A study on Spatio-temporal Access Methods in Spartial Databases

A Study on Spatio-temporal Afcess Methods in Spatial Databases

K. Appathuarai Mand M. Anandkumar

Abstract

~ Spatiotemporal database deals with moving objects that
change their iocations over time. Generally, moving objects
report their locations obtained via location-aware devices
to a spatiotemporal database server. The servér can store
all updates from the moving objects so that it will be
capable of answering queries about the past. Some
applications need to know current locations of moving
objects only. In this case, the server may only store the
present status of the moving objects. To predict future
positions of inoving objects, the spatiotemporal database
server may need to store additional information, viz., the
objects’ velocities. In this study the indexing structures

BB*, Optimal BB*, Parameterized OBB* and Space based

OBB* are analyzed in the way oftree creation, methodology

of indexing, the process of updation and the process of

migration are studied.

Keywords: Moving Objects, BB* index, OBB* index,
POBB* index, SOBB~ index and Migration.

IEntroduction

In real world applications spatiotemporal

databases store data which are continuously varying in

% Associate Professor and Head, Dept. of information Technology
Karpagam University, Coimbatore ~ 21.
2 Associate Professor Dept. of Information Technology

Karpagam University, Coimbatore — 21.

43

e
N

space and time. Because it produce a huge volume of
data compared to the traditional database applications.
Consequently they need to be managed efficiently, in
order to process the information in a sensible manner.
Additionally, unlike traditional DBMS operations, in
spatiotemporai operations, both the cost of O, as well
as the cost of computation is quite high. Thus efficient
storage and indexing techniques are very much important

in handling and processing this kind of data (3,4,5).

Nowadays there is a tremendous development
in the statistical models and techniques to analyze
spatiotemporal data such as vehicle detection and
monitoring data (11). Spatiotemporal data occur in many
other contexts e.g. disease mapping and economic
monitoring of real estate prices (1). Bésides the key
interests in analyzing such data are to produce smooth
and predict time evolution of some response variables
over a certain spatial domain, Naturally, such predictions
are made from data observed on a large number of variables
which themselves vary over time and space. There are
many other significant areas where spatiotemporal data
are used to detect familiar and meaningful patterns as
well as to make predictions (12-15). Examples consist of
hydrology, ecology, geology, social sciences and many
areas in medicine such as brain imaging, wildlife
population monitoring and ﬁ'acking, and machine vision
(1). The ultimate goal of indexing the inoving objectdata

is to speed up the retrieval operations of a database table.

'__Karpdgam Jes Vol. 9 Issue 1 Nov. - Dec. 2014

But the performance of mdexmg 1s lundered due to the '

following reasons. ‘»{

oL - During indexing (2) the moving objects can’t. be
updated within the maximum update interval
- should be migrated. Due to more migration
process the performance is not worthy. So data
at all points of time is constructed with empirical
experiments and are reported. So one such case
occurs when half objects are updated frequently
while half are. not, resulting in relatively many
forced updates (i.e. updation by the system).
2 Usually after the lifespan of tree the object data
is moved from one tree to another by updation
or rhigration. During uﬁdation or migration the
object is removed from old tree and then added
to the next tree, Every object has indéxed time
based on that it will find out the old tree and

then finds out the position of the object in that

tree and after that the object is removed Here

for ﬁndlng the old tree and the position the

searching took more time.

3. Aspercostand density it may have the following

problems in some scenarios:

This arrow indicates the lifespan of tree T1.

1. Larger tree leads to an increase in searching
cost, while a smaller tree may introduce extra

migration cost,

2. Both the updation time and migration time

becomes larger in case of
high density (population of objects) in a tree.
I Broad Binary Index (BB* ipdex)
2.1 Tree Construction

Figure 1 shows the tree creation of BB* index structure

" (2). Inthe below figure T1, T2, etc., are trees. In this example

consider the number of moving objects is 50 and found
the maximum update time interval among all the 50 objects
(maximum time interval means the frequency of update
time interval to the server), say in this case it is 5 seconds
means, based on this the linear representation is formed
as shown in the figure 1. In this case 12 trees are used for
the time period 0 to 30 seconds. Initially the trees are
formedls, 10, 15 etc., seconds and for storage efficiency
the interval is divided by n (usnally n=2) (Dan Lin, 2005)
so for the seconds 2.5, 7.5, 12.5 etc., seconds also the
trees are formed. Here the interval is divided by ni.e. 5/2

= 2.5 (subintervals).

