A GENERIC FRAMEWORK FOR SOFTWARE TESTING TECHNIQUES

A GENERIC FRAMEWORK FOR SOFTWARE TESTING
TECHNIQUES

Ms. V. Sathyavathy', Dr.D. Shanmuga Priyad’

ABSTRACT

Software testing is an important role in the sofiware
development life cycle. There are various types of
software testing techniques to ensure the quality of
the product. So it is very much essential to find the
right testing technique at right time. The proper
usage of efficient testing technique at any stage of
SDLC is very crucial. Selection of right testing
technique at any stage is one of the crucial problems.
Comprising of testing technique is a multi-criteria
decision making problem and propose an efficient

solution.

In this paper, a review is made on several past
empirical studies along with their result, conducted
with subjects to examine both functional and
structural testing techniques. Finally, the overall
performance of various testing techniques has been
observed with respect to effectiveness and efficiency

in existing experiments.

Index Terms : code reading, empirical study,

evaluation, functional testing, structural testing

1. INTRODUCTION

7 Cryptography is art of hiding information or keeping

the information secret from external environment

{Ph.D. Research Scholar, Karpagam University

- Professor, Department of Information Technology,

Karpagam University

Software testing is the process that involves various
activities that aims at detecting the errors in the
software product to improve the product quality
through the entire lifecycle of software development.
The objective of software testing is to find the faults
and failures to ensure that the software is error-free.
Inadequate and improper selection of testing leads
to various software related issues. So it is important

to choose effective software testing techniques.

The main objective of software testing is to detect
and correct the fault that occurs during the software
development. The improper and inadequate testing
leads many issues. It is very important to create the
error free software product to ensure the quality.
For this purpose, testing techniques are to be selected

it is likely to choose effective testing technique.

To evaluate the effectiveness and efficiency, the
resource utilization and the parameters are taken into
consideration. There are variety of software testing
techniques available which includes lots of resources
and time. Many testing techniques results in the
same types of faults which leads to the duplication
of efforts. Therefore,it is necessary to evaluate the

effectiveness of software testing techniques.
1I. CLASSIFICATION OF FESTING TECHNIQUES

Software testing techniques are divided into two

broad categories: Static testing and dynamic testing.

267

Karpagom JCS Vol.10 tssue 6 Sep. - Oct. 2016

A, Static Testing Techniques :

A static testing technique focuses on testing that tests
the software product without the actual execution
of source code. It includes the all the areas of
representations of system such as requirernént
analysis, design and source code of the system
without executing it. It is possible to do it either

manual testing or automated testing,

Automatic testing is mainly based on testing
program or program related documents by using
software tools. In static automatic testing, static
automated tool is used for testing the program; the
source code is given as the input into this static tool
and evaluated to ensure the quality. Manual testing
is based on testing the program and program related

document without using any types of tool.
B. Dynamic Testing Technigue

Dynamic testing techniques focus on the execution
of software to test the software product. The
software product is tested in real environments, for
the possible set of inputs, in order to validate how
the system responds to different types of inputs.. A
system is tested dynamically by examining the result
of execution; the level of quality set for dynamic

evaluation can be decided. -

There are two categories of Dynamic testing

techniques: White Box testing and Black Box testing

White Box Testing

In white box testing, source code knowledge is
required for designing test cases. It concentrates on
both the logic and internal structure of program
code, and corresponds to the requirements of
software which is under test. It is also called as
structural testing. It mainly focuses on examining
the logic of program or software product. In these
types of testing techniques, test cases includes the
coverage of code written in terms of branch
coverage, conditions, statement coverage, and

internal logic of program code etc.

To implement the white box testing method,
knowledge of internal logical structure of the
software systems must be taken and results are
evaluated based on a set of coverage criteria. There
are several types of white box testing techniques

evaluated in the mentioned past empirical studies.

Statement Coverage: It requires that test cases to
be designed in such a way that each statement in a

program is executed at least once.

Branch Coverage: It requires to generate the test
cases to cover each branch condition in the program

that is both true and false value in turn.

Condition Coverage: It aims to design the test cases
s0 as to apply each component of the conditional

expression which returns either true or false value.

