Karpagam JCS Vol, 2 Issue 3 Mar. - Apr. 2008

Genetic Programming for Soft Computing

"K.Thyagarajan, “R. Chinnaiyan

ABSTRACT

This paper is dealt with the basics of genetic progranuming.
‘The Genetic Programming (GP) is an important tool to
evolve computer programs. An automatic programmsng
has been the goal of scientists and engineers for a number
of decades. Scientists would like to give the computer a
problem and ask the computer to build a program to solve
it. Genetic programming shows the most potential ways
that automatically write computer programs for solving
complex problems in computer science. Genetic
Programming plays a vital role in future soft computing

since it gives consistent solutions

Keywords : Automatic Programming, Genetic

Programming, Soft Computing

1, INTRODUCTION

John Koza is the originator of the field of genetic
programming. He started writing papers on genetic
programming starting in 1989 (but he first applied for a
patent in 1988). It turns out that others had the idea of
evolving programs represented as trees before John Koza,
but tﬁis work had gone relatively unnoticed. John Koza
[6] demonstrated that genetic programming worked on a
large number of Artificial Intelligence type problems and

published a lot of papers GP is a powerful tool for

'"HOD, Department of Computer Science, AVC College
(Autonomous), Mannampandal — Mayiladuthurai,
Nagappattinam District— 609 305,

*Senior Lecturer, Department of Computer Applications,
A.V.C College of Engineering, Mannampandal —
Mayiladuthurai, Nagappattinam District — 609 305.

automatically evolving computer programs. In general,
the program evolved by GP can produce the same solution
humans use to solve the target problem, or something
completely new, perhaps better than the “conventional”

manually designed solution,

“Genetic programming is an automated method for
creating a working computer program from a high-level
problem statement of a problem. Genetic programming
does this by genetically breeding a population of
computer programs using the principles of Darwinian
natural selection and biologically inspired operations. ”
Genetic programming is modification of genetic algorithms
with one major difference. The population consists of
individuals represented by specific data structure — trees.
Genetic programming iteratively transforms a population
of computer programs into a new generation of programs
by applying analogs of naturally occurring genetic

operations.

Genetic programming is a search technique that explores
the space of computer programs. The search for solutions
to a problem starts from a group of points in this search
space. Those points are then used to generate a new
generation of points through crossover, mutation, and
reproduction and possibly other genetic operations. This
process is repeated over and over againuntil a termination

criterion is satisfied.

1.1 Genetic Algorithm (GA) vs Genetic Programming
(GP)

“The GP technique is an evolutionary algorithm that bears

615

a strong resemblance to genetic algorithm’s (GA’s). The

Karpagarn JCS Vol. 2 Issue 3 Mar. - Apr. 2008

primary differences between GA’s and GP can be

summarized as follows;

{i GP typically codes solutions as tree structured
variable length chromosomes, while GA’s generally
make use of chromosomes of fixed length and

structure.

(i) GP typically incorporates a domain specific syntax
that governs acceptable (or meaningful)
arrangements of information on the chromosome.
For GA’s, the chromosomes are typically syntax
free.

(i) GP makes use of genetic operators that preserve
the syntax of its tree-structured chromosomes

during ‘reproduction’.

(iv) 'GP solutions are often coded in a manner that allows
the chromosomes to be executed directly using an
appropriate interpreter. GA’s are rarely coded in a

directly executable form.

2, Basic GeNETIC QPERATIONS

Having applied the fitness test to all the individuals in
the initial random population, the evolutionary process
starts. Individuals in the new population are formed by
two main methods: reproduction and crossover. Once
the new population is complete (i.. the same size as the
old) the old population is destroyed. Each ‘individual® in
a geﬁeration represents, with its chromosome, a feasible
solution to the problem; in our case, a discriminate
function to be evaluaied by a fitness function. The best
individuals are continuously being selected, and
crossover and mutation take place. Following a number
of generations, the population converges to the solution
that best represents the discrimination function (Figure.

1).

