Karpagam Jes Vol. 8 Issue 6 Sep. - Oct. 2014

PREDICTING ADAPTABILITY LEVEL OF OBJECT-ORIENTED
SOFTWARE USING MEERICS AND THRESHOLD VALUES

Veronica V. N, Akwakwuma' and Edward N. Udo*

ABSTRACT

Adaptability, a sub-characteristic of software quality has
become so important in recent years and a key
characteristic of well designed applications because
modern software systems are expected to service swiftly
revolutionizing business environments. Much effort hé ve
been invested to the development of object oriented
design metrics to measure software properties such as
coupling, cohesion and inheritance, but metrics to be used
by software developers to predict, at the coding phase,
the extent to which object oriented software adapt is
needed. In this work a software analyzer has been
developed using JAVA programming language to meastire
the values of some internal properties of ohject oriented
software using combination of associated object oriented
design metrics. Threshold values of these object oriented
design metrics are grouped, into Ievels-.tak'ing into
consideration the desirable values of the internal software
properties. The. measured values are matched against
these threshold values and the level of each attribute is
noted. Decisions rules are formulated and used in

conjunction with binary logic combination ofthe possible

internal software properties to aid predict adaptability -

'Department of Computer Science, University of Benin, Benin
City, Nigeria, Email: vakwiukwuma@yahoo.com.

2D.ep'artmt:nt of _Computer Sciehéc, Univefsity of Uyo, Uyo,
Nigeria, Email: edwardudo@@uniuyo.edu.ng

344

level (Poorly Adaptable — 1; Fairly Adaptable — 2;
Adaptable -3) of a given software. The analyzer is
implemented on 12 epen source JAVA prdjects and their
adaptability levels are noted. .The analysis revealed that
source codes with low coupling, high cohesion, low
inheritance and low complexity easily adapt 10 new
operating environment with little or no modifications to

the source codes.

Keywords: adaptability level, software metrics, internal

software attributes, threshold values, software analyzer.
L. INTRODUCTION

One of the fastest growing areas in the Information .
Technology (IT) industry is-the area of Software; its
products and technologies. Our modern sociely is
becoming maximally dependent on software [19]. Asmany
individuals, corporate organizations .and_even
government use several software products to enhance
effectiveness of their operations, the demand for quality
software continues to increase. Therefore there is need

to improve software productivity and quality .

The term “quality sofiware” is seen fo comprisé software
p.rod'ucts such as adaptabiiity, completeness,
maintainability and understandability [12]. Software

products are intended to be adaptable. Therefore there is

need to predict the adaptability level of any developed

software.

Predicting Adaptabifity Level of Object-Oriented Software Using Metrics and Threshold Values

Reference [11] described software quality in terms of six .

(6) quality attributes — Functionality, Reliability, Usabiiitf{
Efficiency, Maintainability and portability. Sub-
characteristics of portability are adaptability, usability, co-
existence and replaceability[1]. Portability simply .means
the ease with which a software system can be transferred
from one platform to another. It is therefore the ability of
code-base feature to reuse the already existing code rather
than writing new code when transferring software from
one environment to another. What therefore affects
portability also affects adaptability and other sub-
attributes of portability. The realization of any of the sub-
characteristics can be determined using metrics [31]. These
sub-characteristics can be termed external quality
attributes because they relate with the behavior of the
software and as such cannot be directly measured but
can only be neasured through internal quality attributes

such as coupling, cohesion, complexity etc. [21]

Measurement of external softwarc atlrlbuie such as
adaptab:hty can be dohe at any phase of softwale
development llfecycie. In this work, the measurement of
adaptability is done at the source code phase. [27]
investigated the_ result of object oriented desi gn software
metrics on. fault- proneness for java applications which
were empirically ahalyzed and tested u'sin'g's'éftwa‘re tool
at the source éldde level. [IV] also analyzed the complexity
of java programs, at source code level, using object

oriented software metrics.

Metrics measure quantitatively the extent to which an
object, system, component, method or procedure contain

a given property. It assigns a value {number or symbol) to

the properties of entities in the real life scenario based on
distinetly formulated and defined set of rules [9]. Metrics
help software experts and engineers to accurately measure
and predict software processes and necessary resources
needed for a project to produce the required result, It also
predicts the products relevant for a software development
job [2]. Software metrics are therefore used as pointers

(estimators/predictors) to external quality attributes.

Metrics is a quantitative measure of degree to which a
system, component or process possesses a given
attribute. It assigns a value (number or symboi) to the
aftributes of entities in the real world based on clearly
defined rules [9]. Metrics make it possible for software
engineers to measure and predict sofiware processes and
necessary resources for a project and wdrk products
relevant for a software development effort [21. Software
metrics can therefore be used as indicators (estimators/

predictors) for external quality attributes.

