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Enhanced YOLO-X Model for Tomato Disease Severity
Detection using Field Dataset
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Abstract

In the past decade, the field of automatic plant disease
identification has undergone significant complexity.
Advancements in computer vision have enabled the rapid
and precise detection of ailments, facilitated the
development of effective treatments and ultimately led to
higher crop yields. One of the most challenging scenarios in
plant disease occurs when multiple diseases manifest on a
single leaf, exacerbating the difficulty of diagnosis due to
overlapping symptoms. This study addresses these
challenges by employing an enhanced YOLO-X model for
detection tomato leaf diseases. The technique presented here
enhances the Spatial Pyramid Pooling layer in order to
extract valuable features from training data of various sizes
more efficiently. We were able to increase the model's ability
to identify a broader spectrum of illness symptoms by
concatenating variables from multiple layers and varying
sizes. In addition, we incorporate a large number of
connections to increase the generalizability of the design.
The application of an IoU-based regression loss function
increases the convergence of the network and the precision of
the detection. For experimentation, we created a customized
dataset consisting of 1220 tomato plant leaf images from
various farms in Southern part of India, encompassing
overlapping diseases and varying degrees of severity. The
dataset includes images of healthy leaves as well as different

severity levels of tomato leaf curl and tomato leaf mold stress
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on a single leaf. Our suggested improved SPP-based YOLO-
X model beats the original YOLO-X model, according to
experimental findings, which show an improvement in test
dataset accuracy and a 73.42% mean Average Precision on

field-collected dataset.
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I. INTRODUCTION

In India, tomatoes are a significant cash crop that is produced
on 15% of the nation's total cultivated land. A significant
portion of the global textile economy is contributed by the
nation's tomato production and export, in addition to its local
consumption. The crop is afflicted with several diseases
during the course of its existence. A leaf might sometimes
have many diseases, some of which have similar symptoms.
Even an experienced pathologist may make mistakes when
evaluating disease severity signs and the presence of
numerous stressors. Precision farming practices have
undergone a revolution with the development of artificial
intelligence and computer vision technology. In plant disease
detection systems, a number of machine learning and deep
learning models have shown outstanding performance[1].
On field-collected or publicly accessible plant disease
datasets, some researchers have combined deep learning-
based feature extraction and classification tasks with transfer
learning. In order to propose the use of pesticides or other
preventative measures and achieve near-ideal performance
in recognizing diseases signs automatically, several research
have been conducted. Well-known deep learning
architectures such as region-based convolutional networks
[2], single shot detectors [3], and region proposal networks

[4] have been employed in the area of plant leaf disease
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detection, with major alterations happening during the
preceding few years [3]. Almost all previous studies either
used the well-known Plant Village public dataset [3] or their
own datasets collected in the field [5], [6].

But only a small number of studies have looked at 1) the
stages of disease growth and 2) the chance that many living
and nonliving things can attack a plant leaf at the same time.
In these situations, it is hard for both human and automatic
monitoring systems to figure out the type of infection and the
exact area of sickness signs. Figure 1 shows, as an example,
the different stages that tomato leaf curl disease goes

through.

In this study, we describe a YOLO-X-s based detecting
system that uses a modified Spatial Pyramid Block to
combine fine spatial data with local features to find sickness
phases and split diseases with symptoms that overlap. We
made the spatial pyramid pooling block better by putting
together feature mAPs at low-level scales. This helped us
solve the problem more accurately. The original size feature
vector was added to improve the quality of the features. The
recognition performance got even better when the Alpha IoU
regression loss function was used.

Here are the main things that this suggested plan brings to the
table:

* Abetter YOLO-Xs model with a modified Pyramid pooling
module (SPP) layer is given so that many diseases on a single
leaf plant can be found. It collects location information at
local, multi-scale levels to get the information it needs more
quickly.

* To improve generalization and convergence, we used Alpha
IoU (Intersection Over Union) loss as the bounding box
regression for multiple disease localization when multiple
diseases showed up on the same plant leaf.

