- JCS Yol.1 No.2 Sep - Oct 2005

A Congestion Control Algorithm for Improving Internet Traffic Control

Ramachandra.V.Pujeri', Uma.K.Gurav?, S.N.Sivanandam®

Abstract ¢

With the development of multiple services on Intemet,
the dominant Internet congestion control scheme, namely
the TCP end-to-end control [16], becomes insufficient,
The RED algorithm [14] to detect incipient congestion
eatly and to convey congestion notification to the end
hosts, in order to aliow them to reduce their transmission
1ates before queue overflow and packet loss occur using
active queue management [15]. On-line mechanism for
adaptively changing the parameters according to the
observed traffic. This algorithm, called Adaptive RED,
This paper also presents completely different architecture,
which avoids congestion [1], prevents packet loss, and
regulates unresponsive traffic in a uniform fashion. No
per-flow state information is maintained in routes while
the fairness is guaranteed. The new architecture takes a
node-to-node approach advocating close coordination
among the core router, the edge router, and the host.
Employing both router and host mechanisms, it has three
main elements, the generic congestion control protocol
(GCCP), the early congestion detector, and the rate
controller. The revised version of RED, called GCCP-

'Ramachandra, V.Pujeri, Assistant Professor, is with the
Department of CSE, PSG College of Technology,
Coimbatore, TamilNadu India.

(e-mail: sriramu_vp@yahoo.com).

*Uma.K.Gurav, UG Student, is with the Department of
CSE, Lokamanya Tilak Institute of Technology,

New Mumbai, India.

*8.N.Sivanandam, Professor and Head, , is with the
Department of CSE, PSG College of Technology,
Coimbatore, TamilNadu India.

152

capable RED. Routers and hosts show its advantages over
pure end-to-end control. This paper presents one specific
algorithm for tailoring RED [14] parameters to the input
traffic.

Index Terms: Internet, Congestion control, Node-to-node,
Early Congestion Notification (ECN), Packet loss,
Unresponsive traffic, GCCP, RED.

1. INTRODUCTION

The main objective of this paper is to avoid congestion
and to improve network performance and resource
utilization. Random Early Detection (RED) and enhanced
RED called Adaptive RED algorithm are compared with
the implementation of the RED algorithm under Generic
Congestion Control. Architecture called GCCA-capable
RED.

In this two methods we are detecting the congestion [8]
using Active Queue Management] 1 5]where the parameter
for congestion is average queue length. Also the
differences between end-to-end and node-to-node

congestion control are explained.

‘In order to enhance the performance of the above

algorithms a new method is proposed. In this new method
depending on the number of connections active the
threshold values of average queue length are changed.
This method is implemented under GCCA. The
performance of this algorithm is compared with above
methods. The main performance indicators considering
here are average queue length, throughput, and the number

of packets dropped. The higher the throughput higher

A Congestion Control Algorithm for Improving internef Traffic Control

the performance and the lower the packets dropped higher
the performance. The system structure of the GCCA 1s
shown in figl. Basic idea of GCCA is to control
congestion through coordination among network routers
and end systems rather than relying on end-to-end control.
Control mechanism is de-coupled from particular flows.
Thus it is scalable froim service to service. Figure 1
iHustrates how GCCA works. A host, S, and three routers,

R1, R2 and R3, of a sample network are shown.

GCCA is designed to be transparent to network services.
For this purpose, in the router the architecture is hidden
beneath the operating system interface. Unlike the
backpressure link-by-link or hop-by-hop flow control ,

however, it is not in the link layer but in

Figure 1: Process of Congestion Alleviation

the network layer. Thus it can work across different types
of physical networks. The system structure for GCCA in
the router has three components, the GCCP, the
congestion detector, and the rate controller. The GCCP
[4] defines the message format for congestion status
information notification. The congestion detector
monitors the packet queue and detects incipient
congestion. The rate controller controls the output rate of
the packet queue. It acts according to the congestion [2]
status information received from the downstream nodes.
It also relies on some host fanctions to complete its
control. The host part is important because only with it

can GCCA manage unresponsive traffic.