The Maximum Update time interval is 5

| | Time

10\

15\

B

VN VNNV

T10 Ti1 Ti2

Figure 1: Tree creation of BB* index structure:

44

Panuig

A study on Spatio-temporal Access Methods in Spartial botubas'es

2.2 Indexing Method

;

‘Each tree has a lifespan (2 minimum and maximum time

values are updated to the next tree. So first, it is checked
whether all thé objects reach the next tree or not and they
_reach then all the objects to next tree are updated and
then the objects are removed or deleted from the existing
old tree to avoid duplication of index. The function
updation is called for updatior_; of objects. In this updation

algorithm the tree where the update object is identified

(search) and located and then the position of the object
in that tree is found out (search). Then the identified object
is removed and updated in new tree. The object insertion

or updation into the tree the binary tree method (2) is

than the key value of node “N’ then node “C” is inserted
on left position of the node ‘N’ and if it is greater, it is
inserted on right position of the node ‘N, If aIrea&y nodes
are there in that position it assumes that node as ‘N’ and
the same procedure is followed. The insertion time for

each object is stored in ‘Arr’ and total object inserted is

stored in “Tot’.

] | : i

period for indexing). At the end of the lifespan the tree '

followed, If the key value of insertion node *C’ is lesser

2.3 Updation and Migration Technique

Eachtree hasa Iifespén. Atthe end of the lifespan the tree
values are updated fo the next tree, So first, it is checked.
whether all the objects reach the next tree or not and if
they reach then all these objects are updated to ﬁext tree
and then those objects aré removed or deleted from the
existing old tree to avoid duplication of index. For updation
of objects the function updation is called. If some of the
objécts do not reach the next tree, for those objects the

_migration function is called. In this case the property of
velocity is found missing because of non-inoving object.
So for those migrated objects the future position can’t be
predicted. The following steps show the Migration
Algorithm.

I Optimat Broad Binary Index (OBB* index)
3.1 Tree Construction-

In the prbposed work i.e. Optimal Broad Binary Index
(OBB"), the maximum update time interval is doubled. The
maximum update interval value 5 is dbubled (i.e. 10) and
the linear representation is formed as shown in the figure

2. Initially the trees are formed 10, 20, 30 seconds and for

storage efficiency the interval is divided by n (usually
n=2) so for the seconds 5, 15, 25 seconds also fhe trees
are formed. Here the interval is divided byni.e. 10/2=5

[b) time =

\/\\/'i\'

T1 T2

DR
A A A

Figure 2: The OBB* index tree

Karpagam Jos Vol. 9 tssué_l Nov. - Dec. 2074

3.2 Indexing Method
The foI‘lowi‘ng algorithm shows for free construction,

Object insertion, updation and migration.

L The maximum updaté time interval for each

object is found out and stored in ‘ui’.

2 " The maximum update -time interval ‘ui’ is
multiplied by two and then based on this interval

the linear array is formed fort , ¢, t, etc.

3 ~Array of ‘n’ equal intervals of L Y is
formed (subintervals). '

4, Each object lifespan is found out and is stored
in‘LE’.

5. Based on the lifespan the data are stored in the
tree.

6. If the key value of insertion node ‘C’ is lesser

th'an the key value of nodé N’ thén node ‘C’ is
inserted on leﬁ and if 1t is greater, it is inserted
| on right. If already nodes are there the same
procedure is followe:d. The insertion time for
each object is stored in ‘Arr’ and total object

inserted is stored in ‘Tot’.

7. After the lifespan, the objects move from one
tree to another, while ‘Arr’ is not equal to null,
and it is checked whether all the moving objects
are reach the new treé‘ or not. If they reached
function is called as update or else function is

called as migration.