With the help of enhancement, a group of unique shots from a
tomato field are shown. The photos show how diseases
spread and how many different diseases can be found on a

single leaf.
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II. REVIEW OF LITERATURE
Plant leaf diseases may be identified using computer vision-
based methods for (1) detection and (2) identification. Both
of the methodologies used in the area are prevalent in

research literature released in the last ten years.

Highlights of various modern and cutting-edge techniques
for identifying and detecting plant leaf diseases literatures
are included in Table 1. In this part, these methods will be
thoroughly reviewed in relation to: (1) the kind of application
targeted, (2) the methodology employed, (3) the
contribution. The usage of deep learning in this field of study
has increased during the previous several years. Transfer
learning and data enrichment have made it easier to use deep
learning models on a variety of devices, such as central
processing units (CPUs) and graphics processing units
(GPUs). In the study done by Abayomi et al. [10], the
MobileNet v2 model was trained by adding more color space
data in a few different ways. Transfer learning and data
enrichment have made it easier to run deep learning models
on CPUs, GPUs, and other types of computer systems. This is
because these two methods have been put together. In the
study done by Abayomi et al. [10], color space data addition
methods were used to train the MobileNet v2 model. To
compare the effectiveness of the classification, the scientists
trained the model using images of cassava leaf disease of
various quality levels. According to a study, low-quality
images cause the classification accuracy to decrease. The
sick region has also been identified using high-quality
images and a color difference, according to authors [11].
Using advanced machine learning classifiers, such as the
bagging tree ensemble, it is now possible to identify sick
regions based on color and textual information with an
overall accuracy of 99%. Plant disease monitoring systems
that use computer vision are meant to automatically find and
identify the part of a plant that is sick. Because of this, these
systems use customizable deep-learning meta-architectures

that have been used in the related study.
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The earliest deployed deep learning algorithms were region-
based convolutional neural networks (RCNNs), and their
purpose was to recognize objects in general [3]. In line with
Fast Convolutional Neural Network [12], Faster Region
based CNNs, and R-FCNNs [3]. Segmentation and noise
reduction operations were carried out using the OTSU
algorithm and multilayer median filters, respectively. By
using a two-stage detector, the technique achieves an
inference time of 0.52 s. Rehman et al. [14] employed a
comparable two-stage detector, Mask RCNN, to identify sick
regions after contrast stretching. CNN performs feature
extraction of improved areas, which was afterwards
categorized. After applying Kapur's entropy to choose the
best features, accuracy was improved. Another important
work [15] identified various rice diseases by using a quicker
R-CNN with a reinforced backbone to analyze the still
pictures of the rice. In terms of recall and accuracy, the
upgraded two-stage model performs better than earlier
models such as YOLO-V3, while having longer detection
times. The model presented in [16] significantly improved
map by using a superior anchor box method that was based

on a more efficient RCNN model for weed detection.

With single shot detection (SSD), you need to make a region
proposal network in order to get the best total speed and a
faster inference time. But you can get both without making a
region proposal network. They use certain boxes to figure out
how likely it is that a certain item will be in a picture. This
improved model, which used the Inception module and
Rainbow union, was used to get information about features
and make it easier to find ill spots on apples [17]. Both the
VGG and the origin module were added to the model so that it
could diagnose diseases with a map of 78.8%. YOLO (You
Only Look Once) [18] models, on the other hand, are single-
stage detectors that can find and label objects in a picture with
just one forward spread. The name of these models comes
from the saying "you only look once." It initially divides a

picture into a grid to begin the detection process, and for each
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bounding box, it then forecasts the likelihood of an item and
its class. In order to identify tomato diseases in difficult
background settings, Wang et al. [19] utilized a similar
YOLO architecture and added the DenseNet block for
feature extraction. Additional information is provided in
Table 1 of the relevant work comparison. The YOLO-V5
model was effective in identifying bacterial leaf spots.
Additionally, the outcomes were contrasted with those of
YOLO-V3, YOLO-V4, Single Shot Detector algorithm, and

other two-stage detectors techniques [20].