Loop Testing: 1t aims to design test cases so as to
execute the loop continuously until the condition

becomes satisfied or not,

268

A GENERIC FRAMEWORK FOR SOFTWARE TESTING TECHNIQUES

Path testing: It aims to design test cases so as to
execute and test all possible paths in the program

at least once.
Black Box Testing

In Black Box testing, the source code knowledge
is not required; test cases are designed from the
analysis of input/output values only. Black Box
testing affects only the behavior of software system.
It is also called as functional testing. To implement
this testing strategy, knowledge of functional
specification of system must be given, so that all
functionality of system is tested at least once. Black
Box testing mainly based on testing functionalities
and requirements of system. Functional testing
becomes the most important factor to meet the
required functionality and behavior. It specifies the
external behavior according to the user
requirements and specifications. Functional testing
mainly focuses on “what” instead of “how”. There
are various types of functional testing methods to
ensure the quality of the end product. Those tests
are unit test, system testé, regression test and

acceptance test

Black box testing can be classified as follows:
Equivalence partitioning and boundary value

analysis.

Equivalence partitioning: The equivalence classes
for program are identified and test cases are
generated for each equivalence class that is

identified.

269

Boundary value analysis: This aims to design test
cases using the values at boundaries of equivalence

class that are identified

The overall process of evaluation of test design
technique is represented in Fig.1.Prepare faulty
program by injecting faults in unadulterated
program. The experiment conducted with subjects,
they applied different testing techniques to faulty
program. The next step consists of evaluation of

testing techniques, based on results achieved.

Plan for code samples

A

Choose the testing technigue
for evaluation

y

A4

Experiment and measure the
data, apply for test sets

Y

Analyze and evaluate the
result by making comparisons
with others

z _
Expand the faults that are
projected

y

Figure 1: Overall process of testing technique

Karpagam JCS Vol.10 Issue 6 Sep. - Oct. 2016

III. MEAsvriNG THE TesT EFFICIENCY

Following is the method to calculate the efficiency of a
testing process based on the number of defects by the
Customer and to the number of defects identified by the

Testing Team.

1. Assign Ranking to each Severity level.

a. if the type of error is Critical, the severity level 4

b. if it is Serious, the value which may be 3

¢. if the error type is Moderate ,then assumed as 2

d. if the fault type is Minor then value 1 can be assigned

2. The list of defects reported by the Testing and Customer

team based on Severity levels.
For Instance :
The Customer has Reported 3 Critical, 3 Serious, 2

Moderate and 5 Minor faults. The Testing Team should

have identified these defects.

The Testing Team has Reported 5 Critical, 5 Serious, 10

Moderate and 10 Minor faults.
The Test Efficiency can be calculated as foliows :
Tester’s number of Defects = 4*5+5%3+10*2+10*1 =65

Customer’s number of Defects = 3¥4+3*3+2%2+5%] =

30
So Test Efficiency is {65/65+30) * 100 = 68.42%

In case if the Customer did not identified any fault or
defects in the above example then the Test Efficiency
will become 100%. If there is a small project in which
the testing team and customer did not find any defects
then also the Test Efficiency will be 100%. If the 'l‘esﬁﬁg
Tearn Failed to find any Defects and the Customer finds
them then the efficiency of the testing will be 0%.

270

IV, MEASURING THE TEST EFFECTIVENESS
Software Test Effectiveness :

The effectiveness of a testing technique or a system
is the ability to find the defects and isolate them,
from a product or deliverable. Test effectiveness is
to ensure quality of the software product and
minimize the two quality gaps that are producer’s
quality gap and customer’s quality. Software quality
is both process and product quality which meets
the customer requirements and conformance to
product requirement specification. These metrics
should be examined and quantified, as they closely

likely relate to quality.
Software Test Effectiveness (for different factors):

Test effectiveness = Number of defects found /

Number of test cases executed.

Test effectiveness = (total number of defects injected+

total number of defect found) / (total

number of defect escaped)* 100

Test Effectiveness = Loss due to problems /

Total resources processed by the system

Test effectiveness can be calculated for particular set of

test activities.

Fore.g. Test preparation efficiency will be the time taken
for “X” number of Test cases to be prepared, reviewed
and reworked to finalize them. There is a catch here, the
quality standards of the test cases should be predefined
by using defining standards, as 1 have tried to state a

few of them here,

The Test cases are complete with respect to Use Cases

on in which they are reffered.

A tester should be able to execute this test case.