Each tree has a lifespan (a2 minimum and maximum time
period for indexing). At the end of the lifespan the tree
values are updated to the next tree. So first, it is checked
whether all the objects reach the next tree or not and they
reach then all the objects to next tree are updated and
then the objects are removed or deleted from the existing
old tree to avoid duplication of index. The function
updation is called for up&ation of objects. The following
algorithm shows how the updation takes place in OBB*
index. In this updation algorithm the tree where the upd‘ate
object is identified (search) and located and then the
position of the object in that tree is found out (search).
Then the identified object is removed and updated in new
tree. The object insertion or updation into the tree the

binary tree method (Dan Lin, 2005) is followed, Ifthe key

 value of insertion node ‘C’ is lesser than the key value of

node “N’ then node ‘C” is inserted on left position of the
node “N’ and if it is greater, it is inserted on right position
of the node ‘N’. If already nodes are there in that position
it assurnes that node as ‘N’ and the same procedure is
followed. The insertion time for each object is stored in
‘Arr’ and total object inserted is stored in “Tot’. The

figure 3 shows the overall structure of indexing.

Object Insetion

Figure 3: Qverall Structure of Indexing

Migration Technigue

A study on Spatio-temporal Access Methods in Spartial Databases

3.3 Updation and Migration Technique

;

The following steps show the updation algorithm. In this
‘tindex’, ‘posindex’ and “keyo’ are the variables for storing
the values of old objects index time in the tree, position of

the object within the tree and key value of the object.

Here the objects previous tree value is found using “tindex’ -

value.

!. HereEoand Enare old and new obiects respectively Input:
tindex 4—-—time Eo is indexed in the free
find (search) trea Tx whose §ifespen contain tindex

2. Find the posifion of the object in the tree
posindex ¢ position of Fo af tindex

3. Locats Eoin Tx according fo keyo
keyo +— x-value of the posindex

4. Modify the end time of Eo’s lifespan to current fime {removal)
tindex s time Enwill be indexed
posindex —— position of En at t’index
keyn %—— x-value of the posindex

3. InsertEnimto the latest ez according to key

Each tree has a lifespan. At the end of the lifespan
the tree values are updated to the next tree. So first, it is
checked whether all the objects reach thé nexl; tree or not
and if they reach then all these objecté are updated to
next tree and then those objects afe_removed or deleted
from the existing old tree to avoid duplication of index.
For updation of objects the function uptiation is called. If
some of the objects do not reach the next tree, for those

objects the migration function is called. In this case the

property of velocity is found missing because of non-
moving object. So for those migrated objects the future
position can’t be predicted. The following steps show

the Migration Algorithm.

1. Here Eo and En are ofd and new objects respectively
find (search) tree Tx whose lifespan contain tindex
tindex e— time o is indexed in the tree

2. Based oatindex the pasition of the object is find ont
posindex #-—— position of Eoat index

S.We&mkamﬁgtomo
keyo e x-valuzofthe posindex

4. Modify the end time of Eo’s lifespan to cturent fime

5.0mp0s e Current position of the object En

6. Cortimt e Current time of the object B

T.Curatr g Curent trég of the object En whith lifespan contains Curtim

In the above algorithm, tindex is a variable which is used
to store the time when the object was indexed into the old
tree, Posindex is another variable which is used to store
the position of the object in the old tree. ‘Keyo® is used to
store the key value of the object. The variable ‘curpos’,
‘curtim’ and ‘curarr’ are variables used to store the new

object values.

The Optimal Broad Binary (OBB¥) indexing is calculated
using formulas 1, 2 and 3 mentioned below, In the below

formula [phase], and [x_rep], like the format {x],, it refers

the binary representation of x, and ¢ denotes

concatenation. The two components of the function are
‘phase’ and ‘x_rep’ which are defined in formulas 2 and 3.
Here “O” is a given object and t_ is the time when the

object issues an update.

Karpagam Jes Vol. 9 Issue 1 Nov. - Dec. 2014

IV Parameterized Optimal Broad Binary Index (POBB*
index) ' £

4.1 Tree Construction

In case of POBB® indexing the tree construction is same
as OBB* indexing method. i.e the maximum update time
interval is make it as twice, based on that the linear

representation is formed.

4.2 Indexing Method

A proposed indexing algorithm called Parameterized
Optimal Broad Binary (POBB*) index is implemented from
the OBB* index algorithm. In OBB* index structure the
searching process is one of the major crises during
updation and migration processes. Besides the searching
takes more time during the updation and migration
processes. The workload of whole process of indexing
also required more effort. Owing to these efforts, there
was a great increase in the memory space utilization,
processor uﬁliiation, execution time and cost. Moreover
in the tree the node insertion and deletion is alsoa complex

processes when the number of moving objects is high.