Anew upgrade to the YOLO series, called YOLO-X[26], has
made a considerable improvement in the field of object
identification. To improve feature extraction, YOLO-X
makes use of the YOLO-V3 with a Darknet architecture
added with SPP Layer baseline structure. To diagnose kiwi
leaf diseases, DeepLabV3 and UNet are used in conjunction
with YOLO-X to separate the leaves from the complicated
backdrop. The mix of Cross Stage Partial Network and
sigmoid activation function in the approach of finding colon
cancer has led to a better version of the YOLO v3 algorithm.

The model is strengthened for real-time polyp identification
by using the CIOU loss function [28]. The YOLO-V5 model
was used by Chen et al. [22] to accurately detect plant
disease. Using the SE module and Involution Bottleneck, the
accuracy and number of parameters were improved. The
researchers must overcome difficulties with disease
development and detecting many lesion areas in a single
frame. Multiple diseases may be difficult to identify, both
manually and when using artificial image processing
algorithms [29], since their locations and symptoms tend to
overlap. The Efficient Net model, which has a classification
accuracy of 96%, was successfully used to address the plant
disease detection problem on a single cucumber leaf [25].
The authors utilized a Ranger optimizer to find symptoms

that seemed to be related.

Although SSD algorithm with respectable object

identification and detection performance have been
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employed in the methodologies from the literature (included
inTable 1).

TABLE L. SELECTED STUDIES FROM THE
LITERATURE ON PLANT DISEASE DETECTION

Refere Applicati Methodol Contribution
nce on Targeted ogy
Employed
[71 Automati Classic Utilization of
¢ detection of machine various classic
plant learning machine learning
diseases approaches
[13] Rice Faster Identification of
disease region based rice diseases using a
identification model + K- two-stage detector
means with clustering
clustering
[17] Identificat YOLO- Enhanced feature
ion of apple V5 model extraction and
sick patches with improved
Inception identification of apple
module and sick patches
Rainbow
concatenation
[19] Tomato YOLO Utilization of
disease architecture YOLO architecture
identification with for identifying tomato
DenseNet diseases
block
[22] Plant YOLO- Accurate detection
disease V5 model of plant diseases with
detection with SE improved accuracy
module and and parameters
Involution
Bottleneck
[23] Segmenta CNN and Segmentation of
tion of sick YOLO sick lesions with
lesions on refined model
paddy leaves parameters
[24] Classifica Faster Identification of
tion of RCNN and leaf position and
severity of Siamese estimation of severity
strawberry network
leaf disease

The majority of these investigations have focused on
classifying lesions or locating locations. The difficulties
associated with accurately distinguishing distinct phases of
disease severity and a multitude of stresses on a single leaf
are presently the ones that have received the least amount of
attention. In order to identify overlapping and overlapping
plant leaf diseases, we suggest in this study an updated

YOLO-X model tailored specifically for the application.

III. MATERIALS AND METHODS
The suggested technique is fully explained in this part and
will be utilized to handle the issues of (1) leaf disease
progression symptoms and (2) the presence of several
diseases on a single tomato leaf. The supplied data is initially

pre-processed to remove extraneous background
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information and guarantee class balance. The suggested deep
learning model's specifics are then discussed, with a focus on

the two crucial instances indicated above.

A. Customized Dataset Creation

Tomatoes are grown in different parts of Southern India from
March to May. For the purpose of this study, images were
taken from various tomato fields in Tamilnadu and Kerala.
No extra pesticides or fertilizers were used to maintain the
conditions that allowed the infections to flourish. The
pictures were taken at various angles using a smartphone
(Apple IPhone X) that was held 15 to 25 cm away from the
tomato leaf. Original image size was 1125 x 2436 pixels with
19.5:9 ratio. Images were taken in the morning, with varied
lighting conditions. The smartphone's focus was changed to
portrait mode and zoom mode to capture one leaf. Seven
different categories of tomato curl severity and disease

coexistence images were created from the data.