The objective of this work is !o‘develop and Emp!emex{t
processes to predict adaptability level of object-oriented
software uSing software metrics. Two metrics are used for
each associated internal software propertics to ensure
accurate property measurement. The threshold values of
these metrics are indicated and properly categorizéd into
three levels of adaptability prediction. Rules- are fofmu]aied
using the threshold values to aid m proper predicﬁon of

adaptability level of object oriented software, -

Since most metrics do not provide practical support to

software designers and developers and tack qualitative

as well as quantitative evaluation techniques {9, 1], this

343 .

Karpagam Jes Vol. 8 issue é Sep. - Oct. 201 4

approach predicts adaptability level in object oriented

software giving practical supj)ort to software develoé@rs.

In order to establish relationship between design
" construct and software quality, the influence of design
constructs on software quality have been examined and
revealed that cohesion, coupling, inheritance,
encapsulation and complexity affect quality attributes to
some extent. Software engineering experts assume that
design with low coupling, high cohesion, less complexity
and low inheritance leads to 'pfodﬁcts.that.are of high
quality — better testability, readability, reliability,

maintainability etc [27].

The rest of this paper is organized as follows: Section 2
 defines adaptability and some of its related terms. Section
3 describes internal software attributes, section 4 reviews

related literatu’re,‘section 5 states the research

methodology, séction 6 discusses the architecture of the

software émalyzgr, section 7 shows the threshold values,
section 8 fonnu'latgs fhe decision rules and the values for
determining'adap.tébility level. Section 9 ilnplemenis thé
software analyzer and discusses the results. Section 10

concludes the work.

I1. ADAPTABILITY, FTS NEED AND SOME TERMS

- Adaptability as one of the properties of object-oriented

software is among the most significant non-functional

requirements in software {22]. Adaptability is one of the

key considerations of well designed applications in recent - - - _
: - characteristics etc, [26]. This environmental change is

years because present day software systems must be able
to service the changing business environments rapidly,

efficiently and with robust reliability over a long time

346

interval. If a system is designed without bearing in mind
adaptability, the system will degrade and malfunction in

the face of continuous software requirements changes.

Several authors define adaptability differently. Reference
[10] defines adaptability as “the ease with which a system

or component can be modified for use in applications or

" environments other than those for which it was

specifically designed”. Reference [23] views adaptability
as modification of behaviour ili'respu_nse to el_lvironmént
changes. Reference [24] defines a:daptéﬁ-ii"i'ty"i's
amendment of the changing requirements. Adaptability -
is the level of ease a system shows in being adjusted to
meet a modified requirement. It therefore characterizes
the ability of a system to still function properly in an
event of change to new specifications or operating
environment. Adaptability is the level to which a sofitware
adjust to change in its environment. It is vital for the
sﬁrvival, functionality and success of ahy software
system and should therefore be optimized, even at the-

expense of other software quality characteristics.

For a software system to still function, it must imdergo _
adaptive maintenance, which is the correction done on a
software code or product after it might have been delivered

to miake it useful in 2 modified environment.

As time elapses, the software initial environment in which
the software was developed for may change. These may

include the CPU, . operating platform, product -

mostly due to changes in fechnology, org@iﬁtibnél goal

and structure, human feelings and needs, etc [16]. Other

Predicting Adaptability Level of Object-Oriented Software Using Medrics and Threshold Values

changes may be as a result of change in customer

requirements, need for new software developmenél
modification of software features, bugs and defect
detection and fixing during the maintenance phase of
software life cycle. Therefore, software adaptability
measurement is a key concém to software designers,
developers and other personnel within the software

engineering community,

A.daptabilrity metrics therefore measures how flexible and
adjustable a system is to changes within its operating
envi}onmeni {8]. It measures the ease of change during
the project development phase or in a postmortem fashion.

This is the aim of this work.

To really understand what adaptability of a software
system means, the definitions of the following terms are

vital:

1. System (S)—Anassembly of components connected .

together in an organized way and separated from its
- environment [4]. There is an interaction between a

system and its environment.

2. Environment (E) — This is the space in which a
system is settled. Environment is actually another
system which surrounds the actual system. The
subset of complete environment which interacts
ﬁ.fith the system is Relevant Environment(E,) while
the subset of the coinplete em.f‘ironment which has
no interaction with the system is called the Irrelevant
Environment (E,). Environment is therefore Relevant

Environment Union Irrelevant Environment.

E=E,UE, (1

Environment
System

Figure 1 : Relationship between System and

Environment

3. Domain (D) - The system under consideration
together with the Relevant Environment forms the

Domain.

D=SUE, @)

From Fig. 1, it can be deduced that System = Domain.

4. Adaptation - Change in the system to accommodate
change in its environment. Adaptation of a software
system (S) is caused by change (&5;) from an bld

- environment (E) to a new environment (EJ) and
7 results in new system (S[) thlat ideally meets the

need of the new environment.