A GENERIC FRAMEWORK FOR SOFTWARE TESTING TECHNIQUES

Table: 1 Software Testing Levels

T:;‘ﬁ;:li e Specification Coverage Tester
Unit Low level Smail part | Developer
Testing design of code
Integration | High level Large Deveoper
Testing and lowlevel project
design with many
modules
Functional | External Logic External
Specification coverage Tester
criteria
System Analysis The whole | Developer
product / External
Tester
Acceptance | Analysis The whole | End User
product
Beta Situational The whole | End User
product

V. How To CHose BesT TESTING TECHNIQUE

There are some internal factors that affect the decisions

about which technique to use :

o Models used in developing the system—
Testing techniques are mainly based on the
models that are used to develop that system,
which will say which technique to be chosen.
For example, if the specification contains a
state transition diagram, state transition testing

would be an efficient technique.

e Testers knowledge and their experience —
How much testers know about the system and
about testing techniques will clearly influence
their choice of testing techniques. This
knowledge will in itself be influenced by their
experience of testing and of the system under

test.

e Similar type of defects — Knowledge of the

same kind of defects will be very helpful in

27

choosing testing techniques (each technique is
better at finding a particular type of defect).
This knowledge could be gained through
experience of testing a previous version of the
system and levels of testing which was tested

on the current version.

Test objective — If the test objective is used to
gain confidence that the software will cope
with typical operational tasks then use cases
would be a useful approach. If the objective is
for very complete testing then more crucial and
detailed techniques (that includes structure-

based techniques) should be chosen.

Documentation —If the documentation is
available or not (e.g. a requirements
specification) exists and whether or not it is
updated that will affect the choice of testing
techniques. The content and style of the
documentation will also influence the choice
of techniques (for example, if decision tables
or state transition graphs can be used then the

associated test techniques should be used).

Life cycle model used — A sequential life cycle
model can be used that leads to the selection
of more formal techniques whereas an
iterative life cycle model may be well suited

for using an exploratory testing approach.

There are some of the external factors that affects

the decisions about which technique to use are :

Risk assessment — if the risk is greater the risk

(e.g. critical systems), the need for more

Karpagam JCS Vol.10 Issue 6 Sep. - Oct. 2016

thorough and more formal testing will be
greater. Technical risk may be influenced by
quality issues (so more thorough testing would
be needed) or by time-to-market issues
(exploratory testing would be a more better

choice).

e Customer and contractual requirements —
Sometimes customers specify particular
testing techniques to use {most commonly
statement coverage or branch coverage

techniques).

¢ Type of system used — The type of system

(e.g.
etc.) will reflect the choice of techniques. For

embedded, graphical, financial,

example, a banking application involving
many calculations would benefit from

boundary value analysis.

© Regulatory requirements — Some industries
have professional standards or guidelines that
exhibits the testing techniques used. For
example, the mission critical application
requires the use of equivalence partitioning,
boundary value analysis and state transition
testing for high integrity systems together with
statement, decision or modified condition
decision coverage depending on the level of

software integrity required,

¢ Time and budget of the project — how much
time and cost there is available will always
affect the choice of testing techniques. When
more time is available more techniques can
be selected and when time is severely limited
to those that is known have a good chance of

helping us find just the most important defects.

Each technique is good in its own way in finding
out the certain kind of defect, and not as good for
finding out the other kind of defects. For example,
one of the benefits of structure-based techniques is
that they can find out the defects or things in the

code,

Hetzel,conducted an experiment with 39 subjects
for comparing effectiveness of three testing
techniques i.e. functional testing, code reading and
structural testing. The experiment was based on
testing three program coded in PL/I. The result of
experifnent was that functional testing and structural
testing was equal in effectiveness, while code

reading was less effective.

Experiment Results

The subjects that applied the
testing technique performed
more effectively than those who
applied the reading technique
There are no much difference in
the effectiveness

Aspect

Effectiveness

Figure 2

Roper et al. replicated the experiment of Kamsties
and Lott The experiment had conducted with 47
subjects to evaluate the effectiveness of testing
techniques and combination of techniques. The
testing techniques were functional testing using
boundary value analysis, structural tésting using
branch coverage and code reading by stepwise
abstraction. The experiment used three program
coded in C, to which testing techniques were
éppiied. The result of the experiment was that
effectiveness of techniques was dependent on
program to which testing techniques were applied,

and on the type of faults.

272

A GENERIC FRAMEWORK FOR SOFTWARE TESTING TECHNIQUES

Aspect Experiment Results

Effectiveness -Depends on the

(Detection) technique/program

combination of combination.

techniques -Depends on nature of faults,
-Higher number of faults
combining techniques

Figure 3: Roper’s experiment on effectiveness

Farooq et al. [7] replicated the experiment of
Kamsties and Lott [4] has compared the software
testing techniques i.e. static testing techniques {code
reading) and dynamic testing techniques(functional
testing and structural testing). The experiment was
conducted with 18 subjects which was based on
testing three programs coded in C. The testing
techniques has evaluated in terms of effectiveness,

and efficiency.