153

A. Congestion contro! approach and methods

1t is important to avoid high packet loss rates in the
Internet, When a packet is dropped before it reaches its
destination, all of the resources it has consumed in transit
are wasted. In extreme cases, this situation can lead to
congestion collapse. Loss rates are especially high during
times of heavy congestion [2]. So, detection of congestion
before it occurs avoids above problem. In this section

different congestion control algorithms are explained.

1) Active Quene Management

The idea behind active queue management [6] is to detect
incipient congestion early and to convey congestion
notification to the end hosts, in order to allow them tb
reduce their ransmission rates before queue overflow and
packet loss occurs. One form of active queue management
being proposed by the IETF for deployment in the network
is RED (Random Early Detection) {14]. RED maintains
an exponentially weighted moving average (EWMA) of
the queue length which it uses to detect congestion. RED
detects increases in the average queue length and uses it

to determine whether or not to drop or ECN-mark a packet.

2) RED Algorithm

One form of active queue management being proposed
by the IETF for deployment in the network is RED
(Random Early Detection). RED maintains an
exponentially weighted moving average (EWMA) of the
queue length which it uses to detect congestion. RED
detects increases in the average queuec length and uses it
to determine whether or not to drop or ECN-mark a packet.
As the figure shows, when the average queue length
exceeds a2 minimum threshold, packets are randomly
dropped or marked with a given probability. The
probability that a packet arriving at the RED queue is
either dropped or marked depends on, among other things,

JCS§ Vol.1 No.2 Sep - Oct 2005

the average queue length and an initial probability

parameter.

avg, = (1-Wy)avg, +W,0
0
avg, —min,

avg, <min,

P = min, < avg, <max,

ma:

x -
max,, —min,,
i max, <avg,

As Figure 2 shows, the calculated marking/dropping
probability is a linear function of the average queue length.
The probability is 0 when the average queue length is
less than or equal to min, and linearly increases to max
when the average queue length approaches a maximum
threshold (max,). When the average queue length exceeds

max,, all packets are dropped or marked

Ll

pmax_WOUT

P max_iN

»av
Mitg cur Ma%m ovf Max,, 14 »avg

Figure 2: The marking/dropping behavior of RED
3) Adaptive RED
One of the inherent weaknesses of RED and some of the

other proposed active queue management schemes [3] is
that congestion notification does not directly depend on
the number of comnections multiplexed over the link,
More aggressive carly detection is needed when a large
number of flows are active in order to avoid packet loss
and deterministic congestion notification. Similarly, less

aggressive early detection is needed when a small number

154

of flows are active in order to prevent underutilization.

Every (J(ave) Update:
if { ming, < Qave) < maxy)
status = Between;
if (Q(ave) < miny, && status !=
Below)
status = Below;
max, = max,/c;
i (Q(ave) < maxy, status != Above)
status = Above;
max, = maxy/(;

Figure 3: Adaptive RED algorithm

The idea behind this algorithm is to infer whether or not
RED should become more or less aggressive by examining
the average queue length behavior. If the average queue
length continually crosses back and forth over Q(ave),
then the early detection mechanism is being too
aggressive. If the average queue length continually crosses
back and forth over max, then the early detection
mechanism is not aggressive enough. Given the behavior
of the average queue length, the algorithm [10] then
adjusts its value of max, accordingly. For this algorithm,
max is simply scaled by constant factors of + and *

depending on which threshold it crosses.
4) GCCA capable-RED

The congestion detector need detect the liability of
congestion earlier. It warns upstream nodes of the danger
before it really happens. In addition to early detection,
the congestion detector should also guarantee the fairness
between flows. At the same time, per-flow computation
should be avoided. RED is designed as a router congestion
avoidance mechanism to work with a transport-layer
congestion control protocol such as TCP. It detects
incipient congestion by calculating the average queue size,
and notifies connections of the danger by marking or
dropping packets with a certain probability. It does not

make per-flow computation. Another advantage of this is

A Congestion Control Algerithm for Improving Internet Traffic Confrol

that the probability that a particular connection is marked
or dropped is proportional to that connection’s share of
the bandwidth through that router. Nevertheless, RED is
only Based on average enough to prevent packet loss, It
is possible that the instantaneous queue length increases,
which makes it not enough to prevent packet loss. It is
possible that the instantaneous queﬁe length increases very
fast because of a sudden burst while the average queue

length keeps small.

