Nafive Plhread on Androld Platform using Android NDK

Native Pthread on Androi¢Platform using Android NDK

Bala Dhandayuthapani Veerasamy'!, and G . M. Nasira®, |

Abstract

JNI is a strong feature of the Java. INI describe a way for
controlling the actwal code written in the Java
programming language to work together with native code
that is written in C/C++. JNI permits accurate methods of
Java classes to be implemented natively and still be called
and used as ordinary Java methods. The Android NDK
libraries authorize us to implement fractions of our Android
applications yia native code such as C/C++. The Android
NDK provides platform specific features and relies on
JNI technology to glue the native code to the Android
applications. The primary motivation for considering the
use of Pthreads on mobile architecture can achieve
optimuin performances on multi-core mobile architectures.
In‘order for a program to get benefit of Pfhfeads, it must
be capable to be structured into separate, individual tasks
that can perform concurrently. This research finding
focuses on how android applications can facilitate
Pthreads through android NDK that can adventure
Pthreads to execute in hybrid mode with Java threads.
Key words: Android, Applications; Android NDK, Java,

JNJ, Pthread

'Rescarch Scﬁolar Manonmaniam Sundaranar University
Tirunelveli, Tamilnadu, India dhansseft@gmail.com

*Assistant Professor/Computer Science Chikkanna Govt Arts
Coticge, Tirupur, Tamilnadu, India nasiragm99@ yahoo.com

1, INTRODUCTION

Android [14] Inc was originated in Silicon Valley, California
in October 2003, with the thought of providing a mobile
platform [14] that is more conscious of the user’s location
and preferences. Google purchased Android Inc in
August 2005 as it entirely possessed subsidiary of Google
Inc. Google main aim take place to present a fully open
platform backed by Google technologies for application
déve]opers. InNovember 2007, the Open Handset Alliance
[13}, [14] was established as a consortium to develop an
open standard for mobile devices. Qpen Ha.mﬁetAlIiancf;’
began its expedition by announcing the Ahdroid platform.

1.1 What is an Android?

Android [14] is a mobile operating system (68), is bas'ed
on a personalized version of Linux. Google required
Android to be open and free; therefore, generally the
Android code was released under the open sdurce Apache
License. The main benefit of implementing Android is that

it proposes a unified approach to application development,

Developers need only to create for Android applications

{Android apps), has fo be run on several different devices,

as long as the devices are using Android.

Google thoughts about enhancing model for little powered

mobile devices. Mobile devices gap behind their desktop

counterparts in memory and speé‘d by five years. Iliey_ o

T

‘Karpagam Jes Vol, 9 lssue 1:Nov. - Déc. 2014

also have restricted power'for-coniputation. The

performance needs on mobile devices are consé{[uence
involving to optimize all. If we look at the list of packages
in Android, we could see that they are fully featured and

wide.

These issues led Google to repeat the standard Java Virtual
Machine (VM) implementation in a lot of compliments,
The key figure in Google’s implementation of this JTVM is
Dan Bornstein, who composes the Dalvik Virtu'al Machine
(DVM) - Dalvik is the name of a town in Iceland. DVM
[13], {14] obtains the produced Java class files and joins
them into one or more Dalvik Executable (.dex) files. The
goal ofthe DVM is to discover every likely way to optimize
the FVM for space, performance and battery life. The final

executable code in an Android, as an effect of the DVM is

stand not on Java byte code but on .dex files as an

alternative. This means we cannot exaétly carry out Java

byte code; we have to begin with Java class files aﬁd'

. then exchange them to linkabie .dex files.
1.2 Android Platform Architecture

Android [13]-[15] is more about using or developing
Android apps for mobile devices than an Android OS. It

is a mixture of tools and technologies that are optimized

for mobile needs. Android depends on the proven Linux

kernel in order to afford its OS functions. For the user
application, Android depends on the JVM technology by
“employing the DVM. The Android OS is generally divided

into five sections [13], [14).

Linux kernel

This is the ‘b‘ottor.n of laye;. It is the kernel based on_
Android. This layer holds all the low level device drivers
for the numerous hardware mechanism of an Android

device.
Libraries

These contain all the code that provides the main features

of an Android OS.
Android runtime

At the same layer as the libraries, the Android mntirﬁe
afford a set of core libraries that permit developers to-

develop Android apps using Java. An Android runtime

. System contains DVM.

Application framework

Describes the ability of thie Android OS to an application

developer, can create use of them in their applications.

- Applications: At this top layer, we will locate applications

that we download and install from the Android play store.

Any applications that we write are located at this layer.

L.3 Activity class

~The Activity [13)-]15] base or super class describe a

sequence of methods that manage the life cycle of an

activity in every Android apps. The Activity class

r

_ describes the following events.

onCreate() executed while the activity is created

at first.