The main aim of the proposed algorithm is to reduce the
searching process during updation and migration of
moving objects, so that the efficiency is improved and we

get better resulis than in the OBB" index algorithm.
4.3. Updation and Migration Technigue

In OBB* index algorithm during node value updation or
migration first it finds the old tree by taking the lifespan

using updated time against it in the old tree. Next it finds

the position of the node in that tree and then it finds the
key value of the node. There the end time is changed to
current time. So for each updation or migration, searching
plays a major role. In this proposed work the maxinium
update time interval is similar to OBB* index and during
vaiuves transferred from one tree to another the old tree
address and poéition is also passed along with the moving
object. So during updation or migration from one tree to

another there is no need to search for the old tree and its

. position. So lot of searching time and effort is reduced.

Due to this reduction of searching the node access is
also reduced. Besides, the utilization of memory ‘is also
reduced and automatically the processing speed is
improved than in OBB*index. The algorithm to Tree
Construction, Object Insertion, Updation and Migration
were similar to OBB* index method but the searching

technique is differing from OBB* index algorithm.

V Space based Optimal Broad Binary Index (SOBB*

index)
5.1 Free Construction

I case of SOBB* indexing the tree construction is same
as OBB"* indexing method. i.e the maximumt update time
interval is make it as twice, based on that the linear

representation is formed.

5.2 Indexing Method

The main aim of the proposed Space based Optimal Broad
Binary (SOBB*) algorithm is to improve the performarnce

in exclusive level than in POBB* indexing technique. In

this proposed aigorithm, the basic design of POBB*

N

A study on Spafio-temporal Access Methods In Spartial Ddtdbuses

indexing structure bears the major work focus in node.

updation in the trees. The new technique applied is caléd
Hybrid update. In Moving object indexing, the Location
of Objects, Distribution of Objects, and Workload are the
three factors play an important role for effective indexing
and they can change frequently based on time. In order
to avoid migration as much as possible while keeping the
tree size relatively small, we have applied Hybrid Update

technique in POBB* indexing.

5.3 Updation and Migration Technique

The principle of Hybrid update is to update as many
objects as possible without increasing the number of

input/output accesses. This means, the object identity,

current location and velocity for each moving object are

recognized. Based on this information, the future is
predicted and Hybrid update is applied. This hybrid update
accesses the same tree nodes as regular updates. In a
Time t, more objects are shifted from 2 current tree to
some distanced tree instead of the next immediate tree.

Fewer objects are left in the older sub tree and it may

reduce the migration process. This saves the cost of

regular update as well. So we can effectively index the
moving objects by nearly 20-25% more efficiently than
by POBB* indexing method. Updation costs and migration
costs are reduced upto 20-30% _vhen compared to POBB*
indexing method. Figure 4 shows the Space based Optimal
BB~ index Hybrid Update. It clearly shows how the tree is
constructed based on time interval and the Hybrid Update.
Besides it indicates some of the objects updated from

tree T1 to T4, T1 to T8 instead of regular update.

TVTUTY T

‘time(sec)

------------ Cd
e PR . SRR A —
Life span of tree"T1, _.-Lifespan 6T fred TS5 ..~ =77 " Life span of tree T9
Carrent tirne -
- ar
::::— T =S >
Hybrid updates

Whers tas - Anticipated maximum update time interval between two objects

\

Figure 4 : The SOBB® index Hybrid Update

e A Y A R A et b ot et

qup_qgam Jos Vol. 9 issue T Nov. - Dec. 2014

VI Performance Analysis

In this indexing nine moving objects are consioéed.
The starting time of indexing is 13 ms and the ending
time is 201 ms. In figure 5 the “x” axis is the indexing

methods and “y’ axis is the indexing time.

Figure 5 shows the total indexing time for all the four
methods viz., Broad Binary index (BB* index), Optimal
Broad Binary index (OBB* index), Parameterized Optimal
Broad Binary index (POBB* index} and Space based
Optimal Broad Binary index (SOBB* index). The total
processing time for BB* Indexing is 17 sec., tﬁe total
processing time for OBB* Indexing is 10.1 sec., the total
processing time for POBB™ Indexing is 8.6 sec., and the
total processing time for SOBB* index is 6.5 seconds. So it
is proved that the SOBB* index method is much better
than BB~, OBB* and POBB* methods. The percentage of

improvement is calculaied by the following formula,
(x1-x2)/x1*100.
In this ‘x1” is the first value and ‘x2’ is the second value.