Effectiveness has measured in terms of number of
faults detected and isolated. Efficiency has measured
in terms of time required to detect and isolate faults.
The result of the experiment was that effectiveness

depends on program. Efficiency depends on program

and techniques.
Aspect Experiment Results
Effectiveness Depends upon program, not on
(Detection) technique.
Effectiveness Depends upon program
(isolation}
Efficiency Depends on program
(detection)
Efficiency :
(isolation) Depends on technique

Figure 4: Farooq’s experiment on effectiveness

Juristo and Vegas replicated the experiment
of Roperet [5]to evaluate the effectiveness of static
testing techniques(code reading by stepwise
dynamic testing

abstraction) and

273

techniques(functional testing using equivalence
class partitioning and structural testing using branch
coverage). The experiment was based on testing four
program coded in C. They performed two
replication of their experiment. In replication-I and
replication-II the experiment was conducted with
195 subjects and 46 subjects respectively. The result
of the experiment was that effectiveness of
technigues depends on program, techniques and
fault type. Functional testing and structural testing
behave identically with respect to fault type. Code

reading behave worse.

Aspect Experiment Results

1} Depends on technique, program and
fault,

2} Cede reading behaves worst than
functional testing and structural testing,
indistinctly for the defect type. With
regard to functional testing and
structural testing, both behaves
identically.

The number of subjects that detect a
defect influence the program version

Effectiveness
(Detected and
observable)

Figure 5 ; Juristo’s and Vegas’s experiment on

effectiveness

Empirical studies can be performed with subjects
and without subject and based on inductive
reasoning and logic. Empirical studies without
subjects examine test-case generation and compare
efficiency and effectiveness of different testing
techniques. Some studies examine approaches for
selection of test-case. Empirical studies with
subjects is a simulation of real situation. It takes
into account how the subject influence technique
behaviour. Most of the studies conducted to evaluate
static and dynamic testing techniques in terms of

efficiency and effectiveness.

Karpagam JCS Vol.710 Issue 6 Sep. - Oct, 2016

Analytical studies resembles with theoretical studies
in nature and produce generalized results, the results
which are applicable to any experimental
perspective. The conclusions of analytical

comparisons are based on statistical terms.

Selby computed the effectiveness and efficiency of
three software testing techniques. The experiment
was extended by including a fault isolation phase

after fault detection phase

Aspect Results of experiment

-Depends upon program, not
on technique.

-Depends upon subject and
program, not on technique.

1) Condition coverage takes
more time than boundary
value analysis.

2} Time spent on finding
faults also depends on
subjects.

3) Condition coverage has
lower fault rate than boundary
value analysis,

1} Depends upon subject aad
program, not on technique,

2} For inexperienced subjects:
boundary value analysis takes
longer than Condition
coverage.

1) For inexperienced subjects;
Condition coverage takes
more time thar boundary
value analysis

2} Time also depends on
subject.
-For hoth
detected:
difference
technigues,

Effectiveness
(Detection)

Effectiveness
{isolation)
Efficiency
{Detection)

Efficiency
{isolation)

Efficiency
{total)
Fault type

isolated and
there is no
between

Figure 6: Selby’s experiment on effectiveness

VI. REStLTS

In this paper, the main results from above
experiments are listed. From the above experiments
it can be concluded that the functional testing is
most effective than structural testing is less
effective and code reading is least effective, in

almost all experiments i.e.
CR<ST<FR(with respect to effectiveness).
FR- functional testing

ST- structural testing

CR- code reading

VII. CoNCLUSION

Several past empirical studies are reviewed
conducted with subjects, to evaluate the
effectiveness and efficiency of testing techniques.
The technigues includes both functional testing and
structural testing. Functional testing includes
boundary value analysis and equivalence
partitioning and Structural testing (statement
coverage, branch coverage condition coverage,
loop and relational operator coverage) were

evaluated.

Finally functional testing is most effective and
efficient, structural testing is less effective and
efficient and code reading is least effective and

efficient.

In other words, static testing is less effective and

efficient than dynamic testing

A GENERIC FRAMEWORK FOR SOFTWARE TESTING TECHNIQUES

REFERENCES

[1] W. C. Hetzel, “An experimental analysis of
program verification methods,” PhD thesis,
University of North Carolina at Chapel hill,
1976.

[2]1 G. J. Myers, “4 controlled experiment in
program and code walkthrough/ inspection,”
Communication of ACM, 21(9):760-768,
September 1978.

[3] V. Basili and R. Selby, “Comparing the
effectiveness of sofiware testing strategies.
Software Engineering,” IEEE Transcation on
(12):1278-1296, 1987,

{4] E. Kamsties, and C. Lott, “An empirical
evaluation of three defect detection
techniques,” software Engineering ESEC95,
pages 362-383, 1995.

{5] M. Roper, M. Wood, and J. Miller, “4n
empirical evaluation of deféct detection
techniques,” Information and Software

Technology, 39(11): 736-775, 1997

[6] N. Juristo and S. Vegas, “Functional testing,
Structural testing and Code Reading: what fault
type do they each detected?,” Empirical
Methods and Studies in Software Engineering
Pages 208-232, 2003

[7]1 S.U.Faroog, S. M. K. Quadri and N. Ahmad,
“d controlled experiment to evaluate
effectiveness and efficiency of three software
testing methods,” 1EEE Conference on
Software Testing, Verification and Validation,
2013

275

[8] T. Y. Chen, Y .T. Yu, “On the relationship
berween partition and random testing, ”. IEEE
Transaction on Software Engineering, 20(12):
977-980, 1994,

[9] A.]. Offutt, S. D. Lee, “4n empirical
evaluation of weak mutation, ” IEEE Transactio
on Software Engineering, 20(5):337-344, 1994

[10] A.). Offutt, A. Lee, G. Rothermel, RH. Untch,
C. Zapf, “An experimentation determination
of sufficient mutant operators,” ACM
Transaction on Software Engineering and
Methodology, 5(2): 99-118. 1996.

[11] L.A. Clarke, A. Podgurski, D.lJ. Richardson,
S.). Zeil, “4 formal evaluation of data flow
path selection criteria. " YEEE Transaction on
Software engineering. 15(11): 1318 -1332,
1989.

[12] D. S. Rosenblum, E. J. Weyuker, “Using
coverage information to predict the cost
effectiveness of regression testing strategies, ”
IEEE Transaction on Software Engineering.
23(3): 146-156, 1997.

[13] G. Rothermel, M. J. Harrold, “Adnalyzing
regression test selection techniques,” 1EEE
Transaction on Software Engineering. 22(8):
529-551, 1996.

[14] G. Rothermel, M. J. Harrold, “Empirical
studies of safe regression test selection

technique,” IEEE Transaction on Software
Engineering. 24(6): 401-419, 1998.

Karpagam JCS Vol.10 Issue 6 Sep. - Oct. 20146

f15] T.L. Graves, M. J. Harrold, J. Kim, A, Porter,

G. Rothermel, “An empirical study of

regression test selection technigues,” ACM
Transaction on Software Enginering and
Methodology, 10(2):184-208, 2001.

[16] N. Juristo, A. Moreno, and S. Vegas,
“Reviewing 25 years of testing techniques
Software

experiments,” Empirical

Engineering, 9(1): 7-44, 2004.

[17] S. Eidh, H. Hansson, S. Punnekkat, A.
Petterson and D. Sundmark, “4 framework for
comparing efficiency, effectiveness and
applicability of Software testing techniques, "
Intesting: Academic and industrial conference
—Practice and research technique,2006, TAIC
PART 2006.proceedings, Pages 159-170,
IEEE, 2006.

[18] N. Juristo, S. Vegas, M. Solari, S. Abrahao
and 1. Ramos, “Comparing the effectiveness
of equivalence partitioning, branch testing
and code reading by stepwise abstraction

applied by subjects,” IEEE Conference on

Software Testing, Verification and Validation,
2012,

AUTHOR’S BIOGRAPHY

V. Sathyavathy is currently
working as anm Assistant

Professor in the department of

Computer Technology at KG
College of Arts and Science, Coimbatore. She has
completed her under graduation in Bachelor of

Science in Computer Technology at Ramakrishna

276

Engineering College, Coimbatore. She has
completed her Post Graduation in Computer
Application at KGISL-IIM.

: Dr..D. Shanmuga Priyaa,
i working as a Professor in the
| department of Information
Technology at Karpagam
t University Coimbatore. She
: had completed Ph.D in

Computer Science at Karpagam
University in August 2014 and she got 16 yrs of
experience. At present she is guiding 8 Ph.D and |
M.Phil scholars. She has published more than 15
international journals and more than 2 international

conferences.