616

Initialization Best
k4
Evaluatio |—34 Convergence 2 | Selection
y v
Replacernent —4 Mutation Crossover

Figure 1: Block Diagram of Genetic Programming
2.1 Reproduction

An asexual method, reproduction is where a selected
individual copies itself into the new population. It is
effectively the same as one individual surviving into the
next generation. Koza [6] allowed 10% of the population
to reproduce. If the fitness test does not change,
reproduction can have a significant effect on the total
time required for GP because a reproduced individual will
have an identical fitness score to that of its parent. Thus
a reproduced individual does not need to be'tested, as
the result is already known. For Koza [6], this represented
a 10% reduction in the required time to fitness test a
population. However, a fitness test that has a random
component, which is effeétively a test that does not
initialize to exactly the same starting scenario, would not
apply for this increase in efficiency. The selection.of an
individual to undergo reproduction is the responsibility

of the selection function.
2.2 Crossover

Organisms’ sexual reproduction is the analogy for
crossover. Crossover requires two individuals and
produces two different individuals for the new population.
In this technique genetic material from two individuals is
mixed to form off- spring. Koza [6] uses crossover on
90% of the population—it is the more important of the

two methods because it provides the source of new (and

Genetic Programming for Soft Computing

eventually better) individuals. There are a few other
evolutionary operations: editing, mutation, permutation,
encapsulation and decimation, most of which were
ignored by Koza in his earlier work but have recently

been given more consideration

3. STEPS IN GENETIC PROGRAMMING

Genetic algorithms create a string of numbers that
represent the solution. Genetic Programming uses four

steps (Figure. 2) to solve problems:

1) Generate an initial population of random compositions
of the functions and terminals of the problem
(computer programs).

2) Execute each program in the population and assign it

a fitness value according to how well it solves the

problem.

3)

Create a new population of computer programs.

i) Copy the best existing programs

i) Create new computer programs by mutation.
iii} Create new computer programs by Crossover
4) The best computer program that appeared in any

generation, the best-so-far solution is designated as

the result of genetic programming

[Croatr Tmnl
| Reudewn Populsiaa

Figure 2: Steps in Genetic Programming

617

4. ArpLicaTioNs oF GP

Genetic Programming can be ;':tppiied to the following areas
where you simply have no idea how to programa solution,
but where you know what you want a) control, b)
bioinformatics ¢) classification, d) data mining, €) system
identification, f) forecasting, g) satellite image data, h)

astronomical data, i) petroleum databases efc.,

5, IMPLEMENTATION OF TRAVELING SALESMAN PROBLEM

{TSP) using GP

A method of solving the Traveling Salesman Problem
(TSP) using Genetic Algorithms [13] has been developed.
In the TSP, the goal is to find the shortest distance
between N different cities. The path that the salesman
takes is called a tour, Testing every possibility for an N
city tour would be N! math additions. A 30-city tour would
be 2.65 * 1032 additions, Assuming 1 billion additions
per second, this would take over 8,000,000,000,000,000
years. Adding one more city would cause the nurnber of
additions to increase by a factor of 31. Obviously, this is
an impossible solution. A genetic algorithm can be used
to find a solution is much less time. Although it probably
will not find the best sofution, it can find a near perfect
solution in less than a minute. There are two basic steps
for solving the traveling salesman problem using a GA
(and so would be in a searching for optimal Petri net).
First, create a group of many random tours in what is
called a population. These tours are stored as a sequence

of numbers.

Second, pick 2 of the better (shorter) tours parents in the
population and combine them, using crossover, to create
2 new solutions children in the hope that they create an
even better solution. Crossover is performed by picking
a random point in the parent’s sequences and switching
every number in the sequence after that point. The idea

of Genetic Algorithms is to simulate the way nature uscs

Karpagam JCS Vol. 2 issue 3 Mar. - Apr. 2008

evolution. The GA uses Survival of the Fittest with the
different solutions in the population. The good selutions
reproduce to form new and hopefully better solutions in
the population, while the bad saolutions are removed.
Eventﬁally, the GA will make every solution fook identical.
This is not ideal. There are two ways around this. The
first is to use a very large initial population so that it
takes the GA longer to make all of the solutions the same.
The second method is mutation. Mutation is when the
GA randomly changes one of the solutions. Sometimes a
mutation can lead to a better solution that a crossover
would not have found. The difficulty in the TSP using a
GA isencoding the solutions [13], Similar problem seems
to occur in Petri nets. Terminating fanction should include
a forward accessibility condition and a natural

representation is advisable,

6. ConcLUSION

This survey paper has revealed the concept of genetic
programming and the GP has much to offer for building
fast, domain specific systems, a welcome experimental
orientation, and anytirne behavior during evolution. It
also has many shortcomings: it is CPU-intensive, it is
sensitive to minor changes in parameters, and it does not

yet reliably produce robust results,

The constant technological improvements in genetic
programming techrology and its concrete foundations
with computing power, genetic programming has been
able to solve tens of complicated problems with human-
competitive results in the recent past. In a few years’ time
genetic programming will be able to routinely and
competently solve important problems for us in a variety
of specific domains of application, even when running
on a single personal computer, thereby becoming an

essential collaborator for many human activities

618

7. REFERENCES

L

Alba .E, Cotta .C and Troyo .J.J, “Type constrained
genetic programming for rule based definition in
Juzzy logic contrellers”, Proc. First Annual. Conf,
on Genetic Programming - GP*96, Stanford University,
USA, PP 255-260, 1996.