Figure 1 displays a few examples of images extracted from
the dataset. In India, the ailment known as "tomato curl virus"
is widespread. Stage 1 of tomato leaf curl’s early signs is
described as leaf chlorosis. Within two to three weeks, the
symptoms become worse as the leaf's veins start to thicken
and darken. From the underside of the leaf, the thickening of
the veins is plainly visible. The second stage of the tomato
leaf disease is distinguished by the subsequent curling of the
leaf margins. Three weeks later, the leaves begin to develop
dark black specks that prevent the virus from spreading.

The pathologists determine that it is tomato leaf mold

brought on by the aphid infestation. The curl virus and leaf

mold infect almost all of the nearby plants.

7

Fig. 1. Sample dataset images collected from the tomato

field.
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B. Pre-processing the Dataset Images
Since leaf photographs were taken in actual field settings,
they included background details like dirt and tree branches,
among other things. The work of the suggested detection
system is anticipated to be made simpler by extracting just
the leaf region containing one or more diseases and deleting
the background information [30]. There are many methods in
place to eliminate extraneous background details from real-
world situations [9]. Grab Cut technique [31] is a quick and
effective machine learning-based approach that can
eliminate unwanted background data with little human
adjustments. On the basis of graph cuts, the backdrop is
removed. According to a user-provided window, anything
beyond the window is taken into account to be the clear
backdrop, however within the window, both the foreground
and the background may exist. The procedure is repeated
until convergence in order to fine-tune the background
removal job. On the hardware utilized for testing,
background removal was reported to take an average of 4.12
seconds per picture. The algorithm's ability to eliminate
background data outside of the infected leaf was determined
to be effective. After the backgrounds have been removed,
the images are annotated before being subjected to image
augmentation methods including flipping, rotating, and
brightness boosting. As thoroughly covered in Section
IV-A, this aids in enhancing the model's training
performance and preventing overfitting.
C. Annotation and Labelling

The Roboflow annotation tool was used to manually
design the ground truth boxes and labeling the healthy and
diseased tomato leaf images. According to Figure 2 shows
the experiments done for the annotation and labeling, sample
taken from the roboflow tool. Each box's enclosing box
coordinates, height, breadth, and class name are listed in
Figure 3. When an image is included into the model for
learning, testing, or assessment, an accompanying XML file

isincluded[17].
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Fig. 2. Tomato leaf image annotation with bounding box
created using roboflow tool.Images captured at different
angles and sizes are included in the data set used for the tests.
In order to maintain the bounding boxes on the item of
interest regardless of any augmentation step applied to it
subsequently, we executed an auto-orient procedure. As
often requested by YOLO, the photographs were also scaled
using a normalization set at a resolution of 416X416. When
working with an unbalanced data set, we prefer to execute the
augmentation techniques to minimize over fitting. Proposed
study used augmentation techniques includes flip horizontal,
rotation, and brightness (25%). The addition of these
augmentations will increase the data set's size as well as the
variety of the photographs taken in various lighting
situations. The data set is augmented at random, increasing
the size to 1, 112. Roboflow data services were used for each

of these pre-processing phases.

k
"boxes": [

{
"label": "sooty",
Yy 292
"y": 164,
"width": 93,
"height": 62

3,

{
"label": "curl_stage2",
"x": 13@.5,
"y": 184.5,
"width": 57,
"height": 63.5

1

1
"label": "sooty",
Ux": 214,
"y": 284.5,
"width": 71,
"height": 75

}

L

Fig. 3. Annotation details of the xml file taken from the

roboflow tool.
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D. Hardware and software configuration

Every experiment was run on Windows 7 system using an
Intel i3 processor. The necessary repositories and libraries
were installed before configuring the experimental
environment. Pre-trained weights for the YOLO-X model
were downloaded when the dataset was uploaded to the

drive.