Name: GCCP-capable RED

for each packet arrival

calculate the instantaneous queue increment inc
ifine>sT

send a GCCP CONGESTION message
set status as CONGESTION

return

calculate the average queue size avg

if minth <= avg < maxth

calculate probability p,

with probability p :

send a GCCP CONGESTION message
set status as CONGESTION

else if maxth <= avg

send a GCCP CONGESTION message
set status as CONGESTION

else if avg <= minth

if status is CONGESTION

send a GCCP NORMAL message

set status as NORMAL

Teturn

| Figure 4:GCCA-capable RED algorithm

So we add another dimension for congestion detection,
that is, the increasing speed of queue size. At every instant,
we calculate the change of the instantaneous queue size.
Ifit is above a threshold, 5., a GCCP congestion message
is sent to involved upstream nodes. Otherwise, normal
RED is followed. Whenever a packet is to be marked or
dropped according to RED, we send a GCCP
CONGESTION message to the direct upstream node

where the packet came from. The packet ifself is queued

155

just like others rather than dropped. Packet loss is thus
avoided. The revised version of RED, called GCCP-
capable RED, is given in figure 4. In the algorithm we
use (avg <=min,) as the criteria for the NORMAL status.
The GCCA control loop will try to keep the average queue
size below min, all along. Therefore, in order to maintain
the link utilization at an acceptably high level, min, should
be larger than that in RED. On the other hand, (min,
min,) can be smaller. This is because of two reasons.
First, the max, determines the average queue delay to
some extent. A less max —makes a shorter queue delay.
Second, the one-hop feedback control loop in GCCA is
much shorter than the roundirip loop for end-to-end

conirol. A large {max__min,) is not necessary.

2. DESIGNING ISSUES
A. Proposed algorithm

Active queue management and end host congestion
control algorithms can be designed to effectively eliminate
packet loss in congested networks. In particular, an
adaptive RED mechanism [14] that is cognizant of the
number of active connections and the use of bandwidth-
based linear increases can both provide significant
benefits in terms of decreasing packet loss and increasing
network utilization. There are several ways in which these
mechanisms can be extended. We present one specific
algorithm for tailoring RED parameters to the input traffic.
There are many other potential alternatives for doing so.
For example, the RED queue could actually keep track
of the number of active connections and change its
aggressiveness accordingly.

Another mechanism would be to have the RED queue
infer the number of connections present by the rate at

which the average queue length changes and have it then

JCS Vol.1 No.2 Sep - Oct 2005

adapt its parameters accordingly. It may also be possible
to adapt other RED parameters instead of Q(avg) to
optimize performance. For example, one could adaptively
change inter-packet drop probabilities or the RED
threshold values depending on the input traffic[1]. Finally,
in extremely congested networks for which setting max_
to 1 is not sufficient, it may be possible to make the
marking/dropping even more aggressive by having the
marking probability change as a non-linear function of
the average queue length. When a max setting of I is
insufficient, the marking fimction can assume a non-linear
shape allowing the marking to become even more
aggressive. So, in this algorithm every time the load of
the network is calculated. The load is inferred from the
average queue length at the routers. Depending on the
load the threshold values are changed. After calculating
the threshold values Adaptive-RED algorithm under
GCCA is used. The GCCA is used b because of high
response and node-to-node control. The detailed algorithim

is shown in figure 5.