II. INTERNAL SOFTWARE ATTRIBUTES

Internal software attributes are those that can be measured
purely in terms of the product, process or resource itself
[21]. The internal software attributes used in this work are
Coupling, Cohesion, Inheritance and Complexity. Their

definitions are highlighted below

e Coupling: Amount of connections between classes

30).

‘o Cohesion: This is the extent to which the individual

components of software are needed to perform the

347)

Karpagam Jes Vol. 8 Issue 6 Sep. - Oct. 2014

same task [21]. Cohesion measures the degree of
connectivity among the elements of a smgled%lass

or object [6].

o Inheritance: This is the sharing of attributes and
-:operations among classes based on a hierarchical
relationship. Inheritance therefore occurs in all

levels ofa class hierarchy.

o Coniplexity: This describes the interactions
between numbers of entities. As the number of
entities increases, the number of interactions
between them would increase exponentially, and it
would get to a point where it would be impos.siblé

to know and understand all of them.

Suite of metrics by [30] is used in this study because of
their wide acceptance among the engineering community
[15]. Two other metrics: Numberof Methods (NOM)and
Lack of Cohesion in Methods 2 (LCOM2) are added to
help in accurate measurement of the internal software

properties.

The metrics suite by [30] consists of Coupling Between
Objects (CBO), Response for a Class (RFC), Lack of

Cohesion in methods! (LCOMI), Depth of Inheritance:

Tree (DIT), Number of Children (NOC) and Weiglited
Methods per Class (WMC). Table 1 shows the metrics,

their definition and their effect on adaptability.

IV. RELATED WORK

Several software adaptabiiity metrics have been

developed using different techniques as architecture-
based technique, component-based technique, dynamic

adaptation technique efc.

Reference [7] proposed a component-based architecture
by providing an adaptable interface to each component.
The code in the adaptable interface can be changed as
required to achieve the needed adaptation without making

any change to the component.

Reference {22] modeled software adaptability as Non-
Functional Requirement (NFR). Through this approach,
consideration of design alternatives, analysis of tradeoffs,
and rationalization of desigh decisions are all carried out
in relation to the stated goals. Adaptation is .supported at
the architectural level by using NFRs framework which
allows for decomposition of the NFR adaptability
depending on the domain or the application and permits
criticalities to be allocated to different NFRs of the

decomposition.

Reference [16] proposed a framework called POMSAA

(Process-Oriented Metrics for Software Architecture

‘ Adaptablhty) which aims at providing numeric scores

representmg the adaptability of soﬂware architecture as -

well as the 1nt_u1t10ns ‘behind these scores, u_t]hzmg

Softgoal Interdependency Graph (SIG). '

Referei;ce {22] introduced two high level metrics to
measure the adaptability of software. They defined an
Element A&aptability Index (EAL) for each sofiware unit.

EAI was set to 1 for adaptable elements and 0-for non-

: adaptable elements. EAI can be measured at different

' Jevels of software granularlty Based on EAI two metrlcs

of Architecture

348 . .

Predicfing Adaptability Level of Object-Oriented Software Using Metrics and Threshold Values

Table 1 : Metrics, Definition and their Effects. on Adaptability Sources: [2], [5], [1] and [13]

£

PROPERTIES | METRICS DEFINITION EFFECT ON ADAPTABILITY

COUPLING CBO The nuwmber of distinct non-inheritance |i. Too much coupling betwecen objects
related classes to which a piven class is | prevents reuse, thereby reducing the
coupled. It is the number of methods that | Probability of adaptability
can be called in response fo a message ina [Ti_w larger the ql}m'ber of couples the

higher the sensitivity to changes and
class. difficulty of maintenance. Difficult to
maintain means less adaptability.

RFC Defined as [RS| where RS is the response |1 If the number of methods called in
set for a class. The response set for a class | Tesponse to a message Teceived by an
can be expressed as: ?bjf_iCt lg large, tli{;? n-;?im;]'laliwe aﬁd

esting becomes difficult which results
= M} U Ry} in Ie:ssg adaptability
Where: ii. The larger the number of methods that
{Ri} = set of methods called by method i can be called from a class, the greater
{M} = set of all methods in the class. | the complexity of the class thereby
.) ‘ _ 7 S reducing adaptability, -

COHESION LCOM1 The count of the number of method pairs . Cohesiveness of methods within a class
whose similarity is zero minus the count of | s desirable because it promotes
method pairs whose similarity is not zero. | encapsulation and increase adaptability
Let [P| be the number of null intersections |- A measure (.)f disp aratffness of mf.:ﬂ_mds

. . helps identify flaws in the design of
between instance variables. Let |Q] be the classes
number of non-empty intersections |iii Low cohesion increascs complexity
between instance variable sets, then: thereby reducing adaptability level,
LCOM =P| - |Q}is IP[> |Q
LCOM = 0 Otherwise. :