Bettenhausen .K.D, Marenbach .P, Freyer .S,
Rettenmaier \H and Nieken .U, “Selforganising
structured modelling of a biotechnological fed-
batch fermentation by means of genetic
programming”, Proc. [EE Conf. on Genetic
Algorithms in Engng. Systems: Innovations and
Applications - GALESIA’93, Sheffield, UK, No.414,
PP 481-486, 1995,

Cramer .N.L, "4 representation for the adaptive
generation of simple sequential programs”, Proc.
Int. Conf. on Genetic Algorithms and their
Applications, Carnegia Mellon University,
Pittsburgh, USA, PP 183-187, 1985,

Hampo. R.J, “Genetic programming: A new
paradigm for control and analysis”, Proc. 3rd ASME
Symposium on Transportation Systems, Anaheim,
USA, PP 155-163, 1992 Handly. S, “The antomatic
generation of plans for a mobile robot via genetic
programming with automatically defined functions”,
Kinnear, K.E. (Ed.), “Addvances in Genetic
Programming, 18, PP 391407, 1994,

Koza .J.R and Keane .M.A, “Genetic breeding of
non-linear optimal control strategies for broom
balancing"”, Proc. 9th Int, Conf. on Analysis and
Optimization of Systems, France, PP 47-56, 1990.
Koza .J.R, “Genetic Programming : On the
Programming of Computers by Means of Natural
Selection”, The MIT Press, 1992,

Genetlc Programming for Soff Computing

10.

11.

12.

13.

14,

Koza .J, “Genetic programming: On the
programming of computers by means of natural
selection”, The MIT Press, USA, 1992 Koza .J,
“Genetic Programming II: Automatic Discovery of
Reusable Programs ", The MIT Press, USA, 1994.
Koza .J. R, “Genetic Programming H: Automatic
Discovery of Reusa_ble Programs ", The MIT Press,
1994, |

Koza.J.R, Bennett F.H, Andre .D and Keane M.A,
“Automated WYWIWYG design of both the fopology
and component values of electrical circuits using
genetic programming”, Proc. of the First Annual
Conf. on Genetic Programming - GP96, Stanford
University, USA, PP 123-131, 1996

Koza J.R, Andre .D, Bennett .F.Hand Keane M.A,
“Use of automatically deﬁned Junctions and
a.rchitecture altering operations in automated
circuit synthesis with genetic programming ", Proc.
of the First Annual Conf. on Genetic Prograrnming -
GP'96, Stanford University, USA, PP 132-140, 1996.
Koza J.R, “Future Work and Practical Applications
of Genetic Programming”, In Handbook of
Evolutionary Computation, PP H1.1:3. IOP
Publishing Ltd and Oxford University Press, 1997.
Kang .8.J, Jang .S.H, Hwang, H.S, Woo, K.B ,
“Colored timed Petri nets modeling and job
scheduling using GA of semiconductor
manufacturing ™ In: IEICE Trans. on Information and
Systemns, Vol E82-D, No, 11, PP 1483-1485.

Lalena .M, “Travelling Salesman Problem Using
Generic Algorithms” hitp://www.lalena.com/ai/tsp/
Takzhashi K, Yamamura .M, Kobayashi .S, “4 G4
approach to solving reachability problems for Petri
nets”, In: IEICE Trans. on Fundamentals in
Hlectronics, Communications and Computer Science,
Vol. E79-A, No. 11, PP 1774-1780, 1996.

619

Author’s Biography

K.Thyagarajan is currently working as a
Lecturer {SG) and Head, Department of
Computer Sciencé, A V.C. College
{Autonomous), Mayiladuthurai. He had
over 21 years of teaching experience. His areas of interest
include Data Mining, Image_Pfocessing and Algorithms.
He had received M.Phil Computer Science Degree and
M.Phil Mathematics Degree from Bharathidasan
University. Currently he is doing Ph.D in Computer Science
in Bharathidasan University.

R.Chinnaiyan is currently working as a

Senior Lecturer in the Department of

Computer Applications of A.V.C. College

of Engineering, Mayiladuthurai. He had
over 7 years of teaching experience. His

areas of interest include Software Systems Reliabiiity,‘
OOAD and Data Mining. Now he is doing Ph.D in Anna

University at CLT, Coimbatore. h