Besides in figore 3, the percentage of impfovement from
BB~ index to OBB* index is 40.5%, from OBB* index to
POBB* index is 14.85% and from POBB* index to SOBB*
index is 24.4%. The overall improvement from BB*index to
SOBB* inde){ 1s 62%. The percentage of improvement is
calculated as (17- 6.5)/ 17 * 100,

1 IR FORB* tndew

FNRA O Dt ek 4]

PR

Figure 5: Comparison of BB~ OBB*, POBB* and SOBB*

indexing in terms of Processing Time

Figure 6 indicates the number of trees used in indexing
process for all the four techniques. Here the number of
trees used in BB* index is 25, The number of trees used in
OBB-* index, POBB* index and SOBB* index is 13. Thig is
because of the maximum update time interval, In case of
OBB* index, POBB*index and SOBB= index methods the
maximum update time interval is doubled, and so the

number of trees used is reduced to almost 50%.

R 5

1 B oszrtates

P Hian LR
i_ EGE el

Figure 6: Comparison between BB, OBB*, POBB* and

SOBB-* in terms of creation of number of trees

Figure 7 indicates the number of migration hits that
occurred in all the four technigques. Here the number of
migration hits in BB* index is 99. The number of migration
hits in OBB* index, POBB* index énd SOBB* index is 49.
This is because of maximum update time interval, In case
of OBB* index, POBB*index and SOBB* index methods,
the maximum update tinie interval is doubled, and so the
number of migration hits is reduced to almost 50%. Once
the migration is reduced the efficiency is automatically

improved.

#

A study on Spatio-temporal Access Methodé in Spartial Databases

ul . .
dusing Uathod

Figure 7: Comparison of BB*, OBB*, POBB* and

SOBB* indexing in terms of migration hits

Figure 8 indicates the number of node accesses occurred

in all the four techniques. Here the number of nodes used
in BB* index is 720. The number of nodes used in OBB*
index is 645, in POBB~ index is 528 and in SOBB* index is
504. This is because: of the new searching mechanism
which is implemented in POBB* index and by hybrid
update technique in SOBB* index. So once the node usage

decreases, automatically it will reduce the work load and

" improve the efficiency.

L ;
B R T B
fRrrbargitengly o T ST

Figure 8: Comparison of BB*, OBE*, POBB*and

SOBB* indexing in terms of Node Accesses

Figure 9 indicates the usage of memory in all the
four techniques. Here the memory space required in BB*
index is 98 bytes. The memory space required in OBB*
index is 38 bytes. The memory space required in POBB*
index is 32 bytes and the memory space required in SOBB*
is 29 bytes. This is because of the new searching
mechanism which is implemented in POBB* index and by
hybrid update technique in SOBB* index. So once the
memory usage decreases, automatically it will reduce the

work load, cost and the efﬁci'epcy are improved.

Camparisonc BE¥ 0BBY PBEY , S5687 ndex

et~ BEP hndex
«eor QBB lades :
- OB ndes

Figure 9: Comparison of BB*, OBB*, POBB*and
SOBB* indexing in terms of Storage

-

Figure 10 shows the updation time for all the four indexing

methods. Here the updation time for BB* index is §.4

seconds. The updation time for OBB* index is 6.4 seconds.
The updation time for POBB* index is 5.0 seconds and for
SOBB*is 2.2 seconds. Here the updation time drastically
decreases from POBB* index method to SOBB* index
method because of the hybrid update technique in SORB*
index. The percentage of updation time improvement from

POBB* index to SOBB* index is almost 56%

__l_(qrpqgam Jes Vol. 9 Issue T Nov. - Dec. 2014

Figure 10: Total Updation Time

Figure 11 shows the migration time for all the four indexing
methods. Here the migration timé for BB~ index is 1.5
seconds. The migration time for OBB* index is 1.1 seconds.
The migration time for POBB* index is 0.99 seconds and

for SOBB*is 0.76 and for SOBB*is .76 seconds. Here the

5.8 Results and Discussion

migration time gradually decreases from BB* index o

SOBBx index method because of the new searching, hybrid
update technique in POBB* index and SOBBx index.

i, Updoiian:Timatiy secs)

LRI 3

HEREESRa
eadng Ngnads - -

+ The number of Moving Objects is considered to be : 9

+ Starting Time: 13 ms.