LCOM2 The percentage of methods that dv not |i A higher value of LCOM2 indicates
access a specific attribute averaged overall | decreased encapsulation and- increased
attributes in the class. complexity, - thereby Increasing (he
LCOM2 = 1 — sum (mAY/(m*a) Iikeﬁho(_)n'l of CrTors. - This affects
Wherc: adaptability negatively,

m = number of methods in class.

a = number of attributes in class.

mA = number of methods that access an
attribute.

sum(mA} = sum of mA over attributes of a
class,

INIIERITANCE | DIT 1t caleulates the distance to which a class is | i. The deeper a class is in the lucrarchy,
declared in the inheritance hierarchy, 1t | the greater the number of methods it is
also counts (he nuntber of ancestor classes likely to inheri(, making it morc
that can potentially affect this class. complex thus having a potential unpacl

: . - _on adaptability.
i. Deeper trees constitite greater design
complexity since more methods and
classes are involved. This also affccts
‘ adaptability negatively.
NOC 1t counts the number of sub-classes that are | i. The greater the number of children tis .

going to inherit the methods of the parent
class. That is the number of immediate
classes subordmaled to 2 class in the class
hierarchy.

greater the reuse, since inheritance is a
form of reuse. This positively affecis
adaptabikity.

349

Karpagam Jes Vol. 8 Issue 6 Sep. - Oct. 2014

COMPLEXITY | WMC

Traditionally, this' measures the
complexity of dn individual
(weighted sum of all the methods in a
class). It calculates all declared methods
and constructors of class.
Consider a class Ci with methods M; ...
M,. Let C, to C, be complexity of the
methods, then:
n
WMC = TG
=l

Where C is complexity of methods.
IFWMC is unity, then WMC is the number
of methods per class.

class |

i. The number of methods an& the

complexity of methods involved is a
determinant of how much time and
effort is required to maintain softwarc
thereby making it adaptabie.

ii. Classes with large number of methods
are likely to be more application
specific thereby limiting the possibility
of reuse in a different environment,

NOM

The number of mellwds iinplemented in a
given class. : :

Since NOM includes methods (hat are
declared and those that arc not
declared. This truly reveals sollwarc
complexity. Higher the complexity,
lower its likelihood to adapt.

C & K metrics Adaptability,
Adaptability Index (AAT) and Software Adéptability Index FOUT, NOM, LOC Coz_npl(.:ten?s.s, (14
: : Maintainability
{SAIl)are calculated. Understandability
: Reusability,
Considering the choice and validation of internal Testability
I . . ' C & K metrics Adaptability,
quality attributes, a number of researches have been done. FOUT,NOM, LOC | Maintainability | (18]
Table 2 classifies infernal quality éth_'ibutés and external o Understandability |
: : : Reusability,
quality attribute(s) they affect. Testability
' : C & K metrics Adaptability, [15]
Table 2 - Classification of Internal and External Quality FOUT, NOM, LOC | Completeness,
. Maintainability
- Attributes Understandability
Reusability,
‘ Testability
INTERNAL EXTERNAL | SOURCE
ATTRIBUTES ATTRIBUTES |- '
- Coupling Maintainability -~ | [33] -
Coupling _ o
e Mairitainabili
Cohesion Antamaviity 3] V. RESEARCH METHODOLOGY
Cohesion’ :
Size metrics - | Maintainability | [29] The method adopted to accomplish the objectives of this
_Complexity metric : ‘ work follows a systematic approach :
C & K metrics N [25] .
MCC,LOC Reusability (a) Development of software analyzer o measure the

values of coupling, cohesion, inheritance and
complexity of a source code using associated object
oriented design metrics.

50

Prediciing Adaptability Level of Object-Oriented Software Using Metrics and Threshold Values

{(b) Threshold values of these object oriented design-

metrics are grouped into adaptability levels tak@’g
into consideration the desirables values of the
internal software properties.

(¢©) Values of the internal software properties are
maiched against estimated threshold values and
~ computed for 12 different open source codes.

(@ Rules are used to formulate the level of each
property in the source code and the adaptability
levels of the software for appropriate predictions.

VI. ARCIITECTURE OF SOFTWARE ANALYZER

Figure 2 shows the different components making up the
software analyzer. The ﬁle,s&stem module is a retrieval
system that gets a software file and sends it to the filter
for filtering, The filter vﬁil extract out a.Il non-‘codes
documents and bring out the sof‘twére source code for
analysis. The analysié phase analyzes the source code,
extracts metric values relating to the selected internal
software attributes - coupling, cohesion, inheritance and
complexity, using the selected object oriented software
metrics. The values obtained are matched against the
estimated threshold values for each of the metrics. The
knowledge base houses the decision rules to be extracted
by the inference engine to determine whether the
calculated metrics values are above or below the
thresholds. The rules also help the analyzer to know the
level of coupling, eohesion, inheritance and complexity
in the analyzed software as well as the adaptability level
of the software. The rules are shown .in section 8. The
user .interface displays the result of the source code
analyses and the resﬁlt is stored as a file in the file system

(storage).

