Karpagam Jcs Vol. 11 Issue 4 May - June 2017

COMPARATIVE STUDY ON DATA COMPRESSION ALGORITHM
FOR WIRELESS SENSOR NETWORK

A. Jeevarathinam', Dr. S. Manju Priya’

ABSTRACT

Data compression techniques are emerging trends
in sensor networks. It is an art of compact
information. It is used to decrease the amount of data

transmitted by source node.

It contains Data generating and sink node. Data
generating nodes acts as the encoding instruction and
sink node act as decoding instruction. In this paper, a
loss less dictionary based data compression technique
has been proposed which is based on the optimality
of LZW code

Keywords : WSN, Data Compression, LZ77, LZ78,
LZW;

I. INTRODUCTION

A WSN is a set of nodes structured to form a
network. Wireless Sensor Networks are made up of
small sensor nodes. It is used for monitoring and
sensing information [7]. No a days WSN status and
performances are arising then automatically the
limitations of the network lifetime also arising. It is
observed that the energy utilized in transmission is
more than processing the data in WSN. So, a lot of
approaches are planned to attempt the problem of

power utilization, used while transmission. Data

'Research Scholar, Department of Computer Science, Karpagam
Academy of Higher Education, Karpagam University

*Associate Professor, Department of Computer Science,
Karpagam Academy of Higer Education, Karpagam University

compression is one of the approaches by using data
to be transmitted and recovery of it at sink node in

WSN [5].

The major task of data compression is to remove the
unnecessary data. By compressing the data, the size
is reduced and less bandwidth is required for
transmitting data [6]. It can be classified as lossless,
lossy and unrecoverable compression Lossless data
compression recreates the exact original data from
the compressed data while lossy data compression
cannot regenerate the perfect original data from the
compressed data. The Unrecoverable compression
means that the compression operation is irreversible;

there is no decompression operation [3].

There are plenty of data compression algorithms
which are coupled for WSN. It can be categorized
as static, adaptive or dynamic, and hybrid. The Static
encoding requires 2 passes. The first pass is to
determine the frequencies and mapping techniques
|9]. The Second Pass to encode the data. Huffman
Coding is the best example of Static encoding. One
scan of the message is essential for the adaptive
techniques. Some of the adaptive techniques are
Lempel Ziv 77, Lempel Ziv 78, Lempel Ziv Welch,
and Adaptive Huffman Coding [4].

One of the lossless data compression algorithms is
Lempel Ziv Welch (LZW). In the late 1970’s better

186

Comparative Study on Data Compression Algorithm For Wirless Sensor Network

methodologies where developed for Huffman coding
using Data compression. In 1977, Abraham Lempel
and Jacob Ziv proposed different method of encoding
algorithms. Lempel-Ziv techniques consist of two
different algorithms, LZ77 and LZ78.Due to patents,
LZ77 and LZ78 led to many variants.|2]

I LZ77 COMPRESSION ALGORITHM

It is a Sliding Window method for encoding the
characters. In this technique, the dictionary work as
a segment of the previously encoded series. The
encoder examines the input series through a sliding
window. It consists of two parts one is Search buffer
and another is Look-ahead buffer [9]. A search buffer
contains a part of the recently encoded series and a
look-ahead buffer contains the next portion of the
series to be encoded. LZ77 was better but slower,
but the gzip version is almost as fast as any LZ78
[1]. The LZ77 algorithm describes the process of

encoding the characters using LZ77 is as follows

[1].
Algorithm : LZ77
While (LAB #=0)
{
Get a pointer (P, L) to longest match;
if (L>0)
{
Result (P, Longest match length, next symbol);

Shift the window by (length+1) positions along;

Else

i

Result (0, 0, first symbol in the LAB);
Shift the window by 1 character along;
;

}

LAB - look-Ahcad Buffer

P- Pointer

L-Length

Example :

‘J‘K IL‘J|M ‘.l |s ‘J‘](L‘J ‘

Address | Length | Deviating
Symbol

JKLIMINJKL] |0 0 J'

J KLIMINJKLI |0 0 'K

JK LIMINJKLI | 0 0 L'

