors

£ izt LAg westgid
i CETLERA T h
3 SpiRTRE R
i Bgaed 13y Wik
AT aR
T g

} ! Hp Of Fraceoors

Figure 14: Plot of Speed Up Vs No Of Processors

for Program3

187

Program 4

This Program consists of the following operation
b Applying a Median Filter

P
The plot of Speed up vs No of processors with and without

Matching 5 Template images.

communication optimization for the above program is

given below.

Frograme Spocdifp Vi Mo OF Flanewsars

-

e Bkl U wihad
Carmrumastion
R RN

e EREDH LS WER
CormrLmee
D IR

Spoed By

[)

e

t 3 = 2 i ¥

ey OF PR st W

i

Figure 14: Plot of Speed Up Vs No Of Processors
for Program3

The speed up was linear and also parallel program with
communication optimization yields better speed up than
non-optimized one.

Thus we have shown that our communication algorithm
yields better speed up than compared to an unoptimized

one.
CONCLUSION

A compiler that converts a sequential code into a parallel
code, which can be run on a cluster of workstations, was
developed. The performance of the generated paraliel
codes was evaluated and it was found that the generated
parallel codes achieved near linear speed up for
computationally intensive operations containing for loops.

The core issues of data distribution and communication

optimization are addressed. The strategies adopted are
found to be performing satisfactorily. Unlike other

parallelizing compilers for cluster workstations, here we

have an automatic data distribution and communication

optimization mechanism built into the compiler.

JCS Vol.T No.2 Sep - Qct 2005

Acknowledgement: This work was carried out in the
A.LCenter, Department of Mathematics and Computer
Science, Sri Sathya Sai Institute Iof Higher Leaming,
supported by the Institute’s Academic Research Cell.
Authors dedicate this work to the Chancellor of the

Institute Bhagawan Sri Sathya Sai Baba.

References:

[1]1Aho. A. V. Sethi, R. Ullman, J. D. (1986). “Compilers:
Principles. Technigues, and Tool’s. Murray Hill, New
Jersey: Bell Telephone Laboratories, Inc.

[2] Goff, G. Kennedy, K., and Tseng, C (1991, June).
“Practical Dependence Testing”, roceedings of the
SIGPLAN Conference on Programming Language

Design and Implementation, Toronto, Canada.

[3] Kathryn § McKinley, “Automatic and Interactive
Parallelization™, P.hd Thesis, Rice University,
Houston, Texas March 1994. [4] Michael Wolfe,
“High Performance Cowpilers For Parallel

188

Computing”, Addison-Wesley Publishing Co., 1996.

[5] Utpal Banerjee, Rudolf Eigenmann and Alexandru

13

Nicolau, “Adutomatic Program Parallelization *,

February 1993.

6] Vinod Varma U and Pallav Kumar Baruah

“MPIIMGEN- A code transformer that parallelizes
image processing code on COW”, IEEE Internationat
conference on cluster computing, Sept. 20-23 2004,
San Diego, California

[7] Yatin Nayak, “4 parallelizing compiler for cluster of
workstations “, Report, April 2000, Department of
Computer Science and Engineering, IIT Kanpur.

{8] Kathryn S. McKinley, J. Eliot B. Moss, Sharad K.
Singhai, Glen E. Weaver, Charles C. Weems,
“Compiling for Heterogeneous Systems: A Survey and
an Approach “, Department of Computer Science,

University of ,’- Massachusetts, Arnherst. CMPSCI

Technical Report 9582, October 1995.