‘-\“ 3 //i Filter) || Userinforence
— |
File - . 4
System o List _ % Dispiay it
I ! i
[|
o —“/;
(Retrieval)

Knowledge Basefinference Engine

Figure 2 : Architecture of Software Analyzer

VII. TurESHOLD VALUES

In order to determine the level in which a softwarc
possesses the value of the selected internal software

properties, the value of each property is measured against

a threshold. Low means the value is below a threshold

\irﬁile high. means above the threshold, Thresholds arc
defined as “heuristic values used to set fanges of desirabic
and undesirable metric values for measured software.
These thresholds are used to identify anomalies which
may or may not be an actual problem [20]. Threshold values

for the selected metrics are shown in table 3

351 -

Karpagam Jcs Vol. 8 Issue 6 Sep. - Oct. 2014

Table 3 : Metrics Threshold values ﬁ’ '
PROPERTIES | METRICS | THRESHOLD | SOURCE
VALUE
Coupling CBO 5 17}
{28}
RFC 100 [17]
[28]
Cohesion LCOMI 1 I5]
LCOM2 2 [53
Inheritance DIT 6 [5]
NOC 6 [5]
Complexity WMC 100 [17]
: {28}
NOM 20 [31]
VIII. DEcisioN RULES

To determine whether the level of these attributes in a
given software is above or below the threshold, rules are
T employed. Low (0) is for value below the threshold and
' High (1) is for the value above the threshold.

iv.

High Cohesion will occur only when LCOM1 d” 1
and LCOM?2 d” 2. Other conditions will yield Low

Cchesion.

Low Inheritance will occur only when DIT d” 6
and NOC d” 6. Other conditions will yield High

Inheritance

Low Complexity will occur enly when WMC d”
100 and NOM ¢” 20. Other conditions will yield
High Complexity.

Determining Adaptability Levels (AL} for each At- '
tribute- Before determining adaptability levels, the
desirable condition (level) for the selected internal
software properties is known. Low coupling, high
cohesion, low inheritance and low cemplexity are
desirable conditions for effective adaptability of
object oriented software. Table 4 shows how thresh-
old values are grouped for each level of adaptability
for a particular desired condition. The threshold val-
ues for the different adaptability levels in Table 4 are

A Determining Attribute Levels - The rules for
determining the level of Coupling, Cohesion, used in establishing rules for adaptability levels of
Inheritance and Complexity is given thus: each of the software properties. The adaptability lev-
els are Adaptable, Fairly Adaptable and Poorly
i Low Coupling.wiil oceur only when CBO d” 5 and Adaptable.
RFC d” 100. Other conditions will yield High
Coupling. :
Table 4 : Threshold Ranges for Adaptability Levels
"DESIRABLE METRICS ADAPTABLE | FAIRLYADAPTABLE POORLY
FEATURE o ' ADAPTABLE
Low Coupling CBO -3 4-5 >5 '
. : RFC 169 70~ 100 > 100
High Cohesion LCOMI. 1 - >1
LCOM2 0-1 2 >2
Low Inheritance DIT 0-4 5-6 >6
NOC 0-4 5-6 >6
Low Complexity WMC 1-69 70-100 > 100
: NOM 0-10 11-20 =20

352

Predicting Adaptability Levet of Object-Orented Software Using Metrics and Threshold Values

The rules are written out below:
COUPLING

IfCBO=1to3and RFC=1t0 69
Then Coupling = Adaptable
IfCBO=1to 3 and RFC =70 t0 100
Then Coupling = Fairly Adaptable
IfCBO=1t03 and RFC> 100
Then Coupling = Poorly Adaptable
IfCBO=4to5and RFC=1t0 69
Then Coupling = Adaptable
IfCBO=4to5and RFC=70to 10
Then Coupling = Fairly Adaptablf;
IfCBO=4to 5 and RFC> 100
Then Coupling = P-oorly Adaptable
IfCBO>3 _andRFC =1to69

Then Coupling = Adaptable
IfCBO>5 and RFC="7010 100
Then Coupling = Fairly Adaptable
HCBO>5and RFC> 100

Then Coupling = Poorly Adaptable

COHESION

IfLCOM1=1and LCOM2=0to1 -

Then Cohesion = Adaptable
FLCOM!1=1and LCOM2=2

Then Cohesion = Fairly Adaptable

- fL.COMI=1and LCOM2>2

Then Cohesion = Poorly Adaptable
IfFLCOM1 > 1 and LCOM2 =010 1
Then cohesion = Adaptable
IfLCOM1> 1 and LCOM2 =2
Then Cohesion = Fairly Adaptable
FLCOMI1>1and LCOM2>2 |
Then Cohesion = Poorly Adaptable
INHERITANCE