Native Pthread on Android Platform using Android NDK

. onStart() executed while the activity turns into
: r4

visible to the user- €

. onResume() executed while the activity begin

interacting with the user

. onPause() executed whil: the present activity is
being break and the previous activity is being start

again

. onStop() executed while the activity is no longer

visible to the user

* onDestroy() executed before the activity is
destroyed by the system either physically or by

the system to preserve memory

. onRestart() executed while the activity has been
stopped and is restarting again. By default, the
activity created for us hold the onCreate() event.
This event handler code assist to show Ul elements

of our screen

2. INSTALLING ESSENTIALTOOLS

It is important to set up all the essential tools for Android
programming, such as JDK, Android SDK, Eclipse ADT,
Android NDK, Cygwin,

2.1 Installing the Android SDK .

Successfully instal]ing the Android Software
Development Kit (Android SDK) {13]-[15] needs the Java
Development Kit (JDK) as prerequisites. Android

Developer Tools (ADT) is a list of plug-ins to mix together

ADT into the Eclipse Integrated Development
Environment (Eclipse IDE); The Android SDK is an
inclusive list of development tools including Android
platform Java libraries, an application packager, a
debugger, an emulator and help. In order to do thing u~efil
to ADT, the Android SDK needs to be installed. We can
able to find AD | on the Android Developers web site at”
http://developer.android.com. Next, we must to install the
ADT plug-in. To install new software, we have to open
Eclipse and choose Help menu then Install New Software,
in the Install dialog box, click the Add button to add a
new source of plug-ins. Give it a name (e.g., Android) and
supply the following URL: hitps://dl-ssl.google.com/
android/eclipsef. This link should prompt Eclipse to

download the list of plug-ins accessible from this site.

2.2 The Android Native Development K_'i} (Android

NDK) a .

The Android NDK [91-[11] is a companion tool set for the
Android SDK, intended to allow developers to implement
and implant performance significant section of their
applications via native code. Although the Android
framework is intended simply for Java-based applications,
the NDK present the required tools to develop an Android
apps using native code produced through C/ C++,
Although the JNI native code run and are accessed
faultlessly within the Java-based application while their
implementations run as machine code and are note

interpreted by the DVM.

The Android NDK is accessible for major OS [14]. The

installation packages are accessible from the Android

Karpagam Jes Vol. 9:issue. ¥ Nov. - Dec. 2014

NDK web site at'http://dei.'eloper.android.com/sdk/ndk/
index.html. The Android NDK is providedas a com&essed
ZIParchive file for the Windows platform. Download the
installation package from the Android NDK web site (httpr/
/developer.android.com/sdk/ndk/index.html). Then right-
click on it and choose Extract AlL, .. from the context menu.
In Eclipse, launch the Preferences dialog by choosing
Window & Preferences on Windows and Linux, or Eclipse
& Preferences on Mac OS X. In the Preferences dialog,
expand the Andréid ;:ategory and select Native
De_vélopment. Click the Browse button and choose the

NDK location,
Installing the NDK on Microsoft Windows

The Android NDK [13], [14] was originally designed to
work on Linux like systems. Some of the NDK mechanisms
are shell programs and they are not able to run on the
Microsoft Windows OS. While the most recent version of
the Android NDK shows development in making itself
more independent and self packaged, it still compel Cygwin
to be installed on the host machine in order to fully operate.
Cygwin is a Linux like environment and command-line
interface for the Windows OS. It comes with base Linux
applications, including a shell that permits running the
Android NDK’s build system. At the time of coding, the
latest version of the Android NDK for Windows is r10d
and it requires Cygwin 1.7 to be px_‘e—instailed on the host

machine.
Installing Cygwin

To install Cygwin, we have to visit http://www.cygwin.com
and the click on Install Cygwin. The installation page will

make available link to the Cygwin installer, also known as
setup.exe. Cygwin is not a single application; it is a large
software distribution holding multiple applications, The
Cygwin installer allows instailing only the certain

applications to the host machine.
3.PROBLEM STATEMENT

Android apps are naturally written [9]-[11] in Java.
However, at these times we want to overcome the
restrictions of Java such as memory organization and
performance of programming frankly into Android native
interface. Android provides Android NDK to carry out
native development in C/C-++, as well the Android SDK,
which supports Java. The NDK supply all the tools
(compilers, libraries and header files) to build applications
that approach the device natively. Native code (in C/C++)"
is needed for high performance to conquer the restrictions

in Java’s memory organization and performance.

Using native macﬁiné code does not forever answer in an
automatic performance boost. Even though the earlier
versions of Java were known to be slower than native
code, the latest Java technology is highly optimized and
the speed alteration is negligible in many cases. Using
native code in Android apps is absolutely not a bad
practice. In certain cases, it happens to highly helpfi
because it can afford for use again and improve the_
performance of some difficult applications. An application -
depends on a set of libraries to attain their tasks. The
Android NDK pennits application developers to definitely
put together use of any native library with their Java
based Android apps. Without the Android NDK, these

native libraries necessitate to be rewritien in Java in order

Native Pthread on Android Platform using Android NDK

to be used by the Android apps. The Android NDK
encourages [9]-[11] reusing of non-Java basqi/i
components within Android apps and makes possible the

development process.

Concerning performance, as a p]atform-indepenﬁent
language, Java does not present any procedure for using
the processors specific features for enhancing the code.
Compared to desktop platforms, mobile device resources
are highly inadequate. The Android NDK perrﬁits
development of application components as native code

in order to employ these CPU features.

A thread [13] is a mechanism allowing a single process to
perform multiple tasks in parallel. Threads are lightweight
process sharing the similar memory and resources of the
similar parent process. A single process can maintain
multiple threads perform them in parallel. As part of the
similar process, threads can communicate with each other
and share data. Android supports threads in both Java

and the native code,

Android [14] holds the practice of the Thread ciass to
carry out asynchronous processing. Android has
provisions for Java Thread [7] class and
Java.util.concurrent [7] package to carry out background
process using the ThreadPools and Executor classes. If
we vital to revise the user interface from a hew Thread, we
require to synchronize with the ﬁsgr interface thread.
Android offer extra constructs to handie concurrently in
comparison with standard Java. We "can employ the
android.os.Handler [12] class or the AsyncTasks [12]
classes. More advanced approach is established on the

Loader [12] class, engaged Fragments and services. The

Handler class can be second-hand to register to a thread
and presents a simple channel to send data to this thread.»
A Handler [12] class object list itself with the thread in

which it is produced.

The AsyncTask [12] class summarizes the background
process and the synchronization with the main thread; It
also holds up reporting advancement of the running tasks.
An AsyncTask is underway using execute() method. The
execute() method performs the doinBackground() and the
onPostExecute() method. The doInBackground{) method
contain the coding, which should be carried out in a
background thread. It runs automatically in a distinct’
Thread. The onPostExecute() methed synchronizes itself
once more with the user interface thread and permits it to
be simpiified. This method is executed by the framework
once the doInBackground() method finishes. The Loader
class permits us to load data asynchronously inan activity
or fragment, They can observe the source of the data and
bring new results when the content changes. They also
persists data between configuration changes. If the result
is recovered by the Loader after the object detached from
its parent, it can cache the data. We can employ the
abstract AsyncTaskLoader [12] claés as the source for,
our own Loader implementations. The LoaderManager
[12] of an activity or fragrnenf manages one or more Loader

instances.

Most of the Android library packages are the abstraction
of Java library packages. Android platform uﬁlizes éhe
same library that Java has, Now a day’s, mobile devices
manufactured with multi-core processor architectutes, In

particular to multi-core architecture, threads are expected

%

Karpagam.les\foi 9 Issue 1 Nov. - Dec. 2014

to utilize all the idle cores. Android support libraries do
not have certain method to set affinity for thread é "uti]ize
- multi-core processors such as AsyncTasks, Handler and
Loader. On the other side, Java support flexible and easy
use of threads; yet, Java libraries do not have certain

methods for thread affinity to utilize the core processors.

The execution time of a parallel program depends on 2
variety of factors [7] jointly with the architecture of the
execution platform, the compiler and OS employed, the
parallel programming environment and the parallel
programming model on which the environment is
supported, as well as properties of the application program
such as locality of memory references or dependencies
between the computations to be carried out. There are
performance analysis tools [7] on hand to enhancing an
application’s performance. They can support you in
understanding what our program is really doing and
suggest how program performance should be enhanced.
Multi-core programming is deepest part of computing
world. There are so many researches going on to improve
speedup and performance of the program through parallel

prograrns.

Even though, there are classes availabie to schedule
threads through java.util.concurrent package [7], the
performance of NativePthread that we shown in our earlier
research was good, The Pthread [13] has affinity threads,
which can schedule on specific core processors. In order
to implement with dissimilar. executable method, we
proposed to encompass Android apps with native Pthread
[13] through Android NDK, Hence, we can take

adventages of Pthreads [13} into Android apps. One of

the main advantages of using Pthreads [13] is, setting
affinity for the threads to utilize multi-core processors.
Our earlier researches concentrated on task parallelism;
they are setting as affinity for task [6] , Parallel: One Time.
Pad using Java [5], INT - Java Native Thread for Win32
Platform [12], Java Native Pthread for Win32 Platform [2],
JYava Native Intél Thread Building Blocks for Win32 Platform
[14}], Overall Aspects of Java Native Threads on Wir£32
Platform [15], Performance Analysis of Java NativeThread
and NativePthread on Win32 Platform [12]. Our previous
research experiences assist us to facilitate native Pthreads
through Android NDK for Android apps which can exploit
in Java threads and native Pthreads to execute in hybrid-

mode in Android apps.
4. METHODOLOGIES

JNI allows us to employ native code when an application
cannot be written completely in the Java. It wants to
implements difficult code in a lower-level language, It
needs the platform features not carried in Java class library.
In order to create and work with native program using
Android NDK [9}-{11] application that calls a C++

functions with the following steps:

1. Write an Android JNI program

2. Generating C/C++ Heéder File using “javah” Utility.
3. CImplementation - NativePthread.cpp

4, Create an Android makefile - Android.mk and

Application.mk : .

5. BuildNDK

i
it

Native Pihread on Androld-Platform using Androld NDK.