* Ending Time: 201 ms.

Table 1: Comparison of all the four indexing methods

- Figure I1: Total Migration Time

Processing Time {sec.) 17 10.1 8.6 6.5
No.of Trees 25 13 13 13
Migzation Hits: - o0 49 40 49
Node Accesses 720 643 528 504
Storage Requirement {bytes) o8 38 32 20
Updation Time (sec.) 34 6.4 50 2.2
Migration Time (3e¢.) 1.5 1.1 (.99 .76
&2

VI1I.

A study on Spatio-temporal Access Methods In Sparﬂdl Databases

Table 1 shows the comparison results of BB* index, OBB*index, POBB* index and SOBB* index methods under

different aspects. Table 2 shows the comparison in texﬁ{'s of processing time.

Table 2: Comparison based on processing time

% of improvement [Processing Time)-

40.5%

14.85% 24.4%

The above comparisons clearly show that the
indexing performance is improved almost to 62% from BB*
index to SOBB* index method. Moreover the performance
analysis is conducted at different number of moving
objects for all the four indexing methods in terms of
indexing time, Table 3 shows the results of all the four

methods.

Table 3 : Performance Analysis

50
. 2 106 1335 8% 75]
3 150 232 135 1z .88
4 200 309 184 135 118
5 250 385 35 198 146

Avg. Frocessing time in
Se. 232 1386 1174 88.2

The indexing is done at different number of moving
objects like 50,100,150,200 and 250. In all the cases the
percentage of improvement is almost the same. Finally
the average processing time is calculated for all the
methods and the percentage of imﬁroyement from BB*
index to OﬁB“ index is found to be around 40%, from
OBB*index to POBB* index is around 15%, from POBB*
index to SOBB* index is around 25% and the overall
improvement from BB* index to SOBB* index is around

62%.

S

VIL CONCLUSION

The first contribution of the paper is to minimize the
number of trees used in the indexing methods. Normally
in the indexing methods more number of trees is involved
leading to higher level of workload, indexing time and
migration hit ratio. While minimizing themtumber of trees
involved in indexing the migration hit ratio, indexing time
and the workload automatically get minimized and as a
result the efficiency of the proposed algorithm will be
great impact, With the proposed work, the number of trees
and the migration process is found to be reduced to almost

50%.

The second contribution of the paper'is to minimize the
searching time during indexing process. Usually in index
structure the searching process will be one of the major
crises during moving object updation and migration
processes. Normally, the searching takes m:)re time during
the moving object updation and migration processes and
the workload of whole process of indexing will require
more effort. Owing to these efforts, there becomes a great
increase in the memory sbace utilization, processor
utilization, execution time and cost. So in this propdsed

work a new technique is implemented to reduce the

Karpagam Jes Vol. 9 issue 1 Nov. - Dec. 2014

searching time, memory space utilization, processor 2.

utilization, execution time and cost. { '

The Third contribution of the paper is further
enhancement of indexing based on the cost and density
{population) of the moving objects. In some scenarios,
larger tree lead to a higher query cost, while a smaller tree
may introduce extra migration cost. Besides, both the
updating time and migration time becomes more in case
of high density in a tree. In the proposed work, in order to
avoid migration at the most while keeping the tree size

relatively small, a new update technique is applied.

In the present investigation, it is illustrated that the past
indexing algorithms are not suitable for modern day
applications, due to the advances in the indexing
technologies and searching mechanisms. The primary

" contribution is to overcome the weakness mentioned
above. The proposed research is carefully designed in
such a way that it can be used efﬁcienﬂy in monitoring
with high performance. It is well designed so as to cope
up with the real time applicaﬁons. The simulation results
show that the perfonﬁance is good when compared with 6.

the other indexing algorithms.