HDIT=0104and NOC=01t04

Then Inheritance = Adaptable

IfDIT=0to4and NOC=5t0 6

Then Inheritance = Fairly Adqptable :
IfDIT=0t04 andNOC>6

Then Inheritance = Poorly. Adaptable
IfDIT =50 6 and NOC =0 to 4
Then Inheritance = Adaptable
IfDIT=5t(_)6andNOC=5to6
Then inheritance = Fairly Adaptable

IfDIT =5 t0 6 and NOC > 6

Then Inheritance = Poorly Adaptable

IfDIT>6and NOC=0to4
Then Inheritance = Adaptable
IfDIT>6and NOC=5t0 6

Then Inheritance = Fairly Adaptable

353

Karpagam Jes Vol. 8 issue 6 Sep. - Oct. 2014

DIT> 6 and NOC> 6

Then Inheritance = Poorly Adaptable

COMPLEXTTY

IfWMC=1t0 69 and NOM =0to 10

Then Complexity = Adaptable

HWMC=1t069and NOM=11t020

Then Complexity = Fairly Adaptable

IfWMC=1to 69 andeM:* 20

The Complexity =Poorly Adaptable

IfWMC=7010 100 and NOM=0 to 10

Then éoinp_lex_ity = Adaptable

IfWMC =701t0 100 and NOM= 111020

T'hen Complexity = Fairly Adapt;able

If WMC= 70 to 100 and NOM > 20

- 'r_;_x:eg Complexi;y = Poorly Adaptable

IfWMC> 100 é.ndNOM=0 to 10

Then Cqmplexity = Adaptable

If WMC > 100 and NOM = 11 t0 20

Then Complexity = Fairly Adaptable

If WMC > 100 and NOM > 20

Then Complexity = Poorly Adaptable

A. - Determining Adaptabflig: Level for entire Software-
The adap_tability levelg"for a given software are
Poorly Adaptable (1), Fairly Adaptable (2) and

Adaptable (3). The poséible combinations for levels

of the properties are shown in table 5.

Table 5 — Possible Combinations for Property Level -

SN | cou COH INH coMm
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 i
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0
10 1 ; 0 1
11 1 0 1 0
i2 1 0 !]
13 1 1 0 0
14 1 1 0 1
15 1 1 1 0
16 1 1 1 1

Taking into consideration the desirable level for each
property, table 5 is reduced to table 6 where Y (yes)
replaces the desirable value and N (a0) replaces the
undesirable vaiue. These values are used to determine
the Adaptability Level (A.L) of software.

Table 6— Values for determining AL,

SN cou COH INH com Al
1 Y N Y Y 3
71 ¥ N Y N 2
3 Y N N Y 2
3 | ¥ N N N i
5 ¥ 9 'E Y 3
6 | Y Y Y N 3
7 Y Y N Y 3
g 1 v Y N N 2
9 | N N ¥ Y 2
0] N N ¥ N [
Tl N N N Y 1
2| N N N N 1
3] N | Y Y Y 3
4| N Y Y N 2
15| N Y N Y 2
6] N Y N N 1

354 ' }

Predicting Adaptability Level of Object-Oriented Software Using Metrics and Threshold Values

IX. IMPLEMENTATION AND RESULT é{ '

Twelve (12) JAVA projects were loaded into the designed software analyzer for analysis of the source codes. Information
such as number of classes, average values of CBO, RFC, LCOM], LCOM2, DIT, NOC, WMC and NOM were extracted.
" Figure 3 shows the analysis of one of the projects (poi-3.7-2010 1029) while figure 4 shows the metrics summary of the

project, indicating the adaptability level for each of the properties in the analyzed project. Table 7 shows the displayed
threshold levels for the 12 projects.

4. Result Explanations — Using table 6, it is seen that GrFingerJava will be adaptable to new environment with little
or no modifications in the source code. The internal attributes of the source code are all below the threshold
values. Jog1 will be fairly adaptable with a bit more modifications to the source code. Inheritance and Complexity

values are above the threshold. The same explanations can be applied to all other projects.

- FEATURED METRICS . .+ PARAMETER 1. o PARAMETER 2 {OBSERVEDAEVEL .. . - MORMAL LEVEL
COUPLING - Adaptabls iCBO[4.5551723] - Feirty Ad... RFCL 39.929965 1-Adapebie Low “low
COHESION - Fairly Adeptable LCOMI] 0.29286237 1 - Adap... LCOMT 55.665783 1 - Pourty - FEGH e
iE\JHERIrANCE-AdaptahIe D1T[0.583554‘4} ~ Adaptahle NOC[U.Z&S‘UBU%]‘Ad&Dl’EblE HIGH LOW
ICOMPLEXITY - Adaptable WiMC [3.851455] - Adaptable JNGH [6.5555792] - Adeptable LOW LoV

PROJECTNAME - i ' COUPLING - SEOHESION s - o INHERTTANCE. - L COMPLEMTY...
pcu -3.7-20101029 Q9) . 1 B 1 '

Figure 4 : Sample Metric Summary Qutput

355 i

Karpagam Jes Vol. 8 Issue 6 Sep. - Qct. 2074

Table 7— Th?s'hald Values for the Projects

[SOURCE NRME COUPLING

COHESION

INHERITANCE COMELEXITY

‘i GrPingerdava
Shv. Jave 2D
i jmE
7 junit-3.8.1
S jxbrowser—£.3
7 log4i-1.2.13
© Metrichib
: poi“3.7-20101029
. worldwind -

; java_card kit-classic
. javacomm2fwin32
. jogl

COOOoDOoOHOODOOO

X. CONCLUSION

Since aciaptabi[ity of object oriented software has become -

so important in recent years, it therefore becomes pertinent
to predict adaptability level of any developed object
oriented software. This work has been able to predict
adaptability level of 12 open source Java projects using
metrics and threshold values. From this work it can be

concluded that source codes with low coupling, high

cohesion, low inheritance and low complexity values adapt
easily to.new operating environment with little or no

modifications to the source codes.

[1] A. Chhikara and R. S. Clhhiltar. Analyzing' the

Oriented Software Metrics; International Journal
of Coinputér Scienée I's'sueé, Vol. 9, Issue 1-,:No‘.' 3,

Pp364—372,2012.

‘Complexity of "Ja‘;ya' Programs using Object- .

{2l

Kl

[4]

2

356

o N e

FPoOHRERDAODO RO,
HOOCOOO0OOD OO

A. Shaik, C. Reddy, B. Manda, C. Prakashini, and_
K. Deepthi.Metrics for Object Qriented Design
Software Systems: A Survey, Journal of Emerging
Trends and Applied Sciences (JETEAS),Vol. 1 No.

2.pp 190—198,2010.

B. DuBois, S. Demeyer, and J. Verelst. Refactoring
- Improving Coupling and Cohesion of Existing
Code.11th Working Conference on Reverse

Engineering (WCRE'04), 2004, pp 144-151.

B. Tekinerdogan.Modeling Adaptability in Object-

Oriented Software Development, Unpublished.

E. Chandra and P. Linda. Class Break Point
Determination using CK Metrics Thresholds,
Global Journal of Computer Science and B

Technoiogy,Vol.lO, Issue 14,pp 7377, 2010.

Predicting Adaptabiilty Level of Object-Orented Software Using Mei_rlcs and Threshold Values

{6}

[7]

8]

(9]

[10]

1]

[12]

G. Booch, Object-Oriented Analysis and Desig;;(:

with Applications, 2™ ed., Benjamin Cumming,

1994,

G. Heineman. Adaptation and Software
Architecture.'Proceedings of the 3" International
Workshop on Software Architecture, Orlando,

Florida, USA, March 1999, pp 61— 64.

H. Helvajian, Microengineering Aerospace

Systems, California: Aerospace Press, 1999,

H. Yang, R. Chen, and Y. Liu. A Metrics Method for
Software Architecture Adaptability, Journal of

Software, Vol.5, No. 10, pp 1091-1098, 2010

IEEE Standard 610.12. IEEE Standard Glossary of

Software Engineering Terminology, New York:

' Ihstitute of Electrical and Electronics Engineers,

1990.

ISO/IEC Standard No, 9 126. Software Engineering
Product Qualitly, Part 1- 4_, Geneva, Switzerland:,
Intem’étional Organization for Standardization
{(ISO)/International Electrotechnical Commission

{TEC), 2001 -2004.

L Summerville, Software E“ngineering: Design

" Reliability and Management, New York: McGraw

Hill Inc, 1996, Pp 81 —88.

03]

[14]

[15]

J. Hogan, An Analysis of O O Software Metrics,
Unpublished. -

K_._;:Eljsp, and M. Alshayeb. A classification of
Refachﬁn_g Methods based on Software Quality
Attributes, The Arabian Journal of Science and

Engineering, Vol. 36,2011

K. Elish, and M. Alshayeb, Using Software Quality
Attributes to classify Refactoring to Patterns,
JYournal of Software, Volume 7 No. 2, Pp408—al9,
2012. R

[16) L. Chung, and N. Subramanian. Process-oriented

(7

[18]

[19]

357

metrics for software architecture adaptability. In
Proceedings of 5th IEEE International Symposiun

Requirements Engineering, 2001 pp 310-311. -

'L. Rosenberg, T. Hammer, and J. Shaw. Software

Metrics and Reliability. 9% International Symposium

on Software Reliability, Germany, 1998.

M. Alshayeb. Empirical Investigation of
Refaptdﬁng Eﬁ'ec_t on St-)ftware Quality, Informa_tiqn
and Software Technology Journal, Vol. 51, pp 1319
~ 1326, 2009

M. Khaliq, R. Khan, and M. Khan. Significance of
Design Properties .in ijeét-Oriénted Software
Product Quality Assessment, International Journal
of Computing Science and Communication

Technologies, Vol. 3, No. 2,pp 1-4, 2011

Karpagam Jes Vol. 8 Issue 6 Sep. - Oct. 2014

[20]

213

[22]

(23]

24

{25}

{26}

M. Lorenz and J. Kidd. Object Oriented Soﬂ?/vare
Metrics, Eaglewood Cliffs, New Jersy, USA!

Prentice Hall, 1994,

N. Fenton, and S. Pfleeger. Software Metrics, a
Rigorous and Practical Approach, London:

International Thompson Computer Press, 1996.

N. Subramanian, L. Chung. Software Architecture

" Adaptability: An NFR approach. In Proceedings

of the 4th International Workshop on Principles of

Software Evolution, 2001, Pp52-61.

P Oriezy, M. Gorlick, R. Taylor, D. Heimbigner, G.
Johnson, N. Medvidovic, A. Quinlici, D.
Rosenblum, and A. Wolf. An Architecture-Based
Approach to Self-Adaptive Software, IEEE

Intelligent Systems, pi;) 54-62,1999.

Report on Adaptability in Obj ect-Oriented
Software Development Workshop, 10" European
Conference on object-Oriented ﬁrogramming, Linz,

Austria, July 8—12, 1996.

R. Moser, A. Sillitti, P. Abrahamsson, and G.
Succi.Does refactoring improve reusability? 9th
International Coﬁference on Software Reuse

(ICSR06), 2006, pp 287-297.

R. Pressman, Software Engineering - A
Practitioner’s Approach, 4" Edition, New York:

McGraw-Hill Companies Inc, 2005.

i27]

(28]

(29]

(30}

31

358

S. Amjan, N, Satyanarayana, M. Huzaifa, N. Shaik,
M. Naveed, S. Rao and C. Reddy. Investigating
the Result of Object Oriented Design Software
Metrics on Fault Proness in Object Oriented
Systgms: A case study, Journal of Emerging Trends
in Computing and Information Sciences, Vol 2 No.

4,pp201-208,2011.

S. Benlarbi, K. Emam, N, Goel, and S. Rai. Threshold
for Object Oriented Measures. NCCR Proceeding
of the 11® International Symposium on Software

Reliability Engineering, IEEE Society, Washington

'DC, USA, March 2000, pp 24 —37.

S. Brytoﬁ, and F. Abreu. Sfrengtheniqg refactoring:
towards software evolution With quant_i_tative and
experimental grounds, presented at the 4th
International Conference on Sdﬁware Engineering

Advances, Porto, 2DO9.

S. Chidamber, and C. Kemerer. A Metrics suite for
Object Oriented Désigﬂ, IEEE Transactions on
Software Engineerig, Vol. 20 No. 6 Pp 476 —493,

1994

S. Herbold, J. Grabowski and S. Waackr Calculation

“of th_imization of Thresholds for sets of Software

Metric. Technical Report No. IFI-TB-2010-01, ISSN

1611 — 1044, Gottingen, Germany. 2010.

Prediciing Adaptability Level of Object-Criented Software Using Melrics and Threshold Values

[32] W.Frakes, and C. Terry. Software Reuse: Met‘ricg respectively. He is currently a lecturer at the department

and Models, ACM computing Surveys, Vol. 28, of Computer Séience, University of Uyo, Uyo, Nigeria.

No.2,pp415-435,1996]] . . .
His main research interests include among others object-

[33] Y. Kataoka, T. Imai, H. Andou, and T. Fyukaya. A oriented software engineering, software metrics and

Quantitative Evaluation of Maintainability measurement. He is 2 member of NCS, CPN and 1EEE.
Enhancement by Refactoring. International
Conference on Software Maintenance (ICSM’02),

2002, pp 576-585.

AUTnoR’s Biograray

Dr. (Mrs.) V.V.N. Akwukwﬁma is an Associate Professor
in the Department of Computer Science, Facuity of
Physical Sciences, University of Benin, Benin City.
Nigeria. Her research has focused on Software
Engineering particularly in the areas of Software Metrics
and software security. She is currently a member of MAN,

CPN, NCS, INWES and OWSD.

Edward N. Udo is a PhD student at
the University of Benin, Benin City,
- Nigeria. He received B.Sc and M.Sc

degree in Computer Science from the

University of Uyo, Uye, Nigeria and

University of Port Harcourt, Port Harcourt, Nigeria

359 B