Experiment was performed using google collab notebook
environment. With the help of the hyper-parameters using
100 epochs, our suggested model was trained. The best
weights produced after training were kept and then utilized to
assess the effectiveness of our suggested model on test
images with a batch size of 32. In order to conduct the
experiment, 640 x 640 resolution images from the dataset
were used. The dataset has been split automatically with the
code on the collab on the basis of 80% of the images were
utilized for training and testing, while the other 20% were

used for validation process.

E. Enhanced YOLO-X proposed model for Tomato Leaf
Disease Detection

YOLO-X deep learning model is is a single stage object
trackertechnique that differs from YOLO-V3 in multiple
respects.It derives from DarkNet53.YOLOs are frequently
substituted by a severed skull.Beginning with a 1X1
convolutional layer, the feature channel for each level of FPN
features is reduced to 256.Then, for the classification and
regression tasks, respectively, we add two parallel branches
with two 3X3 conv layers. The anchor-free detector YOLO-
X [26] has shown exceptional speed and accuracy
performance. To improve convergence while the system was
being trained, the head of YOLO-X was cut off from the
original detector [32]. Because to the implementation's
anchor-free design, the overall number of trainable
parameters has been significantly decreased. SimOTA [26],
which reduces the amount of time required for training and
aids in the solution of the Optimal Transport (OT) issue [21],

is also used to enhance the label assignment approach.
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For the application that is covered in this article, we build a
more sophisticated YOLO-X model. The CSP darknet serves
as the foundation for feature extraction in this model. In order
to accomplish better feature fusion throughout the
classification and regression tasks, the feature layers are first
up-sampled for feature fusion and then down-sampled for
classification [27]. One of the crucial elements that must
exist for good feature extraction is the focus module. The
input photographs are split into four pieces, and then
concatenated in order to preserve information about the
features of the objects. This makes it possible to observe the
characteristics more clearly. The Bottleneck CSP layer,
which comes after the top layer, is where the deep features are
recovered with more accuracy. Convolution, related batch
normalization, and activation processes are performed on the
feature maps. To learn about overlapping and mild
symptoms, advanced data augmentation methods like
mosaic and mix-up are utilized during training [33]. The non-
maximal suppression (NMS) strategy prevents the chance of

multiple detections happening at the same time.

A definition for the modeling error that arises between the
anticipated class and the ground truth is Binary Cross
Entropy (BCE) loss [34] with logics. A sigmoid activation
function is utilized to eliminate all accurate predictions [26].
The bounding box's coordinates (X, y, w, and h) are predicted
in the regression branch's output. In order to forecast
bounding box outputs, YOLO-X employs the loU metric and

compares its predictions to the actual data.

F. YOLO X Model Working environment with
Bounding Box

The localization of objects and their categorization are two
processes that are critically important for applications based
on computer vision. How precisely a machine learning
model can pinpoint an object's placement inside a scene or
image is determined by the loss function [35]. This is why
conventional single-stage and two-stage detectors are

developed using the bounding box regression approach.
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Vanishing gradients provide a challenge because they cause
IoU losses, which prohibit the model becoming convergent.
The basis of the problem is that the predicted boxes do not
precisely overlap the ground truth boxes, leading to
inaccurate findings. To increase the precision with which the
objects were tracked, it was chosen to give a number of
enhanced bounding box losses depending on a number of
parameters. The Generalized Intersection over Union, the
Distance Intersection over Union the Complete Intersection
over Union, and the Efficient Intersection over Union (GIoU,
DIoU, CloU, EloU) are acronyms for these intersections.
The amount of overlap between the target and the anchor
boxes is represented by these loss functions via the use of

several metrics.