References:

[Guoliang Xing, Jianping Wang, Ke Shen, 7
Qingfeng Huang, Xia_bhua Fia and Hing Cheung
So, 2008. Mobility-assisted Spatiotemporal
Detéction in Wireless Sensor Networks. IEEE

conference on 1063-6927.

a4

Dan Lin, Christian S. Jensen, Beng Chin doi,
Simonas S altenis, 2005. BB* index Efficient
Indexing of the Historical, Present, and Future
Positions of Moving Objects. ACM Ayia

7 Napa Cypras, 1- 59593 - 041.

Christian S. Jensen_, Dan Lin, and Beng Chin_
Ooi, 2004, Query and Update Efficient B+ -
Tree Based Indexing of Moving Objects,
Proceedings of the 30" VLDB Conference,
Toronto, Canada, 768-779.

Chengeui Zhang, and Shu-Ching Chen, 2003.
Adaptive Background Learning for Vehicle
Detection and SpaticTemporal Tracking, IEEE
conference on ICICS-PCM, Singapore, 0-7803-
8185,

Mete Celik, and Shashi Shekhar, 2006, Mixed-:
Drove Spatio-Temporal Co-occurrence Pattern

Mining: A Summary of Results, Proceédings of

. the Slxth International IEEE Conference on Data

Mining, 0-7695-2701.

L

Maria Luisa Damiani, Herve Martin, Yucel _
Saygin, Maria Rita Spada and Cedric Ulmer, 2009.
Spatiotemporal Access Cohtrol: Challenges and

Applications on ACM 978-1-60558-337.

Nasrin, Salma, Kawagoe and Kyoji , 2010. A
novel index structure for efficient data
management in super-peer architecture, IEEE
Conference on, Ubiquitous and Future

Networks (ICUFN).

A study on Spatio-temporal Access Mefhods in Spartial Databases

10. -

11,

12.

13..

"Manachai Toahchoodee, Indrakshi Ray,

Kyriakos Anastasakis, Geri Georg and Behzﬁi{l
Bordbar, 2009. Ensuring Spatiotemporal Access
Control for Real-World Appiications, on ACM
978-1-60558.

Y. Tao, D. Papadias, and J. Sun, 2003. The TPR*-

Tree: An Optimized Spatiotemporal Access
Method for Predictive Queries. In Proc. of the
Intl. Conf. on Very Large Data Bases, VLDB.

C. M. Procopiuc, P. K. Agarwal, and S, Har-Peled,
2002. STAR-Tree: An Eflicient Self-Adjusting

Index for Moving Objects. In Proc. of the

~ Workshop on Alg, Eng. and Experimentation,

ALENEX, pages 178-193.

George Kollios, Vassilis J. Tsotras, Dimitrios
Gunopulos, Alex Delis and Marios
Hadjieleftherion, 2001. Indexing animated objects
usiﬁg spatiotemporal access methods, IEEE
Transactions on Knowledge and Data

Engineering.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. Lopez, 2000. Indexing ° the Positions of
Continuously Moving Objects. In Proc. of the
ACM Intl. Cont_‘ on Management of Data,

SIGMOD, pages 33 1-342.

Y. Theodoridis, M. Vazirgignnis, and T. Sellis,
1996. Spatiotemporal Indexing for Large
Multimedia Applications. In Proc. of the [EEE

Conference on Multimedia Computing and

Systems, ICMCS

14. Mindaugas Pelanis, Simonas Sai?enis And
Christian . Jensen, 2005._Indexing - the Past,
Present and Anticipated Future Positions of
Moving Objects, ACM . Transactions on

Database Systems, Vol. , No., 05, Pages 1-43.

15. Su chen, beng chin ooi and kian-lee tan, 2013.
Continuous Online Index Tuning in Moving
Object Databases, ACM Transactions on

Database Systems, Vol. 1, No. 7, Pages 1-45.

Aunthors Biography

Dr. K.Appathurai working as
Associate professor and Head
department of Information
Technelogy in Karpagam
University, Coimbétore, Tamil
Nadu, India, Hisarea of interest.
is Spatial database. He

published 10 papers in the

. Dr. M. Anand Kumar has
completed M.Sc and M.Phil in
; computer science from
Bharathiar University. He has
Completed Ph.D in Karpagam

University and currently

working as an’ ,Associate.
Professor ‘in_ karpagam
University having ten yéar's. experience in teaching.. His
area of research includes network security and information
security. He has presented twenty papers in national

conferences and four papers in international conferences.

*

He has published twelve papers"'in international journals