6. Run the Android App
4.1 Write an Android JNI program

We make an activity that describe _é native methed to
obtain a create Pthread, get thread 1d and set affinity for
thread. The Pthread execution results will be displayed as

string on 2 TextView. Create an Android project called -

“NativePthread”, with applicaﬁon name “NativePthread”
and package “com.example.naﬁvepthrea&”. Creéte an
activity called “NativePthread” with Layout name
“activity_main” and Title “NativePthread”. Replaced the

“NativePthread.java” as follows.
Program 1, NativePthread.java

package com.example.nativepthread;

_import android.app.Activity;

import android.os.Bundle;
importandroid.view.Menu;

import android.view. View;

inport éndroid.widget.TextView;

_pnBlii: class NativePthread extends Activity {Tefoiew tv;
long startTime,stopTime,elapsedTime; |
int i=0;

@Override

[;rotecteltl void onCreate(Bundle savedInstanceState) {
super.onCreate(saved[nstaqceState);

setContentView(R.layout.activity_main);

tv=(Tt extView)ﬁndVieWById(R._id.text-l-’iewl Y%
} .
@Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.main, menu);
return true;
}
public void clickStart(View v.){.
setPthreadAffinityMask(D);

createPtiread();

public native void createPthread();
public native int getCurrentThreadId();

 public native void setPthreadA ffinityMask(final int mask);

public void executeNativePthread(){ -
try{
startTime = System.currentTimeMillis();
forfi=0;i<wo;i++){
stopTime = Slystem.currenmm_eMillis(); o |
el#psedTime = (stop'fi:.:-u; - startTime};

tv.post(new Runnable(){

Kapagam JesVol. 9 issue:1 Nov. - Dec; 2014

public void nm(){ .

r
tv.setText(“NativePthread-ID\¢” €

+getCurrentThreadId() + “\tValue “ +i +*
used ms “ + elapsedTime);
}
3%
}

}eatch(Exception e){ System.owt.printIn(“Error in
NativePthread”+e); }

}
static {
System./oadLibrary(*NativePthread”);
}
} .

This NI program uses a static initializer to load a shared
library “libNativePthread.so” in Linux. It declares a native
method called createPthread(), which create Pthread by
calling executeNativePthread() and returns a String to be
as the TextView’s message. The onCreatéO method already

“declared with a TextView. The NativePthread extends -

Activity class contain following native methods
public native void createPthread();
\ pubiic native int getCurrentThreadId();

public native void setPthread A ffinityMask(final int mask);

"The native keyword indicates that the method is,

implemented natively. Although the virtual machine now
knows that the method is implemented natively, it still
does not know where to find the implementation. These
native methods are compiled into a shared library. This
shared library needs to be loaded first for the virtual
machine to find the native method implementations. The
Javalang.System [9]-[11] class provides the loadLibrary
method for Java applications to load shared libraries
during runtime. Assuming that the native method is
compiled into a shared library called libNativePthread.so,
the following method call should be added to the code. -

static {

System.loadLibrary(“NativePthread”);

The loadLibrary method is called within the static context,
because we would like to have it loaded only once during
the virtual machine’s lifetime. The layout the Activity will

use is,
Program 2. activity_main,xml

<RelativeLayout xmIns:android="http://

schemas. android. com/apkires/android”
xmins:tools="http://schemas. android. com/tools”
~ android:layout width="march_parent”

android:layout_height="match parent”
ndroid:paddingBottom="@dimen/

ctivity_vertical_margin”

;
;
;
;

Native Pihread on Android Platform using Andro_la NDK.

ndroid':paddingL«aﬁz "@dimen/
ctivity_horizontal_margin” | : é/
android:paddingRight="(@dimer/
actfvity_horizantal_mdrgfn .
android:paddingTop="@dimen/

activity_vertical _margin”
tools:context=". MainActivity” >
<TextView
android:id="@-+id/rextView!"
android:layout_width="wrap _content”
android:layout_height="wrap_content”
android:text= ”@string/hello_world ">
<Button
android:id="@+id/buttonl"
android:layout width="wrap_content
android:layout_height="wrap_content”
android:layout_below="@-+id/textViewl"
android: 1ayout_centerHorizonta1% “true”
android:layout_marginTop="1 Ode ”
android:text= "@strin#/start" |
android:onClick="c/ icfhgtarl; W
</Re1ativeLayout>

4.2 Generating C/C++ Header File nsing “javah™

Utility

The javah tool produbes C header and source files, which
are necessary to apply in native methods. It takes the
compiled class files and parses them for native methods
and generates the necessary header and source files,
Although this can be achieved wiﬂ_;out using the javah
tool, it makes the process more robust and much easier. It

is most often used tools during native development.

Create a folder “jni” below the project’s root folder by
right-clicking on the project & New & Folder. Then run
“3avah” utility from a Command prompt to create C/C++

header called “NativePthread.h™.
> javah -classpath

. bin/ _
classes;<ANDROID SDK_HOME>\platforms\android-
<xoc\android jar

-0 NativePthread.h
com.eXample.nativepthread.NativePthread

The header file contains a function profotype shown in

the following program. -
Program 3. NativePthread.h

/* DONOT EDIT THIS FILE - it is machine generated */
#include <jnih>
/* Header for class

com_example nativepthread_NativePthread */

JNIEXPORT void
Javé_oofnuexample_naﬁvepmread_NaﬁvePﬁnead_mPﬂnéad

JNICALL

_(JNIEnv *, jobject);

A]