IV. RESULTS AND DISCUSSIONS

Training effectiveness was assessed based on increased
convergence speed and detection performance of
overlapping illness symptoms and severity classes using
datasets collected from the field. For detection models, the
Mean Average Accuracy (mAP) statistic is often used. This
statistic indicates the accuracy for all classes when the
Intersection over Union (IoU) criteria is set to 50%. The IoU
threshold was held constant at 0.5 while calculating the mAP
score. Similar levels of training accuracy were originally
shown by the default YOLO-X model, but it was unable to
converge in the last 30 epochs of training. As illustrated in
Figure 4, this resulted in the default YOLO-X model's
accuracy being lower (69.90%) than the suggested enhanced
YOLO-X model'saccuracy (73.42%).
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Fig 4. Graph depicts the YOLOX vs Improved YOLOX

mAP vs epochs.
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A SE block was added by the authors to the SPP module of
the standard YOLO-X in an effort to boost detection
performance. [39] To achieve this, many tests were
conducted. The YOLO-X-SE model's training performance
was plainly overfit in the last 20 training epochs, which
decreased inference speed. Several unique classes were
misclassified, despite the fact that our model's inference time
is a little faster than the default YOLO-X. The model's
validation and test results were assessed over a range of [OU
losses in order to attain the best degree of convergence and
mAP performance. The model performed noticeably better
in terms of the results of the enhanced SPP block compared to
vanilla-IoU and other regression techniques. For the
localisation of overlapping medical symptoms, this was

crucial.

The best weights are chosen when the training process is
finished, and the model's performance on the test dataset is
assessed using these weights. The regression will come to an
end once the item included by the bounding box has been
located. The BCE loss may be used to assess a bounding
box's capacity to hold an item. The disease's ability to exist
inside the anticipated bounding box is assessed using the
confidence score. We conducted a number of tests to
determine the ideal threshold value in order to increase the
detection mAP score. This figure shouldn't be too high or low
in order to avoid false positives and genuine predictions,
respectively. The degree of confidence will stay at 0.25 after
an analysis of the test data. Each projected bounding box in
the test photos has a corresponding confidence level, which
may be used to represent the detection performance of the
test dataset as determined by Improved YOLO-X in Figure 8.
The result offers proof that strengthens confidence in the

localization and classification procedures.
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he YOLO-X model uses the same basic idea as its
predecessor but with an SPP anchor-free system.

The decoupled head lowers convergence, as shown by
comparing its performance to that of the YOLO-V4 [40] and
YOLO-VS5 [20] models, both of which were trained and
validated using our Tomato severity dataset. The findings are
shown in Table 2 depending on the accuracy and processing
time needed for inference. The accuracy of detection has
reduced even though YOLO-V4 and YOLO-V5 have
inference rates that are noticeably quicker than our model.
Both the default YOLO-X model and our Improved YOLO-
X model demonstrate higher convergence performance
compared to other models trained on our dataset because the
anchor-free method decreases the possibility of complexity
and obstacles emerging during training. The mAP values
acquired during training using both the standard YOLO-X
model and the suggested enhanced YOLO-X model are
shown in Figure 4.

TABLEII. RESULT OF MODEL COMPARISON
BASED ONTIME ATTRIBUTE

Experime- | mAPin | mAPin mAP mAP in
nted model | Healthy | Leaf Curl Leaf leaf
Disease - Curl mold
Stage 1 Disease
- Stage 2
YOLO-v4 27.87% 56.61% 40.12% 54.01%
YOLO-v5 65.91% 29.21% 47.72% 53%
YOLO-X 64.21% 49.58% 61.23% 62.31%
YOLO-X-SE | 56.01% 63% 64.02% 59.82%
Enhanced 62.37% 62.32% 65.72% 75.02%
YOLO-X
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evaluate how well our suggested YOLO-X model performs
in classifying overlapping symptoms and severity phases.
Because it was incorrectly categorized with the healthy and
curl stage-2 class, curl stage-l1 was recognized with
substantially lower average precision. The overlapping signs
of leaf mold and curl stage-2 were also more accurately
picked up by our upgraded YOLO-X model. As the class
does not visually resemble any other classes and there are not
many problematic images in our test dataset, the models

successfully identify leaf stress.