RED algorithm is implemented in end-to-end congestion
- control and on node-to-node congestion control, which
is under GCCA. The propped algorithm is implemented
under GCCA. All these algorithms are simulated with the
foHowing network scenario as shown in figure 6.. The
simulation is done in C. Figure 7 shows the average quene
lengths of the three algorithms. Figure 8 shows the
throughput of the three algorithms. Among all the three
the proposed algorithm is showing high throughput.
Figure 9 shows comparisons of number of packets
dropped due to congestion. The GCCA-capable RED and
the proposed algorithm are showing great reduction in
the number of packets dropped. But, when proposed
algorithm is compared with GCCA-capable RED, the

156

GCCA-capable RED is leading to under utilization of

TESQUICEsS,

Name: GCCP-capable RED

for each packet arrival

calculate the instantaneous queue increment inc
ifinc>sT

send a GCCP CONGESTION message
set status as CONGESTION

return

calculate the average queue size avg

if minth <= avg < maxth

calculate probability p,

with probability p :

send a GCCP CONGESTION message
set status as CONGESTION

else if maxth <= avg

send a GCCP CONGESTION message
set status as CONGESTION

else if avg <= minth

if status is CONGESTION

send a GCCP NORMAL message

set status as NORMAL

return

Figure 6, Proposed Algorithm

3. DISCUSSION AND RESULTS

It is focused on solving two extremely important
challenges to today’s Internet: supporting An explosion
i the number of users and supporting a myriad of new
applications which require more out of the network than
the best-effort service that the Infernet currently provides.
To this end, a number of modifications to the basic
congestion control and queve management algorithms of

the Internet have been examined.

More specifically, it has shown that even with ECN,
current active queue management mechanisms such as
RED are ineffective because they are not sensitive to the
level of congestion in the network, To address this
problem, an adaptive modification to RED which allows
it to manage congestion more effectively has been

developed, implemented and evaluated. In addition, it

A Congestion Control Algorithm for Improving Internet Traffic Control

has demonstrated the inherent weakness in alf current
active queue management mechanisms in that they rely

on queue lengths to do congestion control.

So, a generic node-to-node congestion contro] architecture
for Internet is presented. It avoids congestion, prevents
packet loss, and manages unresponsive traffic in a uniform
fashion. Main techniques are described, namely, the
GCCP, the early congestion detection, and the light rate
control. The scheme combines the node-to-node control
with the end-to-end control to reach global optimal

performance.

GCCA is for the time scale form one to several hops. Itis
used to prevent packet loss. The end-to-end control is for
the time scale from one to several round trips. It reduces
the source rates and eliminates the danger of congestion

completely.

So combination of GCCA and ECN [3] is a good way for
global congestion control. When incipient congestion is
detected, it is notified along both backward and forward
paths. In the scheme, both congestion detection and rate
control are executed at queue level, which avoid
maintaining per-flow state information in the router. This
stateiess processing CONSuMeEs very small overhead, and
brings simplicity and efficiency in network control.
Compared with the TCP end-to-end control, it speeds up
response to congestion. As a network layer control
scheme, it can work across different kinds of physical
networks, and free applications from taking care of rate
adaptation. The architecture is scalable to new services
and compatible with existing protocols. To have the
maximum network utilization in addition to congestion
avoidance a new algorithm is proposed. It is providing
high throughput compared to other methods. That is
because of dynamic changes of queus threshold values

depending on the load of the network.

157

4. IMPLEMENTATION AND RESULTS

Senderl

Receiver2

Figure6. Experimental Network Scenario

it

b

Router

Sender2 2

Maximum sending rates of senders:
Max. sending rate of senderl = 32MBps
Max. sending rate of sender2 = 32MBps
Max. sending rate of sender3 = 32MBps

Maximum sending rates of Routers:

Max. sending rate of routerl = 40MBps
Max. sending rate of router2 = 40MBps

> Adaptive RED
--» GCCA-RED

Seriesl
Series2

Maximum Queue size at Routers:
Max. Queue size at routerl = J0MB
Max. Queue size at router2 = 30MB
The graphs for the above three
algorithms with respect to average queue length,
throughput, and number of packets dropped are
shown in fig.

Serjes3 ———-> Proposed Algorithm

e

L LA ama B S
123456867 8 9 40 1142131415

Figure 7.Comparison of average Queue length

| 400
1 300 —e—Seriest
-z Sefies2
200 Series3
100

1 3 5 7 9 11 13 15

l 0 b,
1

Figure 8.Comparison of Throughput