JKL JMINJKLJ |3 1 ™'
JKLIM JNJKLJ | 2 1 N'
JKLIMIN JKLJ |7 4 B |

If there is no matching series is exist from the past
content, the series length 0,the address 0 and the new
symbol will be coded in to the dictionary. Because all
byte series is extended by the first symbol differing
from the past contents, the list of already used symbols

will constantly raise. No additional coding scheme is

187

Karpagam Jcs Vol. 11 Issue 4 May - June 2017

necessary. This allows a simple execution with least

requirements to the encoder and decoder| 10].
Advantages

This technique searches the data of thousands of
bytes long for search buffer and tens of byte long
for look-Ahead Buffer. The encoding method is time
consuming. It can be used to find matched pattern
using hug amount of comparisons. It causes problem,
while decompressing on another machine because it
doesn’t have its external dictionary. In this algorithm
when there is no match of any strings, it encodes
that string as a length and offset, which will obtain
extra space and this needless step increases the time

period of the algorithm
Disadvantages

This technique attempts to work on past data. It is
slow in compressing the data. The result format of
LZ77 is triple of P, L, S, Where P=Position of the
longest match, L=length of the match, S=next symbol
to be encoded. It is preferred using backward
pointers. It is mainly due to the limits of data. This
problem is most evident when compressing a long
periodic sequence in which the period exceeds the

length of the search buffer.

II1. LZ78 COMPRESSION ALGORITHM

It is a Dictionary Based encoding character which is
to inserted one- or multi-character, non-overlapping,
discrete patterns of the message to be encoded in a
Dictionary. It is a easy method which haves a window
as a dictionary. When compressing the data we can

use {I,S} for access the dictionary. The ‘I" is the

index position of the dictionary and S’ is the String

that is after the match. [8]
Example :
JKKLKKJJKLMMKLLJJKJJKL

Alphabet A= {J.K,L,M} is using for compressing the

sequence.

At First, the Dictionary is empty. Then we can add
one by one character or string in to the dictionary. At
the beginning, we can add first character *J” in to the
dictionary. | is the index position and J is the Character
which we have to insert. So the result will be {0, J}.
Then next character K is inserted in to the dictionary
at the index position 2.So the result will be in the
form of {0,K}.The next character K is in the
Dictionary and KL is not in the Dictionary; so insert
the of 3.So

become{2,L}.Similarly the remaining characters are

it at position the result

inserted in to the dictionary. At the end of the strings
are shown in the table [1]. The LZ78 algorithm

describes the process of encoding the characters
Algorithm : LZ78

Word: = Empty;

While (INPUT)

{

Key: = next String from input;

If (word Key exists in the dictionary)

{

word : = wordKey;

188

Comparative Study on Data Compression Algorithm For Wirless Sensor Network

Else

{

Result (index (word), Key);
Add word Key to the dictionary;
Word: = Empty;

H

H

Example : Table I Dictionary
INPUT STRING :

JKKLKKJJKLMMKLLJJKJJKL

Index |1 2 3 4 5
String | J K KL KK 1
Result | {0.J} | {0.K} | {2,.L} | {2K} | {1.]}
Index | 6 7 8 9 10
String | KLM | M KLL | JJK | JIKL
Result | {3,M} | {OM} | {3,L} | {5K} | {9.L}

Advantages of LZ78

This technique helps to proceed for future data. Itis
faster than LZ77 and the result format of LZ78 is
pair of I, S. Where I is index and S is a String. It is
preferred using a real dictionary. LZ78 technique
overcome the problem of the period exceeds the

length of the search buffer when compressing a long

periodic sequence; it indeed stores the patterns within

a dictionary as tokens.
Disadvantages of LZ78

No more entries are added when the dictionary is
full. Last matching index is the output of the
algorithm, when the closing stage of the input stream
is reached. Reverse order of the string are stored in

the dictionary.
IV. LZW Compression Algorithm

LZW algorithm is the most popular algorithm. It is
proposed as a variant of LZ78 algorithms, where the
compressor never outputs a character, it always
outputs a code. To perform this, a major modification
in LZW is to be performed in the dictionary with all
possible symbols that can occur. It is just like a greedy
approach which divides text into substrings. Instead
of having a double, <i, s>, the LZW uses a
techniques to remove the need for the second field

in the double.

LZW uses fixed-length codewords to represent
variable-length strings of symbols/characters that
commonly occur together, ¢.g., words in English text.
LZW compression and decompression make up the
similar dictionary as getting the data. It occupies more
and more frequent entries into a dictionary. In this
algorithm uses the dictionary of 256 character sets
and reads 8 bits of data at a time. Number is the
input data that represent its index in the dictionary.
If a new sub string comes, it could be inserted into
the dictionary. If a sub string has already seen, it

immediately reads in a new character and joins it

189

Karpagam Jecs Vol. 11 Issue 4 May - June 2017

with the existing string to construct a new substring.
Subsequently LZW visit often a substring, it will be
encoded using a single number. Frequently the
greatest amount of entries (2048) is defined for the
dictionary, so that the method doesn’t run away with
memory. Hence, the codes which are taking place

of the substrings in this example are 12 bits long (211
=2048).

ALGORITHM : LZW Compressions
BEGIN

String = next input character;

While # EOF

{

Char = next input character;

if string + char available in the dictionary
String = string + char;

Else

{

Result the code for string;

Add string + char to the dictionary with a new code;
String = char;

H

}

Result the code for string;

END

Example : Table II: DictionaryConsider a string
table containing only 6 characters, with codes as
follows :

Index 1 2 3 |4 5 6

String |J |K |L |M |JK |KK

In case, the input string is
JKKLKKJJIKLMMKLLJJKJJKL, the LZW

compression algorithm works as follows

Index 7 8 9 10 11 12
Input

. . 11 JKL LM
String KI LK KKJ KI M
Result 2 3 6 1 5 3

Index 13 14 15 16 17 13 19

Input
String

zZ=Z

MK R K | KJ

Result | 4 4 7 3 10

(]
-y

The output codesare: 2361534473102 17.
Instead of sending 19 characters, only 9 codes need

to be sent (compression ratio = 19/13 = 1.46).
ALGORITHM : LZW Decompression
BEGIN

String = empty;

While # EOF

{

Key = next input character;

Empty= dictionary entry for k;

190

Comparative Study on Data Compression Algorithm For Wirless Sensor Network

Result entry,

if (String != empty)

Add string + char[0] to the dictionary with a new
code;

String = entry;
H
END

Example 7.3 : LZW decompression for string
JKKLKKJJKLMMKLLJJKJJKL

Input codes to the decoderare 236153447310
2 17. The initial string table is the same to what is
used by the encoder. The LZW decompression
algorithm then works as follows :

Table III : Dictionary

Index 7 8 9 10 |11 12 |13

Input

Code 2 3 6 1 5 3 4

Result KL | LK | KKJ|JJ |[JKL | LM | MM
Index 14 15 16 |17 18 |19
Input Code |4 7 3| o2 |
Result MK ' KLL |LI |JJK KI @ JIKL

Apparently, the output string is JKIKKIJKLIKJKKJ

*“, a truly lossless result!

Advantages of LZW :

LZW is loss less compression technique. It is very
fast to decode the data and also very simple to

implement and analyze the incoming data.
Disadvantages of LZW :

LZW is simple method but implementation of
algorithm is very complex, because of managing
string table. The volume of storage required is
undefined as it depends on the sum of all strings. A
problem occurs while searching the data, if a new
character is read in at every time, the algorithm has
to search for the new string formed by
string+character. Whenever a new character comes,
it could be searched in to the string table. If a
particular character or string is not found then a new
character has to be added to the string table. It causes
two problems: The string table gets enlarged very
fast. If the string lengths average is low as three or
four character each, then the overhead of storing
the variable length string and its code could reach

seven or eight bytes per code.

V. CompPARISON BETWEEN LZ77, LZ78 AND
LZW

Comparison between LZ77, LZ78 AND LZW
algorithms for WSN is described in the following
table 1V

191

Karpagam Jecs Vol. 11 Issue 4 May - June 2017

Table 1V : Comparison between LZ77, LZ78 AND

LZW Algorithms

LZ77

LZ78

LZW

+ It works on past
information for

+ It works on future
information for

+ It works on future
information for

Itis preferred using | *
backward pointers

encoding encoding
and decoding and decoding
<+ Itis slow <+ It is fast
+ The result % The result
format of format of
LZ77 is triple LZ78 is pair
of P L, S. of LS

It is preferred using a
real dictionary, it
indeed stores the
patterns within a
dictionary as tokens

encoding
and decoding

+ It is very faster than
LZT7 and 78

The result
format of
LZ78 is pair of
LS and code words

#+ LZw compression
and decompression
make up the same
dictionary

VI. ConcLusioN

This paper has taken up Lempel Ziv algorithms to
observe the performance in data compression.
Comparison of LZ77, LZ78 and LZW techniques
are described. The dictionary based encoding is
shown up in the comparison table. In future,
improvement on LZW technique has to be done for

better performance of storing string table.
REFERENCES :

1. Suman M. Choudhary, Anjali S. Patel, Sonal
J. Parmar, “Study of LZ77 and LZ78 Data
Compression Technigues”, International
Journal of Engineering Science and Innovative
Technology (IJESIT) Volume 4, Issue 3, May

2015

3.

192

Ranjeet S. Pisal “Implementation of Data
Compression Algorithm for Wireless Sensor
Network using K-RLE”,

Journal of Advanced Research in Electronics

International

and Communication Engineering (IJARECE)
Volume 3, Issue |1, November 2014

Dr. Shabana Mehfuz , Usha Tiwari, “Recent
Strategies of Data compression in Wireless
Sensor Networks”, Proc. of Int. Conf. on
Advances in Electrical & Electronics,

AETAEE, Elsevier, 2013

Shahina Sheikh, Ms. Hemlata Dakhore,
“Data Compression Techniques for
Wireless Sensor Network”, (1JCSIT)
International Journal of Computer Science and
Information Technologies, Vol. 6 (1) , 2015,
818-821

Comparative Study on Data Compression Algorithm For Wirless Sensor Network

Amit Jain, Kamaljit I. Lakhtaria Sir Padampat,
“Comparative Study Of Dictionary Based
Compression Algorithms On Text Data”,
International Journal of Computer Engineering
and Applications, Volume VI, Issue 1, May

14 www.ijcea.com ISSN 23213469.

A Jeevarathinam, K Lakshmi, K Thilagam, K
Rama, “Overview Of Tenet: Architecture
For Tiered Sensor Networks™ International
Journal of Engineering Science and
Technology 1 (3), 379-387 Vol. 3 No. | Jan
2011,

A Jeevarathinam, Dr.S.Manju
“Comparison On Hierarchical Routing
Protocols In WSN" Karpagam JCS Vol.10

Issue 5 July - August 2016..

Priya:

Chetna Bharat Mudgule, Prof. Uma Nagaraj,
Prof. Pramod D. Ganjewar , “Data
Compression in Wireless Sensor Network:
A Survey”, International Journal of Innovative
Research in Computer and Communication

Engineering Vol. 2, Issue 11, November 2014

9. Upasana Mahajan, Dr. Prashanth C.S.R,.

10.

“Algorithms for Data Compression in
Wireless Computing Systems”, 1JCSI
International Journal of Computer Science

Issues, Vol. 10, Issue 5, No 1, September 2013

Vandana Jindal, A. K. Verma & Seema Bawa,

“Impact of Compression Algorithms on

193

Data Transmission” International Journal on
Advanced Computer Theory and Engineering
(IJACTE), ISSN (Print) : 2319 - 2526,
Volume-2, Issue-2, 2013

Amit Jain, Kamaljit 1. Lakhtaria,
“Comparative Study Of Dictionary Based
Compression Algorithms On Text Data”,
International Journal of Computer Engineering
and Applications, Volume VI, Issue II, May

14