A. Comparison with Other Existing Models

Here, we contrast the effectiveness of our upgraded YOLO-
X model with that of current state-of-the-art models. The
performance of our proposed model is contrasted with that of
cutting-edge models in TABLEAU 3. The best accurate
models for our dataset are training. We trained the YOLO-
V4, YOLO-V5, YOLO-V7, Efficientdet, and YOLO-X
models on our tomato severity dataset for 100 iterations
using the default code settings. The mAP scores are
noticeably lower than those anticipated by the YOLO-X
model, as seen in Table 3. We created the YOLO-X-ti-lite
model, a YOLO-X version that works well for edge
computing. An SPP block that has been tailored for
embedded device operation is included in the model.
However, it did not provide the expected results for a specific
dataset. The advantages of applying Spatial Pyramid Pooling
findings into mAP analysis are shown in Table 4. It indicates
that when SPP with 3,5,7,9 connections is taken into account,

our Enhanced YOLO-X model performs better.
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TABLEIII. RESULT ANALYSIS OF THE
PROPOSED MODEL IN COMPARISON WITH
OTHER STATE OFHEARTALGORITHMS

Experime- | mAPin | mAPin mAP mAP in
nted model | Healthy | Leaf Curl Leaf leaf
Disease - Curl mold
Stage 1 Disease
- Stage 2
YOLO-v4 27.87% 56.61% 40.12% 54.01%
YOLO-vS5 65.91% 29.21% 47.72% 53%
YOLO-X 64.21% 49.58% 61.23% 62.31%
YOLO-X-SE | 56.01% 63% 64.02% 59.82%
Enhanced 62.37% 62.32% 65.72% 75.02%
YOLO-X
TABLE IV. AN ANALYSIS OF EVALUATION

METRICS USING MEAN AVERAGE PRECISION
WITH SPATIALPYRAMID POOLING

Spatial Spatial Skip mAP
Pyramid Pyramid | Connecti

Pooling Pooling ons

(5,9,14) (3,5,7,9)

Yes No No 69.90 %
No Yes No 67.42%
No Yes Yes 71.31%
No Yes Yes 73.42%

B. Future Work and research opportunities

Multiple stresses on the host and multiple disease stages on
the leaf are typical outdoor conditions. For these two
scenarios, this research suggests a deep learning-based
solution that has been put to the test on a large dataset.
However, the following are some possible improvements:

In order for our model to be applicable in real-world
scenarios, its reliability is of utmost importance. To achieve
this, the dataset will be continuously enhanced by
incorporating new photographs depicting various ailments
and harvests.

+ Itis strongly advised to subject the recommended model
to additional training and testing, specifically using
individual leaves placed against a clean background.

* To enhance its practicality and efficiency, we intend to

allocate a greater financial investment towards obtaining

more field samples.
* Furthermore, to expedite the training and testing
processes on state-of-the-art technology, we will prioritize

designing the model to be as lightweight as possible.

V. CONCLUSIONS

The suggested study offers a framework for classifying
symptoms of a particular disease on tomato plants according
to increasing severity. The detection of many illnesses that
are present on a single leaf may also be done using this
approach. We have suggested a YOLO-X-based model with
an enhanced Spatial Pyramid Pooling block to achieve this.
Various pooling rates were used to aggregate multi-scale
characteristics. Remaining links were added to better
preserve spatial information. With the use of this model, we
were able to identify diseases symptoms that were similar
and overlapped more accurately. The suggested model
outperformed the default YOLO-X by 3.27 percent
according to experimental findings, achieving mAP scores of
73.42% and 72.31% using training dataset and testing dataset
respectively. Additionally, Curl stage-2 and Leaf mold
yielded the greatest results, with average precisions of
65.76% and 74.02%, respectively, for overlapping and co-
existing classes.
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