Karpagam Jes Vol. 9 Issue 1 Nov. - Dec. 2014

INIEXPORT jint INICALL
Java_com_example_naﬁvepthread__NativePthreé_
getCurrentThreadId

(JNIEnv ¥, jobject);

JNIEXPORT void INICALL
Java_com_example_nativepthread NativePthread

setPthread AffinityMask
(INIEnv ¥, jobject, jint);

#ifdef _ cplusplus

#endif
#endif

The header file first includes the jni.h header file This
header file contains definitions of JNI data types and
functions. The native function takes two parameteré, the
first parameter, JNIEnv, is an interface pointer that points
to a function table of available INI ﬁmctions. The .JN IEnv
interface pointer is always provided with each native
function call. The second parametei_' can either be an object
reference for member methods or a class reference for
static methods. Using the automatically generated header
| file, we will provide the native implementation in a C/C++

source file.
43C Implementation - NativePthread.cpp

If we are familiar with JNI, the Android NDK is greatly
based on JNI concepts. Itis Basicaily JNI with a limited

set of headers for CPP compilation. Create the following

CPP program called “NativePthread.cpp” under the “jni”
directory by right-clicking on the “jni” folder 3 New & File.

Program 4. NativePthread.cpp
#include <jni.h>

#include “NativePthread h”
#include <sys/syscallh>
#include <stdio.h>

finclude <pthread h>

#include <sched.h>

#include <unistd.h>‘

JavaVM* javaVM =NULL;
JNIEnv* env=0;
jclass aThreadCls;
jobject aThreadOhbj;

int gettid() {

pthread_t ptid = pthread_self{);
int threadld = Q;

memcpy(&threadld, &ptid,sizeof(ptid));

return threadid;

INIEXPORT jint INICALL

JNI_OnLoad(JavaVM* vm, void * reserved) {

;
]

Native Pihread on Androld Platform using Android NDK

javaVM =vm;
return JNI_VERSION 1 _6;
H
void JNI_OnUnload(JavaVM *vm, void *reserved) {

javaVvM=NULL;

void *NativePthread(void *argv){
intres = javaVM->AttachCurrentThread(&env, NULL);
Jclass cls = env-> GetObjectClass(aThread Obyj);

jmethodiD method = env->GetMethodID(aThreadCls,
“cxecuteNativePthread L OV

env->CallVoidMethod(aThreadObj, method);
javaVM->DetachCurrentThread(); -
pﬁeM_eﬂML);

return NULL;

}

JNIEXPORT void JNICALL
Java_com_example_nativepthread_NétivePthread_

createPthread

{(INIEnv *env, jobject 6bj){
eny—>GeﬁavaVM(&javaVM);

jelass cls = env->GetObjectClass(obj);

aThreadCls = (jclass) env->NewGlobalRef{(cls);

aThreadObj = env->NewGlobalRef{obj);
int pt;
pthread_t Pthread;

pt= pthread create(&Pthread, NULL, &NativePthread,
NULL);

pthread_join(Pthread, NULL);
ifi(pt 1=0) {

printf(*Error: NativePthread.createPthread() method
failed\n™);

}

JNIEXPORT jint INFCALL
Java_com_example nativepthread_NativePthread_

getCurrentThreadld
(JNIEnv *, jobject){
return pthread_selfo;
JNICALL

JNIEXPORT void

Java_com_example nativepthread NativePthread_

setPthrea_dAfﬁnityMask
(JNIEnv *env, jobject obj, jint mask){
cpu_set_t cpuset;
CPU_ZERO(&cpuslet);

CPU_SET(mask, &cpuset); //assign

Karpagam Jes Vol. 9 Issue 1.Nov. - ‘Dec. 2014

sched_setaffinity(gettid(), sizeof(cpuset),

&cpuset); é{

The JVM [13], [14], [4] offers the “invocation interface”
functions, which permit:us to make and demolish a
JavaVM. In theory we can have multiple JavéVM per
process, but Android only permits only one JVM. The
JNIEnv [13], [14], [4] presents most of the JNI functions.
In our native functions all receives from JNIEnv as the
first argument. The JNIEnv is exploit for thread-local
storage. This is the reasoﬁ, why we cannot distribute a
JNIEnv between threads. If a part of code retains no other
way to acquire JNIEnv, we should distribute the JavavVvM
and employ GetEnv to find out the thread’s INIEnv. The
C statemeﬁts of INIEnv and JavaVM are dissimilar from
the C++ statements. The “jni.h” include file presents
different type definition depending on whether it’s
incorporated into C or C-++, For this reason it’s a wicked
idea to comprise JNIEnv arguments in header files
incorporated by bbth languages. All threads are Linux
threads, arranged by the kernel.

Thread begun with pthread_create [13], [14] can be
connecting either through JNI AttachCurrentThread [13],

INICALL
Java_com_example nativepthread NativePthread createPthread
(/NIEnv *, jobject) method creates thread by calling

A "INIEXPORT void

pthread_create(&Pthread, NULL, &NativePthread, NULL}. -

The pérameter &Pthread initializes the pthread and
&Nati\}epﬂuead parameter will call void *NativePthread
(void *argv), the env->GetMethodID(aThreadCls, «
executeNativePthread”, “0V™) in void *NativePthread
(void *argv), is used to call public void

executeNativePthread() method (program 1) though- its

signature “()V”’. Hence, this method can have parallel code

{14] or through AttachCurrentThreadAsDaemon

functions. Until a thread is put together, it has no N IEnv
and cannot make JNI calls. Android does not délﬁy threads
. completing native code. If gari)age collection is‘ in move
forward or the debugger has issued a delay request,
Android will be paused thé thread the next time it makes a
JNI call. Threads connected thrbugh JN1should be called
DetachCurrentThread [13]-[15] before terminated.

~

12

¢

implementation at Java application program side, which
will be called by native method and link with windows
kernel to create thread. Once NativePthread is created, it
will start running public void executeNativePthread()

method immediately from android program.

A JNIEXPORT - jint JNICALL
Java_com_example nativepthread NativePthread_
getCurrentThreadld (JN fEnv *, jobject) calls getid()
method to get current threadid using pthread_self().
INIEXPORT void JNICALL
Java_c.omn_example_nativepthread__
NativePthread_setPthread AffinityMask (JNIEnv *,
jobject, jint) calls sched_setaffinity(gettid(),
sizeof{cpuset), &cpuset) to set the affinity for the current

thread.

4.4 Create an Android makefile - Android.mk and

Application.mk

Although the project contains the native code, ADT will

not be competent to run it. We need to first add native

S\

3 e 2 ey

Native Pihread on Androld Platform using Android NDK

code support to the project to ailow building the native
code as a part of the Android apps build process. Riét-
click the project and choose Android Tools £’ Add Native
Support from the context menu. It creates an Android
makefile called “Android.mk” [13]-[15] below the *“jni”

folder as follows.

Program 5. Android.mk
LOCAL_PATH :=$(call my-dir)
include ${CLEAR VARS)
LOCAI, MODULE :=NativePthread
LOCAL_SRC_FILEAS = NativePthread.cpp
include $(BUILD_SHARED EIBRARY)

include S(BUILD_SHARED_LIBRARY)

Create an Android makefile called “Application.mk” [13]-
[15] under the “jni” directory by right-clicking on “juni”
folder & New & File, as follows.

Program 6. Application.mk
APP_ABI:=all
APP_PLATFORM=android-21

In the above makefile, “NativePthread” is the name of our
shared library (used in System.loadLibrary()) and

“NativePthread.cpp” is the source file.

4.5 Build NDK

- To edit native JNI code in an Android project using the

Android NDK require to configure [13]-[15] Eclipse in our

project by editing native code as it does for java. The
below steps shows, how to 'perform the essential
configuration? Start by right clicking on our andreid

project with JNI resources and select Properties. In the

dialog, choose the Builders list to the left and press the

New.., button.

14 G COT Buldes
7] BB Androld Resoutcr Manager
7 [Androit Pre Compller

I : CrCes Budd

1> GG+ Generdd

% Jova Budd Path
£ dirva Cocde Stle

> fvaCompbar

» fva Editor
Lregdor Logation
Project References.

Figure 1: Project Properties
A new dialog will open displaying a list of builder types.
Choose the Program and then press OK.

i Ghbosean m:ftwuypamnma

| dantBilde
|| € Program

Figure 2: Conﬁguration. Type
In the Main tab, we should fill in the following,
Name: NDX Builder
Location: ../android-ndk/ndk-build

Working Directory: ${workspace_loc:/N ativePthread}

'Karpagam JcsVol. 9 Issue 1 Nov. - Dec. 2014

- Figure 3: NDK Builder Figure 5: Choose libs folder

Now carry on with the refresh tab, Select the checkbox Now we have to go to Build Options tab then make sure
with Reftesh resources upon completion. Choose the the Specify working set of relevant resources checkbox is

Specific resources radio button and press the Specify checked or not.

Resources... button,

00 Wbt TN e g pa

[EdH bsunch confipurstion propertin
& Mt delect rescurves to refresh.

iseeotrwerting o of picviotmicwns . 5y
o Bict i poad 161t s hrivg e s a “Clean™

Figure 6: Specify TNI Resources

"Figure 4: Specify Library Resources
Since the NDK build only wants to occur when editing

Since the ndk-build procedure will produce filesin the lib files in the jni folder, check “jni” folder and press the

folder, we desire Eclipse to determine alteration made there

without having to refresh manually. Select the libs folder

in the project and press the Finish button.

.

Eify tuwn
Tl gun Gwweated fice Fiws]
il

e il

Figure 7: Choose JNI folder

frnlt
Ko
1)
(e
[¥29]

i

Native Pthread on Android Platform using Android NDK

/

Before running android app, we should establish C/C++
Build Configurations. In Build Settings tap, uncheck use
default build command then type ndk-build
NDK_DEBUG=1 in Build command textbox arez. Likewise,
uncheck Generate Make files automatically and then select

present workspace project shown bellow,

Figure 8: C/C++ Build

Finally, click on OK button in the properties dialog window.
Now, Android NDK builder settings is ready to run.

suRpaiea-nop

b,
TR Comch N
MR e ocrowezi] WL o Sngeracion el o o R e <
o . ond” R 02

= K RO Ay PR the 14 i
wvdtaey] idterrst
Sdutey

WL 18 Leger
r [lmﬂl-}ﬁnr-w-l 9] Hiby st fa/phnecyer

lyruti-rhal g st
t {ui_u-{.!] Hinfl iphsiver
+ Ltinia $47pth.
 [elpastel-To-snotd-+ 51 Ubsiaigeiti o
£ ibsFstph. ety
& fradinmaskidatl-LI] Uky/asold i Siene
& Hinaond ity
nww-i.il i wmptirphiem:

- Hiwsandoi-4.8} Hiafulps/pleserver
i B :

lDl-ldvr.knl 1 v)
lmiuﬂkﬁﬂ-k n Mﬂ;ﬂ.ﬂﬁdmmw

Wity ri "
Wmnﬂlm’ﬂ‘ tiurth e 50
i elvebdvad. & o el ittt e

o+ 4s:9) Bl Rlmtshed foock T80

Figure 9: NDK Build
4.6 Run the Android App

Run our Android apps, via “Run As” & “Android

Applicaﬁon” [13]-[15]). We can see all the communications

15

.

from the native programs on the displays. Check the
“LogCat” panel to verify that the shared library
“libNativePthread.so™ is loaded or not. At last, build and
run our application as usual way. The Android SDK build
tools will put together into shared libraries in

“NativePthread.apk” file.
5.CONCLUSION

The JNI is a part of the Java standard that enables
developers to write methods in languages that are
compiled to native code, such as C and C-++ and call those
methods from Java code. JNI is also what connects the
Java runtime environmen_t to the underlying OS. JNI is
especially helpful when we desire to employ platform-
specific features or obtain benefit of hardware in the
platform that cannot be approached through Android
APIs. The Android NDK makes it further suitable to
compile native code that can be used with Android
programs. The Android NDK presents system headers
for an extremely incomplete set of native APIs and libraries
maintained by the Android platform. The primary
motivation for considering the use of Pthreads on mobile
architecture can achieve optimum performances on multi-
core mobile architectures. Pthreads should capable to be
structured into separate, independent tasks that can carry
out concurrently. Since, the Android NDK affords system
headers for an extremely incomplete set of native APIs
and libraries maintained by the Android platform at
present. Hence, we are expecting full-fledged version of
native APIs for Pthread access into Android apps. We
implemented Android NDK to create and work with

Pthread, which can exploit Pthreads to execute in hybrid

* AT
A ?}".“

A

Kamogam Jos Vol. 9 fssue 1 Nov. - ‘Dec. 2014

mode with Java threads. Also, we exercised in setting

affinity for a Pthread. At present with the limitdtions of

android-21 platform, while a typical Android system

incorporates many native shared libraries, we should

believe them an implementation detail that might alter

drastically between platform releases.

REFERENCES

[1]

(21

B

A4

Bala Dhandayﬁthapani Veerasamy and Dr. GM.
Nasira, Java Native Intel Thread Building Blocks
for Win32 Platform, Asian Yournal of Information
Technology, Accepted on for publication on
March 03, 2014. Medwell Publishing, ISSN: 1682~
3915. '

Bala Dhandayuthapani Veerasamy and Dr. GM.
Nasira, Java Nat_ive Pthreads for Win32 Platform,
“World Congress. on Computing and
Communication Technologies (WCCCT’14), vol.,
no., pp.195-199, Feb. 27 2014-March 1 2014,
Tiruchirappalli, published in IEEE Xplore, ISBN:

978-1-4799-2876-7, DOL: 10.1109/WCCCT2014.13

Bala Dhandayuthapani Veerasamy and Dr. GM.
Nasira, Overall Aspects of Java Native Threads
on Win32 Platform, Second International
Conference on Emerging Research in Computing,

Information, Communication and Applications

‘ (ERCICA-2014), Vol.II, pp.667-675, August 01-02,

20 14 , Bangalore, pubhshed in ELSEVIER in India,
ISBN: 9789351072621,

Bala Dhandayuthapani Veerasamy and Dr. G.M.
Nasira,/NT-Java Native Thread for Win32 Platform,

16

N
*
A

L

<
]

51

f6]

(7

(8]

k|

International Journal of Computer Applications,
USA, Volume 71, Issue 1, May 2013, ISSN 0975-
8887.DOL: 10.5120/12212-8249

Bala Dhandayuthapani Veé:rasarpy and Dr. GM.
Nasira,Parallel: One Time i’ad using Java,
International Journal of Scientiﬁqg Engineering
Research, USA, Volume 3, Issue 11, PP.1109-
- 1117, November2012,ISSN 2229-5518 11

Bala Dhandayuthapa;ni Veerasamy and Dr. GM.
Nasira,Setting CPU Affinity in Windows Based
SMP Systems Using Java, International Journal of
Scientific & Engineering Research, USA, Volume
73, Issue4, PP. 893-900, April 2012, ISSN2229-5518 11

Bala Dhandayuthapani Veerasamy, An
Introduction to Parallel and Distributed Computing

through java, First Edition, Penram International

Publishing (India) Pvt, Mumbai, India, ISBN-10:

81-87972- -84-X, ISBN-13:978- 81-87972-84-6

Bala Dhandayuthapani Veerasamy, Dr. G. M. Nasira,
PhD, Performance Analysis of Java NativeThread . .

and NativePthread on Win32 Platform

[(unpublished work)

Yeong-Tun Kim, Seong-Jin Cho, Kil-Jae Kim, Eun-
Hye Hwang, Seung-Hyun Yoon, Jae-Wook Jeon,
Benchrﬁarking Java application using JNT and
native C application on Android, 12th International
Conference on :ControI, Automation and Systems
(ICCAS), 17-21 Oct.2012,284 - 238, ISBN: 978-1-
4673-2247-8.

Ndtive Pthread on Android Platform using Androld NDK

[10] Cheng-Min Lin, Jyh-Homg Lin, Chyi-Ren Dow,
Chang-Ming Wen, Benchmark Dalvik and Néve
Code for Android System, Second International
Conference on Innovations in Bio-inspired
Computing and Applications (IBICA),16-18 Dec.
2011,320-323,ISBN: 978-1-4577-1219-7

[11] Jae Kyu Lee, Prof. Jong Yeol Lee, Android

Programming Techniques for Improving

Performance, 3rd International Conference on -

Awareness Science and Technology (iCAST), 27-
30 Sept. 2011,386-389,JSBN: 978-1-4577-0887-9,

[12] Lars Vogel (accessed since 2014), Andrﬁid
background processing with Handlers, AsyncTask
and Loaders - Tutorial, http://www.vogella.com/
tutorials/AndroidBackgroundProcessing/

article.html

[13] Omur Cinar Pro Android C-+ with the NDK, Apress,

December, 2012, ISBN:978-1-4302-4827-9

[14] Onur Cinar, Android Apps with Eclipse, Apress,

Jun, 2012, ISBN13: 978-1-4302-4434-9

[15] Zigurd Mednieks, Laird Domin, G. Blake Meike and
Masumi Nakamura, Programming Android, Second

Edition, Zigurd Mednieks, O’Reilly Media Inc,

2012,

Authors’ Biography

- Bala Dhandayuthapani Veerasanywas
~* bom on Tamil Nadu, India in 1979. The
author receivéd B.Sc¢ in Computer

. Science from Bharathidasan

1 r? 3%
L
L ST
.
N

.

University in2000.He received his first master degree M.S
in Information Technology from Bharathidasan University
in 2002 and he received his second master degree M. Tech
in Information Technology from Allahabad Agricultural
Institute of Deemed University in 2005. Presently, he is
pursuing part-time external PhD in the areasof Information
Technology from ManonmaniamSundaranar University.So
far, he involved more than twenty peer reviewed research
papers on various international cgnferences and journals,
He was also participated as program committee members
in international conferences. He is working as a review
editing board on various international journals and
conferences, He wrote book on “An Introduction to
Parallel and Distributed Computing through Java™. He
taught several courses in the areas of Information
Technology over 12 years in academia.Earlier, he employed
as IT Lectﬁrer in Kings College of Engineering in India
and employed as Assistant Professor of Department of
Computing, Mekelle University, Ethiopia. Presently, he is
working as anI T Lecturer in Shinas College of Technology,
Oman. His teaching and research interests focused on
Parailel and Distributed Computing, Java and Android
Programming. He acquired the life membership of ISTE
(Indian Society of Technical Education).

Dr. G M Nasira is working as
Assistant Professor, Department of
Computer Science, at Chikkannna

Government Arts College, Tiruppur.

She got her B.Sc (Computer Séience)
from Madras University, MCA from Bharathidasan
University, B.Ed and M.Phil from Bharathiyar University.

Karpagam Jes Vol. 9 Issue 1 Nov. - Dec. 2014

She got her Ph.D. in Computer Science from Mother Teresa
Women’s University, Kodaikanal with the spe@fsation
of Artificial Neural Networks. She has published so far 12
research papers in referred journals and presented 40
- papers in various conferences and seminars in adciition
she has also authored a | book titled Fundamentals of
Middleware Technologies and Web Technologies, Her
research papers have won the Best paper award in two
International conferences, Sheisa Recognized Supervisor
to guide Ph.D and M. Tech (By Research) programme in
the area of Computer Applications for various Universities
and also a Member of Board of Examiner to evaluate the
Ph.D Thesis of various Universities. At present, 14
research scholars are doing their Ph.D, under her guidance
and as many as 38 students have completed their M.Phil
thesis under her guidance. She has also guided more than

100 Masters® degree thesis so far. She has also acted as a

reviewer in the International Conferences and various .

Journals. She has been as a Resource Person for National
Workshops/Seminars and Symposijums. Her specialization
includes Artificial Neural Networks,'Artiﬁcial Intelligence,
Genetic Algorithms, Data Mining & Data Warehousing,
Optimization Techniques. She has 14 years of experience
in teaching at college level in various positions like
Lecturer, Asst Professors and Professor, She has excellent
track record in the administration of academic institutions
in the capacity of Head of the Department and Vice-
Principal. She got Best-teacher"award and her department
‘ got Bést Department award twice under her headship.
She has so far conducted 2 national level symposiums

and various faculty development programs.

5 e s A A GRS

