using MSMILA Algorithm For Finding Missing value Handleing goeing Data Set

Using MSMIA Algorithm For Finding Missing Value Handleing Boeing
Data Set

P Logeshwari, Dr. Antony Selvadoss Thanamani

ABSTRACY

Main Stream Data Multiple Imputation is one of the
main models for Missing Data Tmputation in data
‘stream mining, in which a fixed length of recently

 arrived data is considered. In a Main Streara Data

Multiple Imputation overa transactional data stream,

by- the anivai of a new transaction, the oldest
iransa'ction is removed from the Data Stream and
the new transactmn is inserted into the Data Stream.

Therefore 1t always contains the newest transacﬁons.
The Data Stream is usually stored and maintained
wnhln the mam memory for fast processmg Dueto
unbounded amount of mconung transactions and
' limited amount of memory the Data Stream mze
" must be hrmted Smce the cost of msertxon and
deletlon of transaction is| sngmﬁcant, segments of
transactmns canbe added or removed from the Data
Stream mstead of 1nd1v1dual transactions. The

7 MSMIA Algorithm

The Main stream Data Multiple Imputation
Algorithm (MSMIA) always maintains & union of
the Missing Data of all Imputes in the current data
stream W, called Segment(S), which is guaranteed
to be a superset of the Missing Data over W. Upon

arrival of anew Impute and expiration ‘of an old one,
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we update the true count of each segment in S, by

considering its frequency in both the expired Impute

-and the new slide. To assure that S contains all Data

that are frequent in at least one of the Imputes of the
current data stream * (o, S)) we must also mine
the new Impute and add 1ts Missing Data to S. The
difficulty is that when a new segment is added to S
for the first time, its true frequency in the whole data

gtream is not known, mostly since this segment wast’t

frequent in the previous 1 - -1 Imputes To address’

this probiem, MSMIA uses an auxiliary array, aux

array, for each new segment in the new shde

The aux array oW stores the frequeney ofa segment

in each data stream startmc at a particular Impute in

the current data stream. In other words the aux array

| stores the frequency ofa segment for each data

stream, for which the frequency is not known The
key point in this is that this countmg can either be
done eagerly Of lazily. Under the laziest approaeh

we wait until a Impute expires and then compute the

frequency of such new Data over thls Impute and

update the aux arrays accordmﬂly.

This further saves many additional passes through

the data stream. The pseudo code for the MSMIA
algorithm is given in Flgure Al.Attheend of each

slide, MSMIA outputs all Data m S whose freqnenoy

_at that time is. However few Data w1ll be rmssed due

to the lack of knowledge at the time of the output
but it will then be reported as delay_ed when other

Imputes €xXp ire.

173 .



Karpagam JCS Vol.10 Issue 4 May - June 2016

For Each New Impute 5
" 1: Foreach segment s £8§
update 5. fegover.S
2: Mire S'to compute aa(SJ
3: For each existing segment s £6{S) 1N §
temember S as the last Impute in which s is frequent
4: For each new s@m 5 Eo Sy
S Sefs -
. remember § as the first Impute in which s is frequent
create auxiliary avray for s and start monitoring it
.For Each Expiring Impuate §
_3:Foreach segmeﬁt se§
update s feg, if §has been counted in
" update sawc avray, if app]idble

-réport s'as delayed, if frequent but not reported
at query time
delete s.qux array, if s has existed since arrival of §

delete s, if s no longer frequent in any of the current

slides
Fi.g.Al MSMIA pseudo code.

implications of MSMIA algorithm with Boeing
. Data'Set

The MSMIA algorithm compared with the Moment,
is appli_éd fo the Real-world Normalized Large dataset
of Boeing which fixes the data stream size to. 100K
transactions. Furthermore, the support thresholds set
to 2% and vary the Impute size to measure the
. scalability 6f _theée algorithms. As shown in Figure
A3 (a), (b), (c) and (d) MSMIA is much more scalable
with versions MSMIA . and MSMIA (Delay)
aigorithms, one with maximum data stream size delay

and the other one without any delay, are much faster
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than Moment. The MSMIA algorithm is intended for

Incremental maintenance of Missing Data, it is best

suitable for online and real-time processing of

millions of transactions. The proposed algorithm

Lowever is aimed at maintaining Missing Data over-

large main stream Data Multiple Imputations. In fact,
the proposed algorithm can handle a Imp'.ute size of

up to 1000 milfion transactions (Large Data).
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Table T2 Comparison of MSMIA, MSMIA (Delay) and
Moment with various Impute sizes for Bocing Data Set.
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Figure A3 Implications of MSMIA algorithm with

Boeing Data Set

The result reveals that the MSMIA algorithm holds

well even in cases of Large and Normalized data set.

As Boeing dataset belongs to the category of Large
data set, being th;a data size more than 160 million
bytes — A data set is declared as Large data set if the
size is more than 100 million bytes. The performance
of MSMIA algorithm is good for the cases of delay
<0.4 where there the deflections are tangible in the

graph scale.
CONCLUSIONS

The Data Stream is usually stored and maintained

within the main memory for fast processing. Due to

unbounded amount of incoming {ransactions and

limited amount of memory, the Data Strcam size must

be limited. Since the cost of insertion and deletion of

transaction is significa'nt, segments of {ransactions

can be added or removed from the Data Stream

instead of individual transactions. In this paper fam

R Implementing MSMIA algorithm with Boeing Data
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Set, used to Comparison of MSMIA, MSMIA
(Delay) and Moment with various Impute sizes for

Boeing Data Set,
